PP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ"

Transcript

1 ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2: ΡΟΗ ΣΕ ΑΓΩΓΟΥΣ 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ Η πειραματική εργασία περιλαμβάνει 4 διαφορετικά πειράματα που σκοπό έχουν: 1. Μέτρηση απωλειών πίεσης σε αγωγό κυκλικής διατομής. 2. Εύρεση της κατανομής της ταχύτητας σε διάφορες διατομές. 3. Εύρεση του συντελεστή τριβής 4. Εύρεση των συντελεστών τοπικών απωλειών σε στοιχεία αλλαγής κατεύθυνσης της ροής, διακλαδώσεις, στοιχεία μεταβολής διατομής και σφαιρικές βαλβίδες. Ο σκοπός των πειραμάτων είναι να υπολογιστούν τα παραπάνω μεγέθη με μετρήσεις και να συγκριθούν οι τιμές με τις αντίστοιχες θεωρητικές για επαλήθευση. Η γνώση των απωλειών πίεσης μιας εγκατάστασης είναι αναγκαία για τη σωστή λειτουργία του συστήματος, ειδικά ε εγκαταστάσεις που χρησιμοποιούνται αγωγοί μεγάλου μήκους με διακλαδώσεις, καμπύλα τμήματα και άλλα εξαρτήματα. Σε μια τέτοια εγκατάσταση, το ρευστό που βρίσκεται υπό συγκεκριμένες συνθήκες (πίεση-ταχύτητα), πρέπει να μεταφερθεί σε άλλους χώρους και σε άλλες συνθήκες. Σκοπός είναι, μελετώντας τη ροή του ρευστού, να υπολογιστεί το αναγκαίο ποσό ενέργειας που πρέπει να έχει το ρευστό ώστε να υπερνικήσει τις απώλειες ενέργειας κατά τη ροή του και να έχει και τις προκαθορισμένες συνθήκες πίεσης και ταχύτητας. 2. ΘΕΩΡΙΑ 2.1 ΜΕΤΡΗΣΗ ΠΙΕΣΗΣ ΚΑΙ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ Απώλεια πίεσης είναι η πτώση πίεσης που προκαλούν οι διατμητικές τάσεις στο ρευστό από τα τοιχώματα του αγωγού. Για στρωτή και τυρβώδη ροή ισχύει η σχέση: όπου: A, 1 l 2 P PA PB u (2.1) 2 d PP οι στατικές πιέσεις στα σημεία Α και Β l B η απόσταση των σημείων Α και Β d η διάμετρος του αγωγού η πυκνότητα του αέρα u ο συντελεστής τριβής η μέση ταχύτητα αέρα Ο συντελεστής τριβής (λ) είναι διαφορετικός στη στρωτή και την τυρβώδη ροή. Για τη στρωτή ροή κατά μήκος αγωγών κυκλικής διατομής, έχει την τιμή: 64 (2.2) Re όπου ο αριθμός Reynolds δίνεται από τη σχέση: ud Re (2.3) το δυναμικό ιξώδες και για την τυρβώδη ροή ο Blasius πρότεινε την εμπειρική σχέση:

2 (2.4) 0.25 Re η οποία έρχεται σε συμφωνία με τα πειράματα για Re<10 5. Για μεγαλύτερους αριθμούς Re όμως παρουσιάζει μεγάλη απόκλιση. Μεγαλύτερη συμφωνία με τα πειραματικά αποτελέσματα δίνει ο γενικός νόμος τριβής για λείους αγωγούς του Prandtl: 1 2log(Re ) 0.8 (2.5) 2.2 ΚΑΤΑΝΟΜΗ ΤΑΧΥΤΗΤΑΣ Όταν ένα ρευστό εισέρχεται σε ένα κυκλικό αγωγό από μια μεγάλη δεξαμενή, η κατανομή της ταχύτητας στις διατομές του μήκους εισροής μεταβάλλεται συναρτήσει της απόστασης από την αρχική διατομή. Σε διατομές πλησίον της εισόδου η κατανομή της ταχύτητας είναι σχεδόν ομοιόμορφη. Στις επόμενες διατομές η κατανομή της ταχύτητας αλλάζει λόγω της επίδρασης της τριβής, έως ότου να ληφθεί ένα πλήρως ανεπτυγμένο προφίλ της ταχύτητας σε μια ορισμένη διατομή του αγωγού, το οποίο παραμένει σταθερό σε όλο το υπόλοιπο μήκος του αγωγού. Όπως φαίνεται και στο σχήμα 2.1, αρχικά η ταχύτητα αναπτύσσεται σε μια μικρή περιοχή γύρω από τη μέση τιμή της, ενώ όσο εξελίσσεται το φαινόμενο τόσο μεγαλώνει η διασπορά γύρω από τη μέση τιμή της ταχύτητας. Σχήμα 2.1. Σχηματική ανάπτυξη κατανομής ταχύτητας εσωτερικής ροής. Το μήκος εισροής του αγωγού για τη στρωτή ροή είναι κατά προσέγγιση Lcr 0.03dRe. Έτσι για 5*10 3 <Re<10 4 λαμβάνει τιμές από 150d έως 300d. Για την τυρβώδη ροή, το μήκος εισροής είναι συγκριτικά μικρότερο από αυτό της στρωτής. Σύμφωνα με μετρήσεις του H. Kristen το μήκος αυτό είναι ίσο με 50d έως 100d ενώ μια πιο συντηρητική λύση δίνει ο J. Nikuradse της τάξεως των 25d έως 40d. Η κατανομή ταχύτητας στους αγωγούς είναι θέμα που έχει απασχολήσει κατά καιρούς πολλούς ερευνητές, οι οποίοι στην προσπάθειά τους να εξάγουν ένα νόμο εκφραζόμενο από μια απλή μαθηματική σχέση, έκαναν διάφορες παραδοχές που στη συνέχεια επαληθεύονταν μερικώς ή ολικώς στα πειράματα. Οι πιο γνωστοί νόμοι κατανομής ταχύτητας είναι οι κάτωθι: Νόμος Δύναμης Είναι ο πιο απλός, από μαθηματική άποψη, νόμος και προκύπτει από τη σχέση του Blasius. Εκφράζεται από τη σχέση:

3 όπου: u U max max 1 r (1 ) n (2.6) R U η μέγιστη ταχύτητα στη διατομή R η ακτίνα του αγωγού r η απόσταση από τον άξονα του αγωγού Ο εκθέτης n μεταβάλλεται ελαφρά συναρτήσει του αριθμού Re. Συγκεκριμένα, έχει τιμή n=6 για Re=4000, n=7 για Re=10 5 και n=10 για Re=3240*10 3. Από την παραπάνω σχέση προκύπτει η έκφραση για το λόγο της μέσης ταχύτητας προς τη μέγιστη ως εξής: 2 uav 2n (2.7) u ( n 1)(2n 1) max Νόμος Hagen-Poiseuille Για στρωτή ροή, η κατανομή της ταχύτητας έχει παραβολικό σχήμα και εκφράζεται από τη σχέση: u 2 1 ( r/ R) (2.8) U max Νόμος Von Karman Είναι μια σύνθετη σχέση που προαπαιτεί τον προσδιορισμό ενός νέου μεγέθους που ονομάζεται διατμητική ταχύτητα και συμβολίζεται με τη σχέση 2.8: u *. Το μέγεθος αυτό προκύπτει από u * u v R (2.9) Η γενική διατύπωση του νόμου είναι η εξής: * u u r r 1 {2.77 [ln(1 ) ]} (2.10) u u R R max max Νόμος Darcy Η τελευταία διατύπωση ανήκει στον Darcy, ο οποίος χρησιμοποιεί την τιμή προκύπτει: * u και * u u r max max [5.08( )( ) ] (2.11) u u R 2.3 ΣΥΝΤΕΛΕΣΤΕΣ ΤΟΠΙΚΩΝ ΑΠΩΛΕΙΩΝ Ο συντελεστής τοπικών απωλειών δίνεται από τη σχέση: 2P (2.12) 2 u

4 Στοιχεία αλλαγής κατεύθυνσης της ροής-γωνίες 90 ο Παρουσιάζονται φαινόμενα αποκόλλησης αλλά και δευτερεύουσες ροές που προκαλούν επιπλέον ενεργειακές απώλειες. Λόγω της επίδρασης των φυγοκεντρικών δυνάμεων, δημιουργείται βαθμίδα πίεσης ακτινικά, δηλαδή κάθετα προς τον καμπύλο άξονα του σωλήνα και παρατηρείται αύξηση της πίεσης από την εσωτερική στην εξωτερική πλευρά του σωλήνα. Σχήμα 2.2. Κατανομή της ταχύτητας εντός γωνίας 90 ο. Επομένως, σύμφωνα με το σχήμα 2.2, εάν θεωρήσουμε σταθερή την πίεση στη διατομή εισόδου, τότε από τη θέση Α στη θέση Α' έχουμε αύξηση της πίεσης A' A 1 P const 1. P P P και επομένως το στοιχείο του ρευστού κινείται στην εξωτερική πλευρά προς περιοχές αυξανόμενης πίεσης. Στην εσωτερική πλευρά η πίεση P B P 1 πέφτει μέχρι τη θέση Β σε ενώ στη συνέχεια ανέρχεται στην τιμή PB' P2 PB στη ΒΒ'. Το στοιχείο του ρευστού κινείται και αυτό σε αυξανόμενη πίεση. Σε αυτές τις περιοχές η κινητική ενέργεια του στοιχείου μπορεί να μειωθεί σε τέτοιες τιμές ώστε να γίνει αποκόλληση της ροής. Το αξονικά συμμετρικό προφίλ της ταχύτητας στην είσοδο 1 μεταβάλλεται λόγω αλλαγής της κατεύθυνσης στο καμπύλο τμήμα και τελικά καταλήγει ξανά σε αξονικά συμμετρικό μετά από ένα ικανό τμήμα εκροής στην έξοδο. Σχήμα 2.3. Δευτερεύουσες ροές. Τα στρώματα του ρευστού που βρίσκονται στην εξωτερική και την εσωτερική πλευρά του καμπύλου αγωγού και έχουν μικρές ταχύτητες, βρίσκονται κάτω από την κλίση της πίεσης P P i 0 που υπάρχει μεταξύ της εσωτερικής και της εξωτερικής πλευράς. Επομένως, το στρώμα του ρευστού που βρίσκεται κοντά στο τοίχωμα, κινείται από την εξωτερική πλευρά προς την εσωτερική ενώ στο κέντρο του αγωγού αποκαθίσταται μια επιστροφή του ρευστού από μέσα προς τα έξω. Αποκαθίσταται επομένως μια δευτερεύουσα ροή υπό

5 μορφή δύο στροβίλων η οποία προστιθέμενη στη βασική ροή δημιουργεί μια διπλή σπειροειδή κίνηση του ρευστού. Ο θεωρητικός συντελεστής τοπικών απωλειών υπολογίζεται με βάση το σχήμα 2.4. Σχήμα 2.4. Συντελεστής τοπικών απωλειών κυκλικής διατομής για γωνία 90 ο. Στοιχεία μεταβολής της διατομής Τα στοιχεία μεταβολής της διατομής προκαλούν απότομη ή προοδευτική μεταβολή της διατομής. Επομένως, το μέγεθος των απωλειών εξαρτάται από το μέγεθος της μεταβολής και από τον τρόπο με τον οποίο συμβαίνει. 1. Απότομη διεύρυνση (κρουστικός διαχύτης): Κατά την απότομη διεύρυνση του αγωγού, σχήμα 2.5, εξέρχεται δέσμη ρευστού διατομής Ε 1 σε αγωγό μεγαλύτερης διατομής Ε 2. Εκεί αποκτά στροβιλότητα και αναμιγνύεται με το περιβάλλον ακίνητο ρευστό το οποίο απάγεται εν μέρει με τη ροή. Η δημιουργία του στροβίλου ευνοεί την επανακόλληση της ροής στο τοίχωμα ώστε μετά από κάποιο μήκος αποκαθίσταται διαμορφωμένη ροή μικρότερης μέσης ταχύτητας. Σχήμα 2.5. Απότομη διεύρυνση (κρουστικός διαχύτης). Στο σχήμα 2.6, αποτυπώνεται γραφικά η θεωρητική σχέση μεταξύ του λόγου των διατομών και του συντελεστή τοπικών απωλειών.

6 Σχήμα 2.6. Συντελεστής τοπικών απωλειών για απότομη διεύρυνση. 2. Απότομη στένωση: Κατά την απότομη στένωση του αγωγού, σχήμα 2.7, εξέρχεται δέσμη ρευστού διατομής Ε 1 σε αγωγό μικρότερης διατομής Ε 2. Σχήμα 2.7. Απότομη στένωση. Στο σχήμα 2.8, αποτυπώνεται γραφικά η θεωρητική σχέση μεταξύ του λόγου των διατομών και του συντελεστή τοπικών απωλειών. Διακλαδώσεις Οι διακλαδώσεις και οι συμβολές, σχήμα 2.9, έχουν επιπλέον απώλειες από τα ευθύγραμμα τμήματα των αγωγών που τα απαρτίζουν λόγω των εμφανιζόμενων αποκολλήσεων και δευτερευουσών ροών. Οι απώλειες εξαρτώνται από τη μορφή των διατομών, τους λόγους E1 E, E2, από τις γωνίες διακλάδωσης, από τους λόγους διαχωρισμού της ροής E. V 1. V 3 3,. V 2 3. V 3 (όπου... V V V είναι η ολική παροχή) καθώς και από τον τρόπο αποχωρισμού από το βασικό στέλεχος. Βασικό στοιχείο είναι επίσης αν πρόκειται για διακλάδωση διαχωρισμού ή συμβολής.

7 Σχήμα 2.8. Συντελεστής τοπικών απωλειών για απότομη στένωση. Σχήμα 2.9. Διακλαδώσεις. Η κάθε διακλάδωση περιγράφεται από δύο συντελεστές τοπικών απωλειών ζ. Στο σχήμα 2.10 αποτυπώνεται γραφικά η θεωρητική σχέση μεταξύ των συντελεστών τοπικών απωλειών και των λόγων διαχωρισμού της ροής για διακλαδώσεις διαχωρισμού και στο σχήμα 2.11 για διακλαδώσεις συμβολής.

8 Σχήμα Συντελεστής τοπικών απωλειών για διακλαδώσεις διαχωρισμού.

9 Σχήμα Συντελεστής τοπικών απωλειών για διακλαδώσεις συμβολής. Σφαιρικές βαλβίδες (βάνες) Στο σχήμα 2.12 βρίσκεται το διάγραμμα με βάση το οποίο προσδιορίζεται ο θεωρητικός συντελεστής τοπικών απωλειών για σφαιρικές βαλβίδες. Σχήμα Συντελεστής τοπικών απωλειών βάνας.

10 3. ΠΕΙΡΑΜΑΤΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ, ΟΡΓΑΝΑ ΚΑΙ ΥΛΙΚΑ Το πείραμα διεξάγεται στην εγκατάσταση της εικόνας 1, η οποία αποτελείται από τα εξής βασικά στοιχεία: 1. Ευθύγραμμο τμήμα αγωγού εσωτερικής διαμέτρου 77mm και μήκους 2150mm. 2., 3. Τμήματα αγωγού εσωτερικής διαμέτρου 64mm. 4. Σύστημα παραγωγής της ροής με ανεμιστήρα αξονικού τύπου. 5. Δύο βάνες για καθορισμό της διαδρομής της ροής και μια για ρύθμιση της παροχής. 6. Απότομη στένωση για μείωση της διαμέτρου από 77mm σε 64mm. 7. Απότομη διεύρυνση για επαναφορά της διαμέτρου από 64mm σε 77mm. 8. Γωνίες 90 ο για αλλαγή της διεύθυνσης της ροής. 9. Διακλαδώσεις για το διαχωρισμό της ροής. 10. Πολλαπλός υποδοχέας στατικών πιέσεων. Διαθέτει 24 αριθμημένους υποδοχείς που χωρίζονται σε 2 δωδεκάδες, Α και Β. Επιπλέον διαθέτει 2 εξόδους που η καθεμία αντιστοιχεί σε μια δωδεκάδα (ένδειξη COMM). Το ηλεκτρονικό μανόμετρο συνδέεται σε μια έξοδο ανάλογα με το που ανήκει η οπή που μετράται κάθε φορά. Ο περιστροφικός διακόπτης δίνει τη δυνατότητα να μετράται η στατική πίεση οποιασδήποτε οπής ξεχωριστά. 11. Σωλήνας Prandtl. Συνδυάζει σωλήνα στατικής και ολικής πίεσης. 12. Ηλεκτρονικό μανόμετρο. Διαθέτει έναν θετικό και έναν αρνητικό υποδοχέα. Κατά τη μέτρηση της στατικής πίεσης, η εκάστοτε οπή συνδέεται με τον θετικό και ο αρνητικός μένει ελεύθερος, έτσι μετράται η διαφορά της στατικής πίεσης της εκάστοτε οπής με την ατμοσφαιρική. Η μέτρηση της ταχύτητας γίνεται μέσω της μέτρησης της διαφοράς της στατικής από την ολική πίεση, δηλαδή της δυναμικής πίεσης. Ο σωλήνας της ολικής πίεσης συνδέεται στη θετική υποδοχή και αυτός της στατικής στην αρνητική. Οι μετρήσεις είναι σε Pascal (Pa). Εικόνα 1. Τρισδιάστατη απεικόνιση εγκατάστασης

11 Εικόνα 2. Πολλαπλός υποδοχέας στατικής πίεσης Εικόνα 3. Τυπική μορφή σωλήνα Prandtl Εικόνα 4. Τρισδιάστατη απεικόνιση εγκατάστασης με αριθμήσεις και αποστάσεις των οπών

12 4. ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ 4.1 ΠΕΙΡΑΜΑ Α Στο πρώτο πείραμα, που πραγματοποιείται σε 24 σημεία-οπές της διάταξης, μετράται η εκάστοτε πτώση πίεσης σε σχέση με την ατμοσφαιρική και υπολογίζεται η αντίστοιχη στατική. Το πείραμα διεξάγεται σε τρία στάδια που το καθένα αντιστοιχεί σε μια διαφορετική διαδρομή του αέρα. Στάδιο 1: Βεβαιωνόμαστε ότι οι βάνες είναι πλήρως ανοιχτές. Θέτουμε σε λειτουργία τον ανεμιστήρα και περιμένουμε 5 λεπτά για να σταθεροποιηθεί η ροή. Στη συνέχεια, συνδέουμε το μανόμετρο με την έξοδο Α του πολλαπλού υποδοχέα και λαμβάνουμε μετρήσεις για τις 12 πρώτες οπές, περιστρέφοντας το διακόπτη από τη θέση 1 έως 12. Έπειτα συνδέουμε το μανόμετρο με την έξοδο Β και λαμβάνουμε μετρήσεις για τις υπόλοιπες 12 οπές. Στάδιο 2: Κλείνουμε τη βάνα 2 και επαναλαμβάνουμε την ίδια διαδικασία. Στάδιο 3: Ανοίγουμε τη βάνα 2, κλείνουμε τη βάνα 1 και επαναλαμβάνουμε τη διαδικασία. 4.2 ΠΕΙΡΑΜΑ Β Στο δεύτερο πείραμα, λαμβάνονται μετρήσεις της δυναμικής πίεσης του ρευστού στις θέσεις Ι και ΙΙ. Σκοπός είναι ο προσδιορισμός της κατανομής της ταχύτητας κάθετα στη διατομή του αγωγού, καθώς επίσης και ο σχεδιασμός των πειραματικών και θεωρητικών αυτών κατανομών. Στάδιο 1: Με πλήρως ανοιχτή τη βάνα παροχής, συνδέουμε το ηλεκτρονικό μανόμετρο με το σωλήνα Prandtl (θέση Ι). Ο σωλήνας της ολικής πίεσης συνδέεται στη θετική υποδοχή και αυτός της στατικής στην αρνητική. Με τη βοήθεια της μετρητικής ταινίας της συσκευής μετατόπισης βεβαιωνόμαστε πως η κεφαλή του σωλήνα βρίσκεται στο κέντρο του αγωγού (38.5mm από το κάτω άκρο του αγωγού). Η ένδειξη του μανομέτρου αντιστοιχεί στη δυναμική πίεση στο κέντρο του αγωγού η οποία είναι και η μέγιστη. Συνεχίζουμε διαδοχικά τις μετρήσεις, κατεβάζοντας το σωλήνα Prandtl κατά 4mm κάθε φορά, μέχρι να φτάσουμε στο σημείο 0 της μετρητικής ταινίας που δηλώνει πως βρισκόμαστε στο κάτω άκρο του αγωγού. Στάδιο 2: Το παραπάνω στάδιο επαναλαμβάνεται στη θέση ΙΙ. Σημείωση 1: Οι μετρήσεις αφορούν τη μισή διατομή του αγωγού καθώς η κατανομή της ταχύτητας είναι συμμετρική ως προς το κέντρο. Σημείωση 2: Στα τοιχώματα του αγωγού, όπου η ταχύτητα είναι 0, δεν είναι δυνατό να μετρηθεί η δυναμική πίεση εξαιτίας του πάχους της κεφαλής του σωλήνα Prandtl. Ως εκ τούτου, η τιμή προέρχεται από τη θεωρία. 4.3 ΠΕΙΡΑΜΑ Γ Στο τρίτο πείραμα, σκοπός είναι η εξαγωγή μιας καμπύλης που θα αποτυπώνει την εξίσωση λ=f(re). Μετρούνται οι σχετικές στατικές πιέσεις δύο οπών (Α1 και Α9), για 9 διαφορετικές παροχές που αντιστοιχούν σε στροφή της βάνας παροχής κατά 0 ο, 5 ο, 10 ο, 15 ο, 20 ο, 25 ο, 30 ο, 35 ο και 40 ο. Επιπλέον, για καθεμία από αυτές τις παροχές, με χρήση του σωλήνα Prandtl στη θέση ΙΙ, προσδιορίζεται η μέγιστη τιμή της δυναμικής πίεσης στο κέντρο του αγωγού, που αντιστοιχεί στη μέγιστη ταχύτητα. Έπειτα, με κατάλληλους υπολογισμούς προκύπτουν 9 τιμές του συντελεστή τριβής (λ) για 9 διαφορετικούς αριθμούς Reynolds (Re).

13 Στάδιο 1: Με όλες τις βάνες πλήρως ανοιχτές, λαμβάνονται οι σχετικές στατικές πιέσεις στις οπές Α1 και Α9 και υπολογίζεται η διαφορά τους (ΔP). Στάδιο 2: Η διαδικασία επαναλαμβάνεται 8 ακόμη φορές στρέφοντας τη βάνα παροχής ανά 5 ο. 4.4 ΠΕΙΡΑΜΑ Δ Στο τέταρτο πείραμα σκοπός είναι να υπολογιστούν οι συντελεστές τοπικών απωλειών (ζ) των στοιχείων που υπάρχουν στη διάταξη. Ο μετρήσεις θα ληφθούν στα παρακάτω στοιχεία: γωνία 90 ο μεταξύ των οπών Α9-Α10 απότομη στένωση μεταξύ των οπών Α11-Α12 απότομη διεύρυνση μεταξύ των οπών Β7-Β8 διακλάδωση διαχωρισμού μεταξύ των οπών Β1-Β2-Β9 διακλάδωση συμβολής μεταξύ των οπών Β5-Β6-Β12 βάνα 1 5. ΕΡΩΤΗΣΕΙΣ 1. Να κατασκευάσετε το διάγραμμα που αναπαριστά την πτώση πίεσης κατά μήκος του αγωγού. 2. Να κατασκευάσετε τις πειραματικές κατανομές ταχύτητας στις 2 εξεταζόμενες θέσεις του αγωγού και να τις συγκρίνετε με τις κατανομές που δίνονται στη θεωρία σε κοινά διαγράμματα. 3. Να κατασκευάσετε την καμπύλη που αποτυπώνει την εξίσωση λ=f(re), όπως προκύπτει από τα πειραματικά αποτελέσματα και να τη συγκρίνετε με την αντίστοιχη θεωρητική. 4. Να υπολογίσετε τους συντελεστές απωλειών των στοιχείων που περιγράφονται στην πειραματική διαδικασία-πείραμα Δ και να τους συγκρίνετε με τους αντίστοιχους θεωρητικούς.

14 6. ΠΙΝΑΚΕΣ ΜΕΤΡΗΣΕΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΩΝ ΑΝΟΙΧΤΕΣ ΒΑΝΕΣ 1 & 2 ΠΛΗΡΗΣ ΠΑΡΟΧΗ ΒΑΝΑ 2 ΚΛΕΙΣΤΗ ΒΑΝΑ 1 ΚΛΕΙΣΤΗ ΟΠΗ ΔP (Pa) ΔP (Pa) ΔP (Pa) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 Πίνακας 1. Πειραματικές μετρήσεις σχετικής στατικής πίεσης για πλήρη παροχή

15 Prandtl I r (mm) r/r Pdyn (Pa) u (m/s) Πίνακας 2. Μετρήσεις δυναμικής πίεσης και ταχύτητας Prandtl II r (mm) r/r Pdyn (Pa) u (m/s) Πίνακας 3. Μετρήσεις δυναμικής πίεσης και ταχύτητας

16 Γωνία στροφής ( ο ) P A1 (Pa) P A9 (Pa) ΔP (Pa) u max (m/s) u av (m/s) Πίνακας 4. Σχετικές στατικές πιέσεις και ταχύτητες για 9 παροχές ΓΩΝΙΑ 90 ο ΔP (Pa) u max (m/s) u av (m/s) ζ ζ θεωρ. d=77mm d=64mm Πίνακας 5. Πειραματικός και θεωρητικός συντελεστής τοπικών απωλειών για γωνία 90 ο ΔP (Pa) u max (m/s) u av (m/s) ζ ζ θεωρ. Διεύρυνση Πίνακας 6. Πειραματικός και θεωρητικός συντελεστής τοπικών απωλειών για απότομη διεύρυνση ΔP (Pa) u max (m/s) u av (m/s) ζ ζ θεωρ. Στένωση Πίνακας 7. Πειραματικός και θεωρητικός συντελεστής τοπικών απωλειών για απότομη στένωση

17 Διακλάδωση ΔP (Pa) Διαχωρισμού u max (m/s) u av (m/s) ζ 3-1 ζ 3-1 (θεωρ.) ΔP (Pa) u max (m/s) u av (m/s) ζ 3-2 ζ 3-2 (θεωρ.) Πίνακας 8. Πειραματικός και θεωρητικός συντελεστής τοπικών απωλειών για διακλάδωση διαχωρισμού Διακλάδωση ΔP (Pa) Συμβολής u max (m/s) u av (m/s) ζ 1-3 ζ 1-3 (θεωρ.) ΔP (Pa) u max (m/s) u av (m/s) ζ 2-3 ζ 2-3 (θεωρ.) Πίνακας 9. Πειραματικός και θεωρητικός συντελεστής τοπικών απωλειών για διακλάδωση συμβολής Βάνα Ι ΔP (Pa) u max (m/s) u av (m/s) ζ ζ θεωρ. d=64mm Πίνακας 10. Πειραματικός και θεωρητικός συντελεστής τοπικών απωλειών για βάνα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Στρωτή ή γραμμική

Διαβάστε περισσότερα

6 Εξαναγκασμένη ροή αέρα

6 Εξαναγκασμένη ροή αέρα 6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων

Διαβάστε περισσότερα

Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα

Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα Εργαστηριακή Άσκηση HM 150.01 Περιεχόμενα 1. Περιγραφή συσκευών... 1 2. Προετοιμασία για το πείραμα... 1 3. Πειράματα...

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Τυρβώδης ροή αριθμός

Διαβάστε περισσότερα

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΣΩΤΕΡΙΚΗ ΡΟΗ ΣΕ ΑΓΩΓΟ Σκοπός της άσκησης Σκοπός της πειραματικής

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί

Διαβάστε περισσότερα

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi. Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

4 Τριβές σε Σωλήνες και Εξαρτήματα

4 Τριβές σε Σωλήνες και Εξαρτήματα 4 Τριβές σε Σωλήνες και Εξαρτήματα 4.1 Εισαγωγή 4.1.1 ΜΟΡΙΑΚΗ ΘΕΩΡΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Ένα ρευστό δεν είναι παρά ένα σύνολο μορίων, τα οποία αφενός κινούνται (έχουν κινητική ενέργεια) και αφετέρου

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών

Εργαστήριο Μηχανικής Ρευστών Εργαστήριο Μηχανικής Ρευστών Αργυρόπουλος Αθανάσιος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Β Ημ/νία εκτέλεσης Πειράματος: 26-11-1999 Ημ/νία παράδοσης Εργασίας: 16-12-1999 1 Θεωρητική Εισαγωγή: 1. Εισαγωγικές έννοιες

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Αγωγός Venturi 1η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Αγωγός Venturi 1η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Αγωγός Venturi 1η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός των πιέσεων (ολικών και στατικών)

Διαβάστε περισσότερα

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του 301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΑEI ΠΕΙΡΑΙΑ (ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΟΠΙΣΘΕΛΚΟΥΣΑΣ Σκοπός της άσκησης Η μέτρηση

Διαβάστε περισσότερα

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2.1 Εισαγωγή Η θερμοκρασιακή διαφορά μεταξύ δυο σημείων μέσα σ' ένα σύστημα προκαλεί τη ροή θερμότητας και, όταν στο σύστημα αυτό περιλαμβάνεται ένα ή περισσότερα

Διαβάστε περισσότερα

ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ

ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ Η μελέτη της ροής μη συνεκτικού ρευστού γύρω από κύλινδρο γίνεται με την μέθοδο της επαλληλίας (στην προκειμένη περίπτωση: παράλληλη ροή + ροή διπόλου). Εδώ περιοριζόμαστε να

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

Τα τρία βασικά προβλήματα της Υδραυλικής

Τα τρία βασικά προβλήματα της Υδραυλικής Τα τρία βασικά προβλήματα της Υδραυλικής Α βασικό πρόβλημα,, παροχή γνωστή απλός υπολογισμός απωλειών όχι δοκιμές (1): L1 = 300, d1 = 0.6 m, (): L = 300, d = 0.4 m Q = 0.5m 3 /s, H=?, k=0.6 mm Διατήρηση

Διαβάστε περισσότερα

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2 Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα σύστημα ελατηρίου - μάζας εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Αν τετραπλασιάσουμε την ολική ενέργεια της ταλάντωσης αυτού του συστήματος

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία

Διαβάστε περισσότερα

I.2. ΜΕΤΡΗΣΕΙΣ ΣΤΗΝ ΑΕΡΟΣΗΡΑΓΚΑ. I.2.a Εισαγωγή

I.2. ΜΕΤΡΗΣΕΙΣ ΣΤΗΝ ΑΕΡΟΣΗΡΑΓΚΑ. I.2.a Εισαγωγή I.2. ΜΕΤΡΗΣΕΙΣ ΣΤΗΝ ΑΕΡΟΣΗΡΑΓΚΑ I.2.a Εισαγωγή Οι αεροσήραγγες (wind tunnels) εμφανίστηκαν στα τέλη του 19 ου αιώνα και έγιναν ιδιαίτερα δημοφιλείς το 1903 από τους αδελφούς Wright. Η χρήση τους εξαπλώθηκε

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ

ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ Θεώρημα της Μεταφοράς Rols Taspo To Μετατρέπει τη διατύπωση ενός θεμελιώδη νόμου ενός κλειστού συστήματος σ αυτήν για έναν όγκο ελέγχου Ο ρυθμός της εκτατικής

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ Α.E.I. ΠΕΙΡΑΙΑ Τ.Τ. Σ.Τ.Ε.Φ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ ΣΤΗΝ ΕΠΙΦΑΝΕΙΑΣΥΜΜΕΤΡΙΚΗΣ ΑΕΡΟΤΟΜΗΣ &ΥΠΟΛΟΓΙΣΜΟΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Γιάννης Λ. Τσιρογιάννης Γεωργικός Μηχανικός M.Sc., PhD Επίκουρος Καθηγητής ΤΕΙ Ηπείρου Τμ. Τεχνολόγων Γεωπόνων Κατ. Ανθοκομίας Αρχιτεκτονικής Τοπίου ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Υδραυλική Έκδοση

Διαβάστε περισσότερα

θα πρέπει να ανοιχθεί μια δεύτερη οπή ώστε το υγρό να εξέρχεται από αυτήν με ταχύτητα διπλάσιου μέτρου.

θα πρέπει να ανοιχθεί μια δεύτερη οπή ώστε το υγρό να εξέρχεται από αυτήν με ταχύτητα διπλάσιου μέτρου. Δίνονται g=10m/s 2, ρ ν =1000 kg/m 3 [u 2 =3u 1, 10 3 Pa, 0,5m/s] ΚΕΦΑΛΑΙΟ 3 ο : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI 16 Το ανοικτό δοχείο του σχήματος περιέχει

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι. κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι. κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως. Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

Εγχειρίδιο Οδηγιών HM150.35 Οριζόντια Επίδειξη Osborne Reynolds

Εγχειρίδιο Οδηγιών HM150.35 Οριζόντια Επίδειξη Osborne Reynolds Εγχειρίδιο Οδηγιών HM150.35 Οριζόντια Επίδειξη Osborne Reynolds Εγχειρίδιο Οδηγιών Περιεχόμενα 1. Περιγραφή Εξοπλισμού... 4 2. Προετοιμασία και ρύθμιση της συσκευής... 5 3. Εκτέλεση του πειράματος... 6

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ: (040) 670854-1 Fax: (040) 670854-41

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ: (040) 670854-1 Fax: (040) 670854-41 Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Εγχειρίδιο Οδηγιών HM 150.07 Επίδειξη του θεωρήματος του Μπερνούλη G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ: (040) 670854-1

Διαβάστε περισσότερα

Κεφάλαιο 5: Αρχές υδραυλικής στα αστικά υδραυλικά έργα

Κεφάλαιο 5: Αρχές υδραυλικής στα αστικά υδραυλικά έργα Κεφάλαιο 5: Αρχές υδραυλικής στα αστικά υδραυλικά έργα Γραμμικές απώλειες Ύψος πίεσης Γραμμικές απώλειες Αρχές μόνιμης ομοιόμορφης ροής Ροή σε κλειστό αγωγό Αρχή διατήρησης μάζας (= εξίσωση συνέχειας)

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Φυγοκεντρική αντλία 3η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Φυγοκεντρική αντλία 3η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Φυγοκεντρική αντλία 3η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της πραγματικής χαρακτηριστικής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΦΑΣΗ Β- CASE STUDIES ΕΦΑΡΜΟΓΗΣ ΕΜΠΟΡΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Διαβάστε περισσότερα

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους.

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους. Πρόβλημα Λάδι πυκνότητας 900 kg / και κινηματικού ιξώδους 0.000 / s ρέει διαμέσου ενός κεκλιμένου σωλήνα στην κατεύθυνση αυξανομένου υψομέτρου, όπως φαίνεται στο παρακάτω Σχήμα. Η πίεση και το υψόμετρο

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 Εξαναγκασμένη Συναγωγή Εσωτερική Ροή Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Ροή σε Σωλήνες (ie and tube flw) Σε αυτή την διάλεξη θα ασχοληθούμε με τους συντελεστές

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Moody κλπ.)

Παραδείγµατα ροής ρευστών (Moody κλπ.) Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

Εγχειρίδιο Οδηγιών HM Οριζόντια Επίδειξη Osborne Reynolds

Εγχειρίδιο Οδηγιών HM Οριζόντια Επίδειξη Osborne Reynolds Εγχειρίδιο Οδηγιών HM150.35 Οριζόντια Επίδειξη Osborne Reynolds Εγχειρίδιο Οδηγιών 2 Περιεχόμενα 1 Περιγραφή εξοπλισμού.............................. 4 2 Προετοιμασία και ρύθμιση του εξοπλισμού...............

Διαβάστε περισσότερα

Μακροσκοπική ανάλυση ροής

Μακροσκοπική ανάλυση ροής Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Ρευστά Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourses.wordpress.com Βασικές έννοιες Πρώτη φορά συναντήσαμε τη φυσική των ρευστών στη Β Γυμνασίου. Εκεί

Διαβάστε περισσότερα

Ροη αέρα σε Επίπεδη Πλάκα

Ροη αέρα σε Επίπεδη Πλάκα Ροη αέρα σε Επίπεδη Πλάκα Η ροή του αέρα γύρω από ένα σώμα επηρεάζεται από παράγοντες όπως το σχήμα του σώματος, το μέγεθός του, ο προσανατολισμός του, η ταχύτητά του όπως επίσης και οι ιδιότητες του ρευστού.

Διαβάστε περισσότερα

Άνοιξε τη μικροεφαρμογή (applet) PhET "Πίεση και ροή υγρού". Κάνε κλικ στην οθόνη "Πίεση" και βρες:

Άνοιξε τη μικροεφαρμογή (applet) PhET Πίεση και ροή υγρού. Κάνε κλικ στην οθόνη Πίεση και βρες: 1. ΜΕΛΕΤΗ ΤΗΣ ΥΔΡΟΣΤΑΤΙΚΗΣ ΠΙΕΣΗΣ Το 1ο μέρος του φύλλου εργασίας του Applet PhET "Πίεση και Ροή ρευστού" προτείνεται σε μαθητές που έχουν διδαχθεί από το Γυμνάσιο το νόμο της υδροστατικής πίεσης και θέλουν

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ Θέμα Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ - NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 3 ΙΟΥΝΙΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

Διαβάστε περισσότερα

Γ Λυκείου. ένταση. μήκος κύματος θέρμανσης. Ε 4 =-1, J Ε 3 =-2, J Ε 2 =-5, J Ε 1 = J

Γ Λυκείου. ένταση. μήκος κύματος θέρμανσης. Ε 4 =-1, J Ε 3 =-2, J Ε 2 =-5, J Ε 1 = J 22 Μαρτίου 2008 Θεωρητικό Μέρος Θέμα 1o Γ Λυκείου Στις ερωτήσεις Α και Β, μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

Μηχανική Ρευστών ΙΙ. Εισαγωγή Κανονισμός Βιβλιογραφία. Διδάσκων: Δρ. Θεόδωρος Π. Γεροστάθης, Επικ. Καθηγητής email: tgero@teiath.

Μηχανική Ρευστών ΙΙ. Εισαγωγή Κανονισμός Βιβλιογραφία. Διδάσκων: Δρ. Θεόδωρος Π. Γεροστάθης, Επικ. Καθηγητής email: tgero@teiath. Μηχανική Ρευστών ΙΙ Διδάσκων: Δρ. Θεόδωρος Π. Γεροστάθης, Επικ. Καθηγητής email: tgero@teiath.gr Σκοπός του μαθήματος Σκοπός του μαθήματος είναι η κατανόηση μεθόδων προτυποποίησης προβλημάτων της μηχανικής

Διαβάστε περισσότερα

Καβάλα, Οκτώβριος 2013

Καβάλα, Οκτώβριος 2013 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΑΝ.ΜΑΚΕ ΟΝΙΑΣ - ΘΡΑΚΗΣ Επιχειρησιακό Πρόγραµµα "Ψηφιακή Σύγκλιση" Πράξη: "Εικονικά Μηχανολογικά Εργαστήρια", Κωδικός ΟΠΣ: 304282 «Η Πράξη συγχρηµατοδοτείται από το Ευρωπαϊκό

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 11. Προσδιορισμός του πηλίκου του φορτίου προς τη μάζα ενός ηλεκτρονίου

ΑΣΚΗΣΗ 11. Προσδιορισμός του πηλίκου του φορτίου προς τη μάζα ενός ηλεκτρονίου ΑΣΚΗΣΗ 11 Προσδιορισμός του πηλίκου του φορτίου προς τη μάζα ενός ηλεκτρονίου Σκοπός : Να προσδιορίσουμε μια από τις φυσικές ιδιότητες του ηλεκτρονίου που είναι το πηλίκο του φορτίου προς τη μάζα του (/m

Διαβάστε περισσότερα

Αιολική Ενέργεια & Ενέργεια του Νερού

Αιολική Ενέργεια & Ενέργεια του Νερού Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα : Εισαγωγή στην Αεροδυναμική Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Εισαγωγή στις βασικές έννοιες

Διαβάστε περισσότερα

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα).

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα). 1. Το κυβικό δοχείο του σχήματος ακμής h = 2 m είναι γεμάτο με υγρό πυκνότητας ρ = 1,1 10³ kg / m³. Το έμβολο που κλείνει το δοχείο έχει διατομή Α = 100 cm². Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών.

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών. Γρηγόρης Δρακόπουλος Φυσικός Ελληνογαλλική Σχολή Καλαμαρί Επιλεγμένες ασκήσεις στη Μηχανική Ρευστών Έ ν ω σ η Ε λ λ ή νω ν Φυσικών Θεσσαλονίκη 06 Ισορροπία υγρού Α. Στο διπλανό σχήμα, φαίνεται δοχείο που

Διαβάστε περισσότερα

ΑΠΟΤΥΠΩΣΗ ΜΕΛΕΤΗ ΗΛΕΚΤΡΙΚΩΝ ΠΕΔΙΩΝ

ΑΠΟΤΥΠΩΣΗ ΜΕΛΕΤΗ ΗΛΕΚΤΡΙΚΩΝ ΠΕΔΙΩΝ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΑΠΟΤΥΠΩΣΗ ΜΕΛΕΤΗ ΗΛΕΚΤΡΙΚΩΝ ΠΕΔΙΩΝ Α. ΣΤΟΧΟΙ Η επαφή και εξοικείωση του μαθητή με βασικά όργανα του ηλεκτρισμού και μετρήσεις. Η ικανότητα συναρμολόγησης απλών

Διαβάστε περισσότερα

Προσομοίωση Πολυφασικών Ροών

Προσομοίωση Πολυφασικών Ροών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜ. ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ - ΤΟΜΕΑΣ ΕΝΕΡΓΕΙΑΣ UNIVERSITY OF PATRAS-ENGINEERING SCHOOL MECHANICAL ENGINEERING AND AERONAUTICS

Διαβάστε περισσότερα

Mάθημα: Θερμικές Στροβιλομηχανές. Εργαστηριακή Ασκηση. Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή

Mάθημα: Θερμικές Στροβιλομηχανές. Εργαστηριακή Ασκηση. Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή Ε.Μ. ΠΟΛΥΤΕΧΝΕIΟ ΕΡΓΑΣΤΗΡIΟ ΘΕΡΜIΚΩΝ ΣΤΡΟΒIΛΟΜΗΧΑΝΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ Mάθημα: Θερμικές Στροβιλομηχανές Εργαστηριακή Ασκηση Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή Κ. Μαθιουδάκη Καθηγητή

Διαβάστε περισσότερα

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ (040) 670854-1 Fax (040) 670854-41

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ (040) 670854-1 Fax (040) 670854-41 Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Εγχειρίδιο Οδηγιών HM 135 Συσκευή Μέτρησης της Οπισθέλκουσας Δύναμης σε Σφαίρες G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό.... - v - Πρόλογος.....- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί..... - xii - ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΜΕΤΑΔΟΣΗ

Διαβάστε περισσότερα

ρ. Μ. Βαλαβανίδης, Επικ. Καθηγητής ΤΕΙ Αθήνας 10/6/2010 1

ρ. Μ. Βαλαβανίδης, Επικ. Καθηγητής ΤΕΙ Αθήνας 10/6/2010 1 Εργαλεία επίλυσης προβληµάτων µονοδιάστατης ασυµπίεστης ροής σε αγωγούς (ανοικτούς ή κλειστούς) Ι. Ισοζύγιο Μάζας (εξίσωση συνέχειας) ΙΙ. Ισοζύγιο Ενέργειας (εξίσωση Bernoull) ΙΙΙ. Ισοζύγιο Γραµµικής Ορµής

Διαβάστε περισσότερα

ΗΛΙΑΚΟΥΣ ΣΥΛΛΕΚΤΕΣ ΒΑΡΒΑΤΗΣ ΔΗΜΗΤΡΙΟΣ ΜΑΛΑΣ ΓΕΩΡΓΙΟΣ ΟΣΣΑΝΛΗΣ ΙΩΑΝΝΗΣ

ΗΛΙΑΚΟΥΣ ΣΥΛΛΕΚΤΕΣ ΒΑΡΒΑΤΗΣ ΔΗΜΗΤΡΙΟΣ ΜΑΛΑΣ ΓΕΩΡΓΙΟΣ ΟΣΣΑΝΛΗΣ ΙΩΑΝΝΗΣ ΜΕΛΕΤΗ ΘΕΡΜΑΝΣΗΣ ΗΛΙΑΚΟΥΣ ΣΥΛΛΕΚΤΕΣ ΝΕΡΟΥ ΠΙΣΙΝΑΣ ΜΕ ΣΠΟΥΔΑΣΤΕΣ: ΒΑΡΒΑΤΗΣ ΔΗΜΗΤΡΙΟΣ ΜΑΛΑΣ ΓΕΩΡΓΙΟΣ ΕΙΣΗΓΗΤΗΣ ΟΣΣΑΝΛΗΣ ΙΩΑΝΝΗΣ Η παρακάτω μελέτη αφορά πισίνα επιφάνειας 40 m 2. Το μήκος της πισίνας είναι

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό

Διαβάστε περισσότερα

ΠΑΡΑ ΟΤΕΟ ΥΠΟΕΡΓΟΥ 04. " Εκπαίδευση Υποστήριξη - Πιλοτική Λειτουργία "

ΠΑΡΑ ΟΤΕΟ ΥΠΟΕΡΓΟΥ 04.  Εκπαίδευση Υποστήριξη - Πιλοτική Λειτουργία ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΑΒΑΛΑΣ Επιχειρησιακό Πρόγραµµα "Ψηφιακή Σύγκλιση" Πράξη: "Εικονικά Μηχανολογικά Εργαστήρια", Κωδικός ΟΠΣ: 304282, ΣΑΕ 3458 «Η Πράξη συγχρηµατοδοτείται από το Ευρωπαϊκό

Διαβάστε περισσότερα

Εισηγητής : Κουμπάκης Βασίλης Μηχανολόγος Μηχανικός

Εισηγητής : Κουμπάκης Βασίλης Μηχανολόγος Μηχανικός Εισηγητής : Κουμπάκης Βασίλης Μηχανολόγος Μηχανικός ΣΚΟΠΟΣ Οι αντλίες οι συμπιεστές και η ανεμιστήρες ανήκουν σε μία οικογένεια μηχανών. Σκοπός των μηχανών αυτής της οικογένειας είναι να προσδώσουν ενέργεια

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 5 ΣΤΡΩΤΗ ΡΟΗ ΓΥΡΩ ΑΠΟ ΣΤΕΡΕΗ ΣΦΑΙΡΑ ΓΙΑ ΜΙΚΡΟΥΣ ΑΡΙΘΜΟΥΣ REYNOLDS

Διαβάστε περισσότερα

Μελέτη της επίδρασης ενός μαγνητικού πεδίου στην κίνηση των ηλεκτρονίων. Μέτρηση του μαγνητικού πεδίου της γης.

Μελέτη της επίδρασης ενός μαγνητικού πεδίου στην κίνηση των ηλεκτρονίων. Μέτρηση του μαγνητικού πεδίου της γης. Σκοπός της άσκησης: Μελέτη της επίδρασης ενός μαγνητικού πεδίου στην κίνηση των ηλεκτρονίων. Μέτρηση του μαγνητικού πεδίου της γης. Θεωρία: Κίνηση των ηλεκτρονίων υπό την επίδραση μαγνητικού πεδίου: Αν

Διαβάστε περισσότερα

Τι δεν είναι η πίεση!!!

Τι δεν είναι η πίεση!!! Τι δεν είναι η πίεση!!! Η πρώτη «θερινή» ανάρτησή μου στα ρευστά ήταν η Μερικές εισαγωγικές ερωτήσεις στα ρευστά. Μια προσπάθεια, μέσω κάποιων ερωτημάτων, να τεθεί ένα πλαίσιο αρχικών βασικών γνώσεων όσον

Διαβάστε περισσότερα

ΥδροδυναµικέςΜηχανές

ΥδροδυναµικέςΜηχανές ΥδροδυναµικέςΜηχανές Σωληνώσεις Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Σκοπός -Αντικείµενο Συνήθως η µελέτη υδροδυναµικών µηχανών και εγκαταστάσεων συνοδεύεται και από τη

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Αντλία σε σειρά και παράλληλη σύνδεση 4η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Αντλία σε σειρά και παράλληλη σύνδεση 4η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Αντλία σε σειρά και παράλληλη σύνδεση 4η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 04 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι να μελετηθεί η παροχή

Διαβάστε περισσότερα

2. Ανάλυση του βασικού κινηματικού μηχανισμού των εμβολοφόρων ΜΕΚ

2. Ανάλυση του βασικού κινηματικού μηχανισμού των εμβολοφόρων ΜΕΚ 2. Ανάλυση του βασικού κινηματικού μηχανισμού των εμβολοφόρων ΜΕΚ Προαπαιτούμενες γνώσεις: (α) Γνώσεις των τμημάτων κινηματικού μηχανισμού Μηχανής Εσωτερικής Καύσης (β) Αριθμητικός υπολογισμός παραγώγου

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1 ο B Λυκείου 12 Μαρτίου 2011 A. Στα δύο όμοια δοχεία του σχήματος υπάρχουν ίσες ποσότητες νερού με την ίδια αρχική θερμοκρασία θ 0 =40 ο C. Αν στο αριστερό δοχείο η θερμοκρασία του

Διαβάστε περισσότερα

Άσκηση 14. Τριφασική γεννήτρια εναλλασσόμενου ρεύματος. Δυναμική συμπεριφορά

Άσκηση 14. Τριφασική γεννήτρια εναλλασσόμενου ρεύματος. Δυναμική συμπεριφορά 1 ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ ΟΧΗΜΑΤΩΝ ΗΜΕΡΟΜΗΝΙΑ. ΗΜΕΡΑ. ΩΡΑ. ΟΜΑΔΑ... ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΟΥ Άσκηση 1 Σύστημα φόρτισης αυτοκινήτου Τριφασική γεννήτρια εναλλασσόμενου ρεύματος. Δυναμική συμπεριφορά ΚΑΘΗΓΗΤΗΣ

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ ΘΕΜΑ Β Β1. Σωστή η β) Έστω Σ το υλικό σημείο που απέχει d από το άκρο Α. Στο σχήμα

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ Εισαγωγή Σκοπός της εργαστηριακής άσκησης είναι η μελέτη του ηλεκτροοπτικού φαινομένου (φαινόμενο Pockels) σε θερμοκρασία περιβάλλοντος για κρύσταλλο KDP και ο προσδιορισμός της τάσης V λ/4. Στοιχεία Θεωρίας

Διαβάστε περισσότερα

Α u. u cm. = ω 1 + α cm. cm cm

Α u. u cm. = ω 1 + α cm. cm cm ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ

Διαβάστε περισσότερα

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3.1 Εισαγωγή Η μετάδοση θερμότητας, στην πράξη, γίνεται όχι αποκλειστικά με έναν από τους τρεις δυνατούς μηχανισμούς (αγωγή, μεταφορά, ακτινοβολία),

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 3 ο : Εξίσωση

Διαβάστε περισσότερα

Κεφάλαιο 3 - Μορφές ροής και αριθμός Reynolds

Κεφάλαιο 3 - Μορφές ροής και αριθμός Reynolds Κεφάλαιο 3 - Μορφές ροής και αριθμός ynolds Σύνοψη Η παρούσα εργαστηριακή άσκηση έχει σχεδιαστεί με σκοπό την επίδειξη της εξάρτησης της μορφής της ροής σε κλειστό αγωγό από την τιμή του αριθμού ynolds.

Διαβάστε περισσότερα

ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 29 ΑΠΡΙΛΙΟΥ

ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 29 ΑΠΡΙΛΙΟΥ ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 9 ΑΠΡΙΛΙΟΥ 016- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΧΤΩ (8) ΘΕΜΑ Α. Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

Κεφάλαιο 1 - Μέτρηση πυκνότητας και ιξώδους ρευστών

Κεφάλαιο 1 - Μέτρηση πυκνότητας και ιξώδους ρευστών Κεφάλαιο 1 - Μέτρηση πυκνότητας και ιξώδους ρευστών Σύνοψη Στο Κεφάλαιο 1 περιλαμβάνονται εργαστηριακές ασκήσεις στις οποίες εφαρμόζονται κλασικές μέθοδοι προσδιισμού της πυκνότητας και του ιξώδους ισμένων

Διαβάστε περισσότερα

2 ΚΑΤΑΝΟΜΕΣ ΤΑΧΥΤΗΤΑΣ ΡΟΗΣ ΚΟΝΤΑ ΣΕ ΣΤΕΡΕΟ ΟΡΙΟ Γενικά Εξισώσεις τυρβώδους ροής-τυρβώδεις τάσεις Κατανοµή στρωτών και τυρβωδών

2 ΚΑΤΑΝΟΜΕΣ ΤΑΧΥΤΗΤΑΣ ΡΟΗΣ ΚΟΝΤΑ ΣΕ ΣΤΕΡΕΟ ΟΡΙΟ Γενικά Εξισώσεις τυρβώδους ροής-τυρβώδεις τάσεις Κατανοµή στρωτών και τυρβωδών 2 ΚΑΤΑΝΟΜΕΣ ΤΑΧΥΤΗΤΑΣ ΡΟΗΣ ΚΟΝΤΑ ΣΕ ΣΤΕΡΕΟ ΟΡΙΟ 2 2.1 Γενικά 2 2.2 Εξισώσεις τυρβώδους ροής-τυρβώδεις τάσεις 2 2.2.1 Κατανοµή στρωτών και τυρβωδών τάσεων 2 2.2.2 Περιοχές ροής 3 2.3 Κατανοµές ταχυτήτων

Διαβάστε περισσότερα

Θεωρητικό Μέρος Θέμα 1 ο Α. Για την ταχύτητα υυ και την επιτάχυνση αα ενός κινούμενου σώματος δίνονται οι ακόλουθοι συνδυασμοί τιμών:

Θεωρητικό Μέρος Θέμα 1 ο Α. Για την ταχύτητα υυ και την επιτάχυνση αα ενός κινούμενου σώματος δίνονται οι ακόλουθοι συνδυασμοί τιμών: Α Λυκείου 7 Μαρτίου 2015 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ Εργαστηριακή Άσκηση 2 ΦΥΓΟΚΕΝΤΡΟΣ ΔΥΝΑΜΗ Ονοματεπώνυμο: Παριανού Θεοδώρα Όνομα Πατρός: Απόστολος Αριθμός μητρώου: 1000107 Ημερομηνία Διεξαγωγής: 05/12/11 Ημερομηνία Παράδοσης:

Διαβάστε περισσότερα

3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3.1 3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΤΡΙΒΗΣ 3.1. Θεωρίες περί τριβής Οι θεωρίες για τη φύση της τριβής έχουν μεταβάλλονται, καθώς η γνώση του ανθρώπου για τη φύση των στερεών σωμάτων συμπληρώνεται και

Διαβάστε περισσότερα