Άσκηση 7 & 8 Προσομοιώσεις αστροφυσικών ροών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Άσκηση 7 & 8 Προσομοιώσεις αστροφυσικών ροών"

Transcript

1 Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εργαστήριο Κατεύθυνσης Αστροφυσικής Άσκηση 7 & 8 Προσομοιώσεις αστροφυσικών ροών Επιμέλεια άσκησης: Νεκτάριος Βλαχάκης

2 Περιεχόμενα 1 Σκοπός της άσκησης 1 Θεωρητικό υπόβαθρο 1 3 Ο κώδικας PLUTO 6 4 Βήματα της άσκησης 7 5 Βιβλιογραφία 9

3 1 Σκοπός της άσκησης Η θεωρία της μαγνητοϋδροδυναμικής είναι απαραίτητη για την κατανόηση πληθώρας αστροφυσικών φαινομένων, αφού ως γνωστόν η συντριπτική πλειοψηφία της ορατής ύλης βρίσκεται σε κατάσταση πλάσματος, δηλ. ιονισμένου αερίου. Τα μαθήματα «Δυναμική των Ρευστών» και «Αστροφυσική Πλάσματος» καλύπτουν την βασική περιγραφή των ρευστών αυτών, μαγνητισμένων ή μη. Λόγω της μη-γραμμικότητας των σχετικών διαφορικών εξισώσεων με μερικές παραγώγους, αποτελούν εξαιρέσεις οι περιπτώσεις όπου μπορούν να λυθούν αναλυτικά. Παρότι είναι πολύ σημαντικό να κατανοήσουμε αυτές τις αναλυτικές λύσεις, καθώς αποτελούν οδηγό για την ποιοτική περιγραφή πολυπλοκότερων και πιο ρεαλιστικών περιπτώσεων, η ποσοτική περιγραφή των τελευταίων μπορεί να γίνει μόνο με αριθμητική επίλυση. Τις τελευταίες δεκαετίες έχουν αναπτυχθεί αρκετοί κώδικες που επιλύουν τις εξισώσεις αυτές. Με την πάροδο του χρόνου αφενός βελτιώνονται σημαντικά, αφετέρου γίνονται φιλικότεροι στον χρήστη. Ο κώδικας PLUTO που θα χρησιμοποιήσουμε είναι ίσως το καλύτερο παράδειγμα ως προς την ευκολία στη χρήση του. Το να χρησιμοποιηθεί στα πλαίσια προπτυχιακού προγράμματος σπουδών είναι πρωτοπόρο και θα φάνταζε αδύνατο πριν μερικά χρόνια, όπου χρειαζόταν μήνες δουλειάς μόνο και μόνο για να εξοικειωθεί κανείς με κάποιον παρόμοιο κώδικα. Στην άσκηση αυτή θα χρησιμοποιήσουμε τον συγκεκριμένο κώδικα για να προσομοιώσουμε κάποιες σχετικά απλές περιπτώσεις υδροδυναμικών ρευστών (αερίων). Το πρώτο μέρος της άσκησης (πρώτο δίωρο) σκοπό έχει την εξοικείωση των φοιτητών με: τις βασικές εξισώσεις των ρευστών νόμους διατήρησης, τα ωστικά κύματα και της συνθήκες άλματος που τα περιγράφουν, το πως μεταφέρουμε ένα πρόβλημα στον υπολογιστή (αδιαστατοποίηση αρχικές και οριακές συνθήκες κώδικας PLUTO), προσομοίωση κίνησης πιστονιού σε κύλινδρο με ακίνητο ιδανικό αέριο για μικρές ή μεγάλες ταχύτητες σχετικά με την ταχύτητα του ήχου. Στο δεύτερο μέρος (δεύτερο δίωρο) θα μελετηθούν: η αλληλεπίδραση δύο ρευστών και τα «απλά» κύματα (simple waves) που την περιγράφουν, κύματα αραίωσης, προσομοίωση του προβλήματος του Sod. Θεωρητικό υπόβαθρο Ακολουθεί μια σύντομη παρουσίαση των εξισώσεων που περιγράφουν την δυναμική ενός ρευστού και τις οποίες επιλύει ο κώδικας PLUTO. Εδώ μας ενδιαφέρει η πιο απλή εκδοχή παρότι ο κώδικας προσφέρεται και για την επίλυση προβλημάτων που τα περιλαμβάνουν, θα αγνοήσουμε το μαγνητικό πεδίο, το ιξώδες του ρευστού και την θερμική αγωγιμότητα, την ειδική και γενική σχετικότητα. Θα έχουμε δηλ. κινήσεις ιδεατών υδροδυναμικών ρευστών, με μη-σχετικιστικές ταχύτητες και θα αμελούμε την παραμόρφωση του χωρόχρονου γύρω από συμπαγή σώματα. Επίσης θα θεωρούμε τα ρευστά ιδανικά αέρια. Ενα τέτοιο αέριο περιγράφεται από την ταχύτητά του V, την πυκνότητά του ρ και την πίεσή του P. Οι βασικές εξισώσεις της υδροδυναμικής που καθορίζουν αυτές τις ποσότητες (σαν συναρτήσεις του χώρου και του χρόνου) αντιστοιχούν στη διατήρηση μάζας, ορμής και ενέργειας. 1

4 Διατήρηση μάζας Εστω ένας σταθερός όγκος δτ στο χώρο. Ο ρυθμός ελάττωσης της μάζας που βρίσκεται μέσα στον όγκο αυτό είναι d ρ ρ dτ = dτ, επομένως σε χρόνο dt η μάζα ελαττώνεται dt t ρ κατά dτ dt. t Λόγω διατήρησης μάζας ίση μάζα περνά στο χρόνο dt την επιφάνεια δs που περικλείει τον όγκο. Από μια στοιχειώδη επιφάνεια ds σε χρόνο dt περνά μάζα ρv dt ds = ρv ds dt. Το γινόμενο ρv εκφράζει τη ροή μάζας (μάζα ανά επιφάνεια, ανά χρόνο). Η συνολική μάζα που περνά την επιφάνεια δs είναι ρv ds dt = (ρv )dτ dt χρησιμοποιώντας το [ ] ρ θεώρημα της απόκλισης. Εξισώνοντας τις δυο εκφράσεις έχουμε t + (ρv ) dτ = 0. Επιλέγοντας τον όγκο δτ αρκούντως μικρό ώστε η ολοκληρωτέα να είναι σταθερή προκύπτει τελικά ρ t + (ρv ) = 0. (1) Διατήρηση ορμής Ομοια θα βρούμε το ισοζύγιο της ορμής, λαμβάνοντας υπόψη τις προσθαφαιρέσεις λόγω των δυνάμεων και των κινήσεων του αερίου. Θα βρούμε την εξίσωση που εκφράζει τη διατήρηση της ˆx ορμής και μετά θα γενικεύσουμε το αποτέλεσμα. d Ο ρυθμός αύξησης της ˆx ορμής μέσα στον τυχαίο σταθερό όγκο δτ είναι ρv x dτ = dt t (ρv x)dτ. Από το μέρος ds της επιφάνειας που περικλείει τον όγκο, λόγω μακροσκοπικής κίνησης του ρευστού με ταχύτητα V εξέρχεται ˆx ορμή ανά χρόνο ρv dt ds V x = ρv x V ds. Η αντίστοιχη dt συνολική εξερχόμενη ˆx ορμή ανά χρόνο είναι ρv x V ds = (ρv x V ) dτ χρησιμοποιώντας το θεώρημα της απόκλισης. Λόγω της πίεσης το αέριο ασκεί δύναμη στο περιβάλλον του P ds = P dτ η οποία P αφαιρεί ˆx ορμή στη μονάδα του χρόνου x dτ. Αν υπάρχουν δυνάμεις όγκου f (δύναμη ανά όγκο, π.χ. ρg αν το αέριο είναι μέσα σε βαρυτικό πεδίο έντασης g) αυτές προσθέτουν ˆx ορμή στη μονάδα του χρόνου f x dτ, όπου f x = f ˆx. P Το ισοζύγιο της ˆx ορμής είναι λοιπόν t (ρv x)dτ = f x dτ x dτ (ρv x V ) dτ ή ισοδύναμα t (ρv x) + (ρv x V ) + P x = f x. Γενικεύοντας το αποτέλεσμα και για τις άλλες δύο συνιστώσες της ορμής μπορούμε να γράψουμε t (ρv i) + j=x,y,z j (ρv iv j + P δ ij ) = f i, i = x, y, z. ()

5 Διατήρηση ενέργειας Ομοια θα εκφράσουμε τη διατήρηση ενέργειας. Η ενέργεια του αερίου που σε κάθε στιγμή βρίσκεται μέσα στον σταθερό όγκο δτ είναι το άθροισμα της κινητικής ενέργειας λόγω της μακροσκοπικής κίνησης με ταχύτητα V και της εσωτερικής ενέργειας λόγω των θερμικών κινήσεων ( ρv + 1 ) Γ 1 P dτ, όπου Γ ο πολυτροπικός δείκτης του αερίου για μονατομικό αέριο ( ρv Γ = 5/3. Ο ρυθμός μεταβολής της ενέργειας αυτής είναι + 1 ) t Γ 1 P dτ, επομένως η ενέργεια αυξάνεται κατά + 1 ) ( ρv t Γ 1 P dτ dt σε χρόνο dt. Για να γράψουμε την έκφραση της διατήρησης ενέργειας πρέπει να λάβουμε υπόψη κάθε ενέργεια που προστίθεται ή αφαιρείται από το αέριο που βρίσκεται στο συγκεκριμένο όγκο. Αν υπάρχει θέρμανση που προσθέτει ενέργεια q ανά μονάδα μάζας και ανά μονάδα χρόνου τότε στο χρόνο dt προστίθεται ενέργεια ρq dτ dt. Αν ασκείται εξωτερική δύναμη f ανά όγκο του αερίου τότε μέσω του έργου της σε χρόνο dt προσθέτει ενέργεια dτ f V dt. Λόγω του έργου της δύναμης πίεσης που ασκείται μεταξύ αερίου και περιβάλλοντος στην επιφάνεια που κλείνει το συγκεκριμένο όγκο, αφαιρείται ενέργεια ds P V dt. Τέλος, λόγω της κίνησης του αερίου που έχει σαν αποτέλεσμα από το μέρος ds της επιφάνειας ( ρv σε χρόνο dt να εξέρχεται όγκος V dt ds = V ds dt αφαιρείται ενέργεια + 1 ) Γ 1 P V ds dt. Προσθέτοντας τις δύο τελευταίες συνεισφορές, η ενέργεια που αφαιρείται από την επιφάνεια ( ρv που περικλείει τον όγκο είναι + Γ ) Γ 1 P V ds dt. ( Ολες οι προηγούμενες εκφράσεις είναι αλγεβρικές, δηλ. αρνητικό πρόσημο σημαίνει αντίθετη συνεισφορά στο ενεργειακό ισοζύγιο.) ( ρv Η διατήρηση ενέργειας γράφεται λοιπόν + 1 ) t Γ 1 P dτ dt = ρq dτ dt + ( ρv ρf V dt dτ + Γ ) Γ 1 P V ds dt, ή χρησιμοποιώντας το θεώρημα της απόκλισης [ ( ) ( ρv ρv + ρe + t V + Γ ) ] Γ 1 P V f V ρq dτ = 0. Επιλέγοντας τον όγκο δτ αρκούντως μικρό ώστε η ολοκληρωτέα να είναι σταθερή προκύπτει τελικά ( ρv + 1 ) ( ρv t Γ 1 P + V + Γ ) Γ 1 P V = f V + ρq. (3) Εξισώσεις διατήρησης Οι πέντε προηγούμενες σχέσεις (1) (3) έχουν την μορφή εξίσωσης συνέχειας (πυκνότητα) t + j=x,y,z (ροή) = πηγές καταβόθρες (4) j για τις πέντε ποσότητες: μάζα, ˆx ορμή, ŷ ορμή, ẑ ορμή και ενέργεια. Εκτός της φυσικής σημασίας που έχει μια τέτοια σχέση, βοηθά και στην αριθμητική αντιμετώπισή της. Αν π.χ. 3

6 χωρίσουμε το χώρο που μας ενδιαφέρει σε μικρές κυβικές κυψελίδες, μπορούμε στο χρόνο t + dt να βρούμε την πυκνότητα στο κέντρο κάθε κυψελίδας προσθέτοντας στην τιμή που είχε στο χρόνο t τις συνεισφορές από τους όρους των ροών που περιγράφουν το πόση μάζα περνά ανά χρόνο από κάθε μία από τις έξι έδρες της κυψελίδας. Σε γενικές γραμμές σε αυτή την ιδιότητα βασίζεται ο τρόπος επίλυσης του κώδικα PLUTO (οι λεπτομέρειες δεν θα μας απασχολήσουν). Ωστικά κύματα και συνθήκες άλματος Γενικά οι ροές αερίων δεν είναι πάντα ομαλές. Σε ορισμένες περιπτώσεις είναι αναπόφευκτη η δημιουργία ασυνεχειών, μέσα στις οποίες το αέριο δεν βρίσκεται σε θερμοδυναμική ισορροπία. Οπως θα δούμε στη συνέχεια αυτό συμβαίνει όταν τα αέρια κινούνται με υπερηχητικές ταχύτητες. Ενα παράδειγμα για τη δημιουργία ασυνέχειας είναι το ακόλουθο: Εστω ότι έχουμε ένα κυλινδρικό δοχείο μεγάλου μήκους γεμάτο με ιδανικό μονατομικό αέριο, το οποίο είναι κλειστό στην μια μεριά με ένα κινούμενο έμβολο. Εστω ότι για t = 0 αρχίζουμε να κινούμε το έμβολο με σταθερή ταχύτητα V ε. Προφανώς τα άτομα/μόρια που βρίσκονται κοντά στην επιφάνεια του εμβόλου εξαναγκάζονται να κινηθούν με ταχύτητα V ε και αρχικά δημιουργείται ένα πύκνωμα και μια αύξηση πίεσης (να σημειώσουμε εδώ ότι η μέση ταχύτητα της ροής είναι ανεξάρτητη από τις θερμικές κινήσεις μέτρο των οποίων είναι η θερμοκρασία). Η πληροφορία ότι η πίεση αυξήθηκε, η οποία θα οδηγήσει σε κίνηση τελικά όλα τα άτομα/μόρια του δοχείου, διαδίδεται με πεπερασμένη ταχύτητα, την ταχύτητα του ήχου C s. Για μικρές ταχύτητες του εμβόλου V ε < C s υπάρχει αρκετός χρόνος να διαδοθεί η πληροφορία και να αποκατασταθεί ισορροπία. Τα τελευταία άτομα/μόρια που «μαθαίνουν τα νέα» τη χρονική στιγμή t βρίσκονται σε απόσταση (C s V ε )t από το έμβολο. Τι γίνεται όμως αν κινήσουμε το έμβολο με ταχύτητα V ε > C s ; Τότε δεν δίνουμε χρόνο στα άτομα/μόρια να αντιδράσουν και να μεταδώσουν την πληροφορία ομαλά, αφού τα ηχητικά κύματα είναι πιο αργά από το έμβολο. Σίγουρα βέβαια κοντά στο έμβολο τα άτομα/μόρια έχουν ταχύτητα V ε όπως πριν, ενώ σε κάποια απόσταση το αέριο παραμένει ακίνητο. Το αέριο λύνει το πρόβλημα «επικοινωνίας» αυξάνοντας την ταχύτητα του ήχου σε μια περιοχή κοντά στο έμβολο, κάτι που συνεπάγεται αύξηση της θερμοκρασίας, της πίεσης και της πυκνότητας. Το μέτωπο αυτής της πυκνής περιοχής είναι το ωστικό κύμα. Η δημιουργία της ασυνέχειας είναι συνέπεια του γεγονότος ότι η αδιαβατική ταχύτητα του ήχου με την οποία μεταφέρεται η πληροφορία μέσα σε ένα αέριο είναι ανάλογη της θερμοκρασίας, πυκνότητας και πίεσης. Συγκεκριμένα είναι C s = Γ P/ρ T 1/ ρ (Γ 1)/ P (Γ 1)/Γ, διότι στις αδιαβατικές μεταβολές (σταθερής) μάζας M του αερίου, η οποία καταλαμβάνει (μεταβλητό) όγκο τ = M/ρ είναι P ( τ) Γ = σταθερό, ή P ρ Γ. Κατά συνέπεια όταν δημιουργείται μια μεταβολή μέσα στο αέριο το μέτωπο των πυκνότερων τμημάτων του κινείται πιο γρήγορα και τείνει να προσπεράσει το μέτωπο των πιο αραιών τμημάτων. Η προσπέραση είναι βέβαια αδύνατη, αλλά η προηγούμενη σκέψη δείχνει ότι η απόσταση μεταξύ πυκνών και αραιών τμημάτων ολοένα και μικραίνει, δηλ. η κλίση των μεγεθών ολοένα και μεγαλώνει. Οταν η απόσταση αυτή γίνει μηδενική η κλίση γίνεται άπειρη και έχει δημιουργηθεί ασυνέχεια, όπως φαίνεται στο σχήμα 1 (πρακτικά η ασυνέχεια έχει πάχος συγκρίσιμο με την μέση ελεύθερη διαδρομή, η οποία είναι όμως πολύ μικρή σε σχέση με τις διαστάσεις που μας ενδιαφέρουν). Στο εσωτερικό της ασυνέχειας δεν είναι εύκολο να περιγράψουμε το αέριο (το οποίο υπόκειται σε μη-αντιστρεπτή μεταβολή καθώς περνάει την ασυνέχεια). Ομως, μπορούμε να παρακάμψουμε τη δυσκολία αυτή και να συνδέσουμε τις δύο καταστάσεις πριν και μετά την ασυνέχεια μέσω των νόμων διατήρησης. Χωρίς βλάβη της γενικότητας μπορούμε να θεωρήσουμε σαν επίπεδο της ασυνέχειας το x = 0 (τοπικά η ασυνέχεια είναι πάντα επίπεδη), δηλ. είναι προτιμότερο να εργαστούμε στο σύστη- 4

7 Σχήμα 1: Δημιουργία ωστικού κύματος. Καθώς πυκνότερα στρώματα κινούνται γρηγορότερα, η κλίση της πυκνότητας με την πάροδο του χρόνου γίνεται πιο απότομη και πέρα από κάποιο χρόνο άπειρη. μα αναφοράς στο οποίο η ασυνέχεια είναι ακίνητη και να επιλέξουμε τον άξονα x κάθετα στο επίπεδο της ασυνέχειας. Εστω το μέρος είναι το μέρος x > 0 του αερίου απ όπου έχει περάσει η ασυνέχεια (δηλ. το πυκνότερο μέρος στο οποίο η ταχύτητα του ήχου έχει αυξηθεί) με πυκνότητα ρ, πίεση P και ταχύτητα V (ως προς την ασυνέχεια), ενώ το μέρος «1» είναι το μέρος x < 0 που δεν έχει περάσει, με πυκνότητα ρ 1, πίεση P 1 και ταχύτητα V 1 (ως προς την ασυνέχεια). Ολοκληρώνοντας την εξίσωση (1) ως προς x σε ένα απειροστό διάστημα που περιλαμβάνει την ασυνέχεια, δηλ. σε διάστημα ( ϵ, ϵ) με ϵ 0 +, έχουμε ϵ lim ϵ 0 + ϵ [ ρ t + (ρv x) + (ρv y) + (ρv z) x y z ] dx = 0 lim ϵ 0 + [ρv x] ϵ ϵ = 0, διότι όλοι οι όροι είναι ομαλοί (και άρα το ολοκλήρωμά τους μηδενικό), εκτός της παραγώγου ως προς x που είναι άπειρη λόγω της ασυνέχειας. Ετσι βρίσκουμε την πρώτη συνθήκη άλματος που εκφράζει την διατήρησης μάζας ρ 1 V 1x = ρ V x. (5) Ομοια το ολοκλήρωμα της εξίσωσης () δίνει ρ 1 V 1x + P 1 = ρ V x + P για i = x, ρ 1 V 1x V 1y = ρ V x V y για i = y και ρ 1 V 1x V 1z = ρ V x V z για i = z, με τις δύο τελευταίες να απλοποιούνται σε V 1y = V y και V 1z = V z λόγω της συνθήκης (5). Ετσι, οι συνθήκες άλματος που εκφράζουν την διατήρηση της ορμής κάθετα και παράλληλα στο επίπεδο της ασυνέχειας (δηλ. στην διεύθυνση ˆx και στο επίπεδο xy) γράφονται ρ 1 V 1x + P 1 = ρ V x + P, (6) V 1y = V y, V 1z = V z. (7) Το ολοκλήρωμα της εξίσωσης (3) δίνει όμοια 1 ρ 1V1 V 1x + Γ Γ 1 P 1V 1x = 1 ρ V V x + Γ Γ 1 P V x. Χρησιμοποιώντας τις συνθήκες (5) και (7) η συνθήκη άλματος που εκφράζει την διατήρηση ενέργειας γράφεται 1 ρ 1V 3 1x + Γ Γ 1 P 1V 1x = 1 ρ V 3 x + 5 Γ Γ 1 P V x. (8)

8 Οι πέντε συνθήκες άλματος (5) (8) καθορίζουν μονοσήμαντα την κατάσταση στο μέρος αν γνωρίζουμε αυτή του μέρους «1» και αντίστροφα. Μπορεί να αποδειχθεί ότι συνεπάγονται ρ ρ 1 = V 1x V x = Γ + 1 Γ 1 + /M 1 όπου M 1 είναι ο αριθμός Mach του μέρους «1» M 1 = V 1x C s1, C s1 =, P = Γ M 1 Γ + 1, (9) P 1 Γ + 1 Γ P 1 ρ 1. (10) Η πρώτη από τις εξισώσεις (9) συνεπάγεται ότι ρ > ρ 1 M 1 > 1. Η ίδια σχέση, εναλλάσσοντας τους δείκτες 1 και δίνει ότι ρ 1 < ρ M < 1. Άρα σε ένα ωστικό κύμα έχουμε πάντα μετάβαση από υπερηχητική σε υποηχητική ροή. Πάντα αναφερόμαστε στις συνιστώσες της ταχύτητας κάθετα στο επίπεδο της ασυνέχειας και στο σύστημα όπου η ασυνέχεια είναι ακίνητη. Στο όριο που η ταχύτητα του μέρους «1» είναι κατά πολύ μεγαλύτερη της ταχύτητας ήχου στο ίδιο μέρος, δηλ. M 1 1, λέμε ότι έχουμε ισχυρή ασυνέχεια, διότι ο λόγος συμπίεσης γίνεται μέγιστος και ίσος με ρ = V 1x = Γ + 1. Στην περίπτωση που Γ = 5/3 αυτός ο λόγος ρ 1 V x Γ 1 ισούται με 4, δηλ. ρ = 4ρ 1 και V 1x = 4V x. Στο παράδειγμα με το έμβολο που κινείται με υπερηχητική ταχύτητα V ε μέσα σε ακίνητο μονατομικό αέριο, έστω η πυκνότητα και πίεση του αδιατάρακτου αερίου είναι ρ 1 και P 1, αντίστοιχα. Η ταχύτητα του ήχου στο μέρος αυτό θα είναι C s1 = 5P 1 /3ρ 1. Αν έχουμε ισχυρή ασυνέχεια V ε C s1 ο λόγος συμπίεσης θα είναι 4. Άρα η πυκνότητα στο μέρος του αερίου κοντά στο έμβολο που έχει συμπιεστεί (από το οποίο έχει περάσει το ωστικό κύμα) θα είναι ρ = 4ρ 1 και η πίεση θα είναι P = (5/4)M1 P 1. Αν U είναι η ταχύτητα της ασυνέχειας τότε στο σύστημα της ασυνέχειας θα είναι V 1 = U και V = U V ε, οπότε η σχέση V 1 = 4V δίνει την ταχύτητα του ωστικού κύματος U = (4/3)V ε. 3 Ο κώδικας PLUTO Το PLUTO user s guide περιγράφει αναλυτικά τις διάφορες δυνατότητες του κώδικα και θα το συμβουλευόμαστε όποτε χρειάζεται. Υπάρχει αντίγραφο μέσα στον υποφάκελο PLUTO/Doc του home directory. Για κάθε πρόβλημα γενικά εκτελούμε τις παρακάτω ενέργειες: 1. Αδιαστατοποίηση: Κάθε κώδικας επεξεργάζεται καθαρούς αριθμούς (χωρίς μονάδες), επομένως πρέπει να ορίσουμε μονάδες για τρία βασικά μεγέθη τα οποία μπορεί να είναι μήκος, μάζα, χρόνος ή τρεις ανεξάρτητοι συνδυασμοί τους. Αν π.χ. μετράμε αποστάσεις σε μονάδες r n, ταχύτητες σε μονάδες V n και πυκνότητες σε μονάδες ρ n τότε θέτουμε r = r n r, = 1 r n, V = V n V, ρ = ρ n ρ, όπου τα τονούμενα είναι αδιάστατα. Για να μείνει αναλλοίωτη η μορφή των σχέσεων (1) (3) πρέπει να μετράμε το χρόνο σε μονάδες r n /V n, την πίεση σε μονάδες ρ n Vn και την δύναμη ανά όγκο σε μονάδες ρ n Vn /r n. Τότε, οι σχέσεις που συνδέουν τις τονούμενες ποσότητες, αφού διώξουμε τους τόνους για απλούστευση, είναι ακριβώς οι (1) (3). Με τον τρόπο αυτό έχουμε μονάδες για όλα τα μεγέθη του ρευστού και μπορούμε να μετατρέπουμε κάθε φυσικό μέγεθος σε καθαρό αριθμό (για να τον εισάγουμε στον κώδικα) και αντίστροφα (για να καταλαβαίνουμε τι σημαίνει ένα αριθμητικό αποτέλεσμα του κώδικα). 6

9 . Επιλέγουμε σύστημα συντεταγμένων (καρτεσιανές, κυλινδρικές, σφαιρικές). 3. Ορίζουμε πλέγμα σημείων σε κάθε χωρική κατεύθυνση, με ελάχιστη τιμή, μέγιστη τιμή και πλήθος σημείων. Ετσι οριοθετείται το χωρίο στον οποίο θα λυθεί το πρόβλημα. Οι ακραίες τιμές της χωρικής μεταβλητής είναι καθαροί αριθμοί (έχουν αδιαστατοποιηθεί). Για τη διαμέριση του χώρου υπάρχουν διάφορες δυνατότητες, π.χ. πλέγμα με ισαπέχοντα σημεία, ή με την απόσταση μεταξύ των σημείων να αυξάνεται λογαριθμικά. 4. Δίνουμε (αδιαστατοποιημένες) αρχικές συνθήκες στο πρόβλημα, δηλ. τις τιμές των ρ, V, P σε κάθε σημείο του χωρίου που λύνουμε το πρόβλημα τη χρονική στιγμή t = Δίνουμε οριακές συνθήκες, δηλ. πληροφορίες σε κάθε πλευρά του χωρίου που βοηθούν τον κώδικα να υπολογίσει τις ροές σε όλες τις έδρες των κυψελίδων που βρίσκονται στα άκρα του χωρίου. Π.χ. έστω η μία χωρική συντεταγμένη είναι η x και το αντίστοιχο πλέγμα εκτείνεται από το αριστερό άκρο x = x min στο δεξί άκρο x = x max. Για να υπολογιστεί η πυκνότητα στο σημείο x = x max χρειάζεται η ροή μάζας που μπαίνει από την έδρα που βρίσκεται δεξιότερα του x max, που δεν είναι γνωστή μιας και το σημείο αυτό βρίσκεται εκτός χωρίου που λύνουμε το πρόβλημα. Πρέπει λοιπόν να δώσουμε επιπλέον πληροφορία για να υπολογιστούν αυτές οι ροές για όλες τις ποσότητες. Υπάρχουν διάφορες επιλογές οριακών συνθηκών που δέχεται ο κώδικας. Π.χ. «outflow» σημαίνει μηδενική παράγωγο (δηλ. στο σημείο δεξιότερα του x max οι τιμές όλων των ποσοτήτων του ρευστού θεωρούνται ίδιες με τις τιμές στο x max ). Μια δεύτερη επιλογή είναι «userdef» (δηλ. user-defined) στην οποία ο χρήστης πρέπει να καθορίσει τις τιμές. Οι οριακές συνθήκες σε πολλές περιπτώσεις είναι το πιο σημαντικό δεδομένο που καθορίζει τη λύση ενός προβλήματος. Αν αντιστοιχούν σε πραγματικό όριο του ρευστού τότε έχουν άμεση φυσική σημασία (π.χ. πρέπει να υποχρεώσουμε την κάθετη ταχύτητα να είναι μηδενική). Σε πολλά αστροφυσικά προβλήματα όμως, στα οποία ο χώρος που καταλαμβάνει ένα ρευστό είναι πολύ μεγάλος και άρα ανέφικτο να προσομοιωθεί στο σύνολό του, είμαστε αναγκασμένοι να δώσουμε τεχνητές οριακές συνθήκες. Αν δεν προσεχθούν μπορεί να οδηγήσουν σε λανθασμένα συμπεράσματα καθότι κύματα που φτάνουν στα όρια του χωρίου μπορεί να ανακλώνται και να επηρεάζουν τεχνητά τη λύση. 6. Επιλέγουμε τον τελικό χρόνο στον οποίο θέλουμε την λύση (είναι καθαρός αριθμός γιατί έχει αδιαστατοποιηθεί). 7. Επιλέγουμε μορφή για το αποτέλεσμα που θα προκύψει ώστε να μπορούμε να το απεικονίσουμε γραφικά και να το καταλάβουμε. 4 Βήματα της άσκησης Βήμα 1: Εξοικείωση με τον κώδικα: Ανοίξτε ένα terminal. Δημιουργήστε ένα υποφάκελο του home directory και ονομάστε τον σύμφωνα με τους αριθμούς μητρώου σας. Αυτό γίνεται δίνοντας την ακόλουθη εντολή στο terminal: mkdir AM 1 _AM (όπου AM 1 _AM οι επταψήφιοι αριθμοί μητρώου σας το έτος ακολουθούμενο από τα τρία τελευταία ψηφία). Μην αφήνετε κενά στο όνομα του φακέλου και μην χρησιμοποιείτε Ελληνικούς 7

10 χαρακτήρες. Μεταφερθείτε μέσα στον φάκελο που δημιουργήσατε με την εντολή cd AM 1 _AM Βήμα : Δώστε την εντολή setuppy και ακολουθήστε τις οδηγίες που θα δοθούν στο εργαστήριο (όλες οι δυνατότητες περιγράφονται στο Problem Setup του PLUTO user s guide). Βήμα 3: Αυτό το βήμα πρέπει να συμπεριληφθεί στην γραπτή εργασία (η οποία θα παραδοθεί μετά το τέλος του δεύτερου μέρους της άσκησης). Για τις αρχικές συνθήκες που δόθηκαν για το πρόβλημα της κίνησης εμβόλου σε αέριο επεξεργαστείτε τα αποτελέσματα και επαληθεύσετε ότι ικανοποιούνται οι συνθήκες άλματος που αναφέρονται στο «Θεωρητικό υπόβαθρο». Πως αλλάζουν τα αποτελέσματα αν αλλάξουμε την ταχύτητα του εμβόλου; Μπορεί η προσομοίωση αυτή να αφορά ένα ωστικό κύμα υπερκαινοφανούς που κινείται με ταχύτητα 10 4 km s 1 μέσα στο (ακίνητο) μεσοαστρικό υλικό, του οποίου η ταχύτητα ήχου είναι C 1 = 10 km s 1 ; Ποια η ταχύτητα και η θερμοκρασία του μεσοαστρικού υλικού από το οποίο έχει περάσει το ωστικό κύμα; Το μεσοαστρικό υλικό μπορεί να θεωρηθεί ιδανικό μονατομικό αέριο πρωτονίων-ηλεκτρονίων, με πίεση P = ρ m p / k BT. Δίνονται k B = , m p = , στο σύστημα cgs. ΕΔΩ ΤΕΛΕΙΩΝΕΙ ΤΟ ΠΡΩΤΟ ΜΕΡΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Βήμα 4: Αυτό το βήμα πρέπει να συμπεριληφθεί στην γραπτή εργασία. Το πρόβλημα του Sod αφορά δύο ρευστά σε ένα σωλήνα, το «αριστερό» και το «δεξιό», τα οποία βρίσκονται σε επαφή. Αρχικά τα ρευστά είναι στατικά, αλλά αν οι πιέσεις τους είναι διαφορετικές η επιφάνεια επαφής θα κινηθεί και τα χαρακτηριστικά τους θα αλλάξουν. Προσομοιώστε το πρόβλημα αυτό αν το αριστερό ρευστό αρχικά καταλαμβάνει το χώρο x < 0, έχει πυκνότητα ρ l = 10 5 και πίεση P l = 1, ενώ το δεξιό ρευστό αρχικά καταλαμβάνει το χώρο x > 0, έχει πυκνότητα ρ r = και πίεση P r = 0.1. Και για τα δύο ρευστά Γ =

11 Σχεδιάστε την πυκνότητα, πίεση και ταχύτητα σαν συνάρτηση της θέσης για t = Διακρίνετε τις περιοχές της παραπάνω εικόνας στα αποτελέσματά σας και σχολιάστε τι συμβαίνει στην κάθε μία περιοχή. Κάντε τα διαγράμματα της πυκνότητας, πίεσης και ταχύτητας σαν συνάρτηση της μεταβλητής x/t σε διάφορες χρονικές στιγμές. Τι παρατηρείτε; Σε τι αντιστοιχούν οι τιμές των x/t που υπάρχουν ασυνέχειες; 5 Βιβλιογραφία PLUTO: A modular code for computational astrophysics PLUTO user s guide PLUTO: A Numerical Code for Computational Astrophysics, Mignone, A., et al. 007, ApJS, 170, 8 Δυναμική των Ρευστών, Ν. Βλαχάκης 9

Υδροδυναμικές Ροές και Ωστικά Κύματα

Υδροδυναμικές Ροές και Ωστικά Κύματα Υδροδυναμικές Ροές και Ωστικά Κύματα 7 7.1 Εισαγωγή Οι διαδικασίες υψηλών ενεργειών που περιγράφηκαν στα προηγούμενα κεφάλαια, καθώς και η επιτάχυνση σωματιδίων σε υψηλές ενέργειες η οποία θα περιγραφεί

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς Ορισμοί. Ενεργός διατομή 3. Ενεργός διατομή στο μοντέλο των σκληρών σφαιρών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;

Διαβάστε περισσότερα

Αστροφυσική. Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

Αστροφυσική. Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1)

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1) 1)Συνήθως οι πτήσεις των αεροσκαφών γίνονται στο ύψος των 15000 m, όπου η θερμοκρασία του αέρα είναι 210 Κ και η ατμοσφαιρική πίεση 10000 N / m 2. Σε αεροδρόμιο που βρίσκεται στο ίδιο ύψος με την επιφάνεια

Διαβάστε περισσότερα

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών

Διαβάστε περισσότερα

Μακροσκοπική ανάλυση ροής

Μακροσκοπική ανάλυση ροής Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής

Διαβάστε περισσότερα

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές. ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Ρευστά Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourses.wordpress.com Βασικές έννοιες Πρώτη φορά συναντήσαμε τη φυσική των ρευστών στη Β Γυμνασίου. Εκεί

Διαβάστε περισσότερα

MIKΡΕΣ ΟΠΕΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

MIKΡΕΣ ΟΠΕΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 www.pmiras.weebly.cm MIKΡΕΣ ΟΠΕΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Μικρές Οπές. Ασκήσεις ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 www.pmiras.weebly.cm

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

v = 1 ρ. (2) website:

v = 1 ρ. (2) website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα

Διαβάστε περισσότερα

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4 Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Θέμα Απομονωμένο σύστημα περνάει από κατάσταση με εντροπία S σε κατάσταση με εντροπία S. Αποδείξτε και σχολιάστε ότι ισχύει S S. Για οποιαδήποτε μηχανή (σύστημα που εκτελεί

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

Αστροφυσική. Ενότητα # 5: Μαγνητικά Πεδία στην Αστροφυσική. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Αστροφυσική. Ενότητα # 5: Μαγνητικά Πεδία στην Αστροφυσική. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 5: Μαγνητικά Πεδία στην Αστροφυσική Λουκάς Βλάχος Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ 1. Οι δυναμικές γραμμές ηλεκτροστατικού πεδίου α Είναι κλειστές β Είναι δυνατόν να τέμνονται γ Είναι πυκνότερες σε περιοχές όπου η ένταση του πεδίου είναι μεγαλύτερη δ Ξεκινούν

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΦΥΣΙΚΗ ΣΥΝΕΙΡΜΟΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΦΥΣΙΚΗ ΣΥΝΕΙΡΜΟΣ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ημερομηνία: Τετάρτη Απριλίου 08 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ΑΣΚΗΣΗ 1 Το δοχείο του σχήματος είναι απομονωμένο (αδιαβατικά τοιχώματα). Το διάφραγμα χωρίζει το δοχείο σε δύο μέρη. Το αριστερό μέρος έχει όγκο 1 και περιέχει ιδανικό αέριο

Διαβάστε περισσότερα

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ) ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Σελίδα 1 από 6

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Σελίδα 1 από 6 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,, 3, 4 δείχνουν

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Συνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας.

Συνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας. 5 η ΔΙΑΛΕΞΗ Στόχος της διάλεξης αυτής είναι η κατανόηση των διαδικασιών αλλά και των σχέσεων που χρησιμοποιούνται για τον προσδιορισμό του ρυθμού μεταφοράς θερμότητας, Q &, αλλά και του επιφανειακού συντελεστή

Διαβάστε περισσότερα

Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής.

Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής. ΕΠΑΝΑΛΗΠΤΙΚΑ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ o ΕΠΑΝΑΛΗΠΤΙΚΟ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ Θέμα ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής. ) Σώμα εκτελεί ταυτόχρονα δύο απλές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ 2 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΠΟ ΤΗ ΒΕΡΩΝΗ ΕΙΡΗΝΗ ΜΗΧΑΝΙΚΗ Ο κλάδος της Φυσικής που εξετάζει μόνο όσες ενεργειακές ανταλλαγές γίνονται με την εκτέλεση έργου. ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ο κλάδος της Φυσικής που εξετάζει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΡΟΥΣΕΙΣ-ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ-ΡΕΥΣΤΑ ΣΕ ΙΣΟΡΡΟΠΙΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΡΟΥΣΕΙΣ-ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ-ΡΕΥΣΤΑ ΣΕ ΙΣΟΡΡΟΠΙΑ δ) F επ = mω 2 Α ημ(ωt + 5π 6 ). ΜΟΝΑΔΕΣ 5 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΡΟΥΣΕΙΣ-ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ-ΡΕΥΣΤΑ ΣΕ ΙΣΟΡΡΟΠΙΑ 13/01/2019 ΘΕΜΑ A Στις ερωτήσεις 1-4 να γράψετε στο φύλλο

Διαβάστε περισσότερα

ΡΕΥΣΤΑ. Φυσική Θετικού Προσανατολισμου Γ' Λυκείου

ΡΕΥΣΤΑ. Φυσική Θετικού Προσανατολισμου Γ' Λυκείου ΡΕΥΣΤΑ ΕΙΣΑΓΩΓΗ Ρευστά Με τον όρο ρευστά εννοούμε τα ΥΓΡΑ και τα ΑΕΡΙΑ τα οποία, αντίθετα από τα στερεά, δεν έχουν καθορισμένο όγκο ούτε σχήμα. Τα υγρά είναι ασυμπίεστα και τα αέρια συμπιεστά. Τα υγρά

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Β ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 ΑΠΡΙΛΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Β ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 ΑΠΡΙΛΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Β ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 ΑΠΡΙΛΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΕΡΙΟ AN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΣΚΗΣΗ Αέριο an der Waals ν moles συμπιέζεται ισόθερμα από

Διαβάστε περισσότερα

dv 2 dx v2 m z Β Ο Γ

dv 2 dx v2 m z Β Ο Γ Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον

Διαβάστε περισσότερα

Φυσική Γ Θετ. και Τεχν/κης Κατ/σης ΚΥΜΑΤΑ ( )

Φυσική Γ Θετ. και Τεχν/κης Κατ/σης ΚΥΜΑΤΑ ( ) ΚΥΜΑΤΑ ( 2.1-2.2) Για τη δημιουργία ενός κύματος χρειάζονται η πηγή της διαταραχής ή πηγή του κύματος, δηλαδή η αιτία που θα προκαλέσει τη διαταραχή και ένα υλικό (μέσο) στο οποίο κάθε μόριο αλληλεπιδρά

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

dx cos x = ln 1 + sin x 1 sin x.

dx cos x = ln 1 + sin x 1 sin x. Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Διαφορική ανάλυση ροής

Διαφορική ανάλυση ροής Διαφορική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΜΕ και ΔΕ ροής: Διαφορές Οριακές και αρχικές συνθήκες Οριακές συνθήκες: Φυσική σημασία αλληλεπίδραση του όγκου ελέγχου με το περιβάλλον

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. O ος Θερμοδυναμικός Νόμος. Η Εντροπία 3. Εντροπία και αταξία 4. Υπολογισμός Εντροπίας

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : MAΡΤΙΟΣ 2017

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : MAΡΤΙΟΣ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : MAΡΤΙΟΣ 2017 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 3 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός.

Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Βασικές Έννοιες Η επιστήμη της Φυσικής συχνά μελετάει διάφορες διαταραχές που προκαλούνται και διαδίδονται στο χώρο.

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017

Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

Φυσική ΘΕΜΑ Α. τον πυθμένα του δοχείου μία οπή μικρής διατομής, μέσω της οποίας το υγρό μπορεί να. 2017!!! ευχές & επιτυχίες για τη νέα χρονιά!

Φυσική ΘΕΜΑ Α. τον πυθμένα του δοχείου μία οπή μικρής διατομής, μέσω της οποίας το υγρό μπορεί να. 2017!!! ευχές & επιτυχίες για τη νέα χρονιά! Φυσική προσανατολισμού ΘΕΜΑ Α Στις προτάσεις από Α1 - Α4 να βρείτε τη σωστή απάντηση. Α1. Σε ένα υλικό μέσο δημιουργείται στάσιμο κύμα. Όλα τα σημεία του μέσου που ταλαντώνονται: α) έχουν την ίδια συχνότητα

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΚΡΟΥΣΕΙΣ. γ) Δ 64 J δ) 64%]

ΚΡΟΥΣΕΙΣ. γ) Δ 64 J δ) 64%] 1. Μικρή σφαίρα Σ1, μάζας 2 kg που κινείται πάνω σε λείο επίπεδο με ταχύτητα 10 m/s συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Σ2 μάζας 8 kg. Να υπολογίσετε: α) τις ταχύτητες των σωμάτων μετά

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ 16111 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 8 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ε- ρώτησης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/02/7 ΕΠΙΜΕΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Πρόβλημα 4.9.

Πρόβλημα 4.9. Πρόβλημα 4.9. Να βρεθεί το δυναμικό V() παντού στο χώρο ενός θετικά φορτισμένου φύλλου απείρων διαστάσεων με επιφανειακή πυκνότητα φορτίου σ. Πάρτε τον άξονα κάθετα στο φύλλο και θεωρήστε ότι το φύλλο

Διαβάστε περισσότερα

1o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΗΣ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

1o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΗΣ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 1o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΗΣ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

ΘΕΜΑ Α Να γράψετε στη κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Να γράψετε στη κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΤΑΞΗ ΟΝΟΜΑ ΜΑΘΗΜΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΟΜΗΝΙΑ 12 ΜΑΪΟΥ 2018 ΘΕΜΑ Α Να γράψετε στη κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο 1.1. Φορτισμένο σωματίδιο αφήνεται ελεύθερο μέσα σε ομογενές ηλεκτρικό πεδίο χωρίς την επίδραση της βαρύτητας. Το σωματίδιο: α. παραμένει ακίνητο. β. εκτελεί ομαλή κυκλική κίνηση.

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β.

Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β. ΕΙΣΑΓΩΓΗ Φυσικά μεγέθη Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα Β. τα διανυσματικά Μονόμετρα ονομάζουμε τα μεγέθη εκείνα τα οποία για να τα γνωρίζουμε χρειάζεται να ξέρουμε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Στις παρακάτω ερωτήσεις Α-Α4 να σημειώσετε την σωστή απάντηση Α. Νερό διαρρέει έναν κυλινδρικό σωλήνα, ο οποίος στενεύει σε κάποιο σημείο του χωρίς να διακλαδίζεται. Ποια

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Τζαγκαράκης Γιάννης, Δημοπούλου Ηρώ, Αδάμη Μαρία, Αγγελίδης Άγγελος, Παπαθανασίου Θάνος, Παπασταμάτης Στέφανος

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2013 Γ Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1. Σώμα

Διαβάστε περισσότερα

Ημερομηνία: Τετάρτη 04 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τετάρτη 04 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 0/04/08 ΕΩΣ 4/04/08 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τετάρτη 04 Απριλίου 08 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς προτάσεις Α Α4 να γράψετε στο

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ

ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 www.pmoiras.weebly.om ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ Περιεχόμενα 1. Κυκλικές διαδικασίες 2. O 2ος Θερμοδυναμικός Νόμος- Φυσική Ερμηνεία 2.1 Ισοδυναμία

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα αυτής της

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 3 Ο : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση 1. ΘΕΜΑ Β Στο οριζόντιο σωλήνα του διπλανού σχήματος ρέει ιδανικό υγρό. Με τον οριζόντιο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΚΡΟΥΣΕΙΣ- ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ-ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΚΡΟΥΣΕΙΣ- ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ-ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΚΡΟΥΣΕΙΣ- ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ-ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ημερομηνία: 15/2/15 Διάρκεια διαγωνίσματος: 18 Υπεύθυνος καθηγητής: Τηλενίκης Ευάγγελος ΖΗΤΗΜΑ 1 Ο Στις

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΘΕΜΑ 1 ο 1 ΘΕΜΑ 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα.

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα. 1ο Κριτήριο αξιολόγησης στα κεφ. 1-2 Θέμα 1 Ποια από τις παρακάτω προτάσεις είναι σωστή; 1. Ένα σώμα μάζας m είναι δεμένο στην ελεύθερη άκρη κατακόρυφου ιδανικού ελατηρίου σταθεράς k και ηρεμεί στη θέση

Διαβάστε περισσότερα

Οδηγίες προς υποψηφίους ΚΑΛΗ ΕΠΙΤΥΧΙΑ!

Οδηγίες προς υποψηφίους ΚΑΛΗ ΕΠΙΤΥΧΙΑ! ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Β ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 26 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς αϖό τις ϖαρακάτω ερωτήσεις 1-4 και δίϖλα το γράµµα

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ / ΤΜΗΜΑ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2017

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ / ΤΜΗΜΑ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ / ΤΜΗΜΑ : Β ΛΥΚΕΙΟΥ ΔΙΑΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 217 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 Ροή (γενικά): Ηλεκτρική Ροή Η ποσότητα ενός μεγέθους που διέρχεται από μία επιφάνεια. Ε Ε dα dα θ Ε Ε θ Ηλεκτρική ροή dφ Ε μέσω στοιχειώδους επιφάνειας da (αφού da στοιχειώδης

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) Στις ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) Στις ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

) z ) r 3. sin cos θ,

) z ) r 3. sin cos θ, Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 4-5 Ν. Βλαχάκης. Σώμα μάζας m κινείται στο πεδίο δύναμης της πρώτης άσκησης της τέταρτης εργασίας με λ, αλλά επιπλέον είναι υποχρεωμένο να κινείται μόνο στην ευθεία

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα

Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα Θέμα Α 1) Η ιδιοσυχνότητα ενός συστήματος που εκτελεί εξαναγκασμένη ταλάντωση χωρίς τριβή είναι 20 Hz. Το πλάτος της ταλάντωσης γίνεται

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

[50m/s, 2m/s, 1%, -10kgm/s, 1000N] ΚΕΦΑΛΑΙΟ 5 ο - ΜΕΡΟΣ Α : ΚΡΟΥΣΕΙΣ ΕΝΟΤΗΤΑ 1: ΚΡΟΥΣΕΙΣ 1. Σώμα ηρεμεί σε οριζόντιο επίπεδο. Βλήμα κινούμενο οριζόντια με ταχύτητα μέτρου και το με ταχύτητα, διαπερνά το σώμα χάνοντας % της κινητικής του

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ - B ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ - B ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ - B ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Για να έχουμε επιτάχυνση, τι από τα παρακάτω πρέπει να συμβαίνει: i) Το μέτρο της ταχύτητας να

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ ΘΕΩΡΙΑΣ 2017

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ ΘΕΩΡΙΑΣ 2017 ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ ΘΕΩΡΙΑΣ 2017 ΚΕΦΑΛΑΙΟ 1 ο ΕΙΣΑΓΩΓΗ 1.3 Τα φυσικά μεγέθη και οι μονάδες τους 1. Ποια μεγέθη ονομάζονται θεμελιώδη; Θεμελιώδη ονομάζονται τα μεγέθη τα οποία δεν ορίζονται με

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΚΑΤΩ ΠΟΛΕΜΙΔΙΩΝ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ ΩΡΑ: 07:45π.μ. - 09:15π.μ.

ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΚΑΤΩ ΠΟΛΕΜΙΔΙΩΝ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ ΩΡΑ: 07:45π.μ. - 09:15π.μ. ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2017-2018 ΚΑΤΩ ΠΟΛΕΜΙΔΙΩΝ ΒΑΘΜΟΣ Αριθμητικώς:... Ολογρ.:... Υπογραφή:... ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ 2018 ΤΑΞΗ: Β ΗΜΕΡΟΜΗΝΙΑ: 29 Μαΐου 2018 ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 07 ΑΠΡΙΛΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

2. Στο ηλιακό στέµµα η ϑερµότητα διαδίδεται µε αγωγιµότητα και η ϱοή ϑερµικής ενέργειας (heat flux)είναι

2. Στο ηλιακό στέµµα η ϑερµότητα διαδίδεται µε αγωγιµότητα και η ϱοή ϑερµικής ενέργειας (heat flux)είναι 4.6 Ασκήσεις 51 4.6 Ασκήσεις 1. Μελετήστε τον στάσιµο ( t = 0) ισόθερµο άνεµο σε επίπεδο, χρησιµοποιώντας πολικές συντεταγµένες και (α) Βρείτε τη χαρακτηριστική απόσταση από τον αστέρα r στην οποία γίνεται

Διαβάστε περισσότερα