ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ"

Transcript

1 ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και Γεωδαιτικά Δίκτυα (6Θ) Κωδικός Μαθήματος 5 Σημειώσεις Θεωρίας ΣΤ Εξάμηνο Ακαδημαϊκό έτος 4 5 GPS-6(Θ) Γ.Σ. Βέργος 4-5

2 Γενίκευση της Μεθόδου των Εξισώσεων Παρατηρήσεων για Παρατηρήσεις Άλλων Μεγεθών GPS-6(Θ) Γ.Σ. Βέργος 4-5

3 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων Προκειμένου να υπολογίσουμε συνορθωμένες τιμές για τις άγνωστες παραμέτρους, πρέπει το σύστημα που προκύπτει για επίλυση να έχει τη γενική μορφή ενός γραμμικού συστήματος, δηλαδή b A + v F( ) Επομένως θα πρέπει να υπάρχει μια γραμμική σχέση η οποία θα συνδέει τις παρατηρήσεις b με τους αγνώστους του προβλήματος Σε περίπτωση που η σχέση αυτή δεν είναι γραμμική θα πρέπει να προχωρήσουμε στη γραμμικοποίησή της με κάποια μέθοδο (π.χ. γραμμικοποίηση κατά Tlr) GPS-6(Θ) Γ.Σ. Βέργος 4-5

4 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων Οι παρατηρήσεις στην τοπογραφία μπορεί να είναι αζιμούθια, διευθύνσεις, γωνίες, αποστάσεις, υψομετρικές διαφορές ω α ω ω rct rct δ δ θ rct θ rct 3 3 s + ( ) ( ) GPS-6(Θ) Γ.Σ. Βέργος 4-5

5 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων ΒΑΣΙΚΗ ΕΞΙΣΩΣΗ ΠΑΡΑΤΗΡΗΣΗΣ ΑΠΟΣΤΑΣΗΣ ΣΤΑ ΤΡΙΣΔΙΑΣΤΑΤΑ ΔΙΚΤΥΑ S + + z z ( ) ( ) ( ) rs s r s r s r GPS-6(Θ) Γ.Σ. Βέργος 4-5

6 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων ρ rs ( t ) ( ) ( ) k prs tk + c dt dt + dtrp + d + εp ρ rs ( s r ) + ( s r ) + ( zs zr ) + c( dt dt) + dtrp + d + εp ρ rs ( s r ) + ( s r ) + ( zs zr ) + c( dt dt) + εp Γραμμικοποίηση κατά Tlr GPS-6(Θ) Γ.Σ. Βέργος 4-5

7 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων ρ rs ρ rs s ρ r r dx r s ρ r r dy r z s ρ r z r dz r cdt ρ rs ρ rs s ρ r r dx r s ρ r r dy r z s ρ r z r dz r cdt Τέσσερεις άγνωστοι οι dx r dy r dz r dt GPS-6(Θ) Γ.Σ. Βέργος 4-5

8 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων A Πίνακας σχεδιασμού για - παρατηρήσεις και m- αγνώστους ( ) f ( ) m-άγνωστοι m m m -παρατηρήσεις m j f j GPS-6(Θ) Γ.Σ. Βέργος 4-5

9 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων Άν οι άγνωστοι είναι οι συντεταγμένες των σημείων, και 3 και έχουν γίνει παρατηρήσεις των α α ω A s s δ δ δ α, α, ω, s, s, δ, δ, δ, θ, θ, θ θ θ θ α α α α α α α α α θ θ θ ω ω ω ω ω ω ω ω ω θ θ θ GPS-6(Θ) Γ.Σ. Βέργος 4-5

10 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων ΠΑΡΑΤΗΡΗΣΗ ΑΖΙΜΟΥΘΙΟΥ α α s s, α rct α α s s, α α, GPS-6(Θ) Γ.Σ. Βέργος 4-5

11 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων ΠΑΡΑΤΗΡΗΣΗ ΔΙΕΥΘΥΝΣΗΣ δ δ s s, δ δ θ rct θ δ δ s s, α θ θ θ GPS-6(Θ) Γ.Σ. Βέργος 4-5

12 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων ΠΑΡΑΤΗΡΗΣΗ ΔΙΕΥΘΥΝΣΗΣ ω ω ω rct rct ω ω s s s s , 3 3 ω ω s s 3 3, ω ω , s s ω θ 3 θ θ GPS-6(Θ) Γ.Σ. Βέργος 4-5

13 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων ΠΑΡΑΤΗΡΗΣΗ ΑΠΟΣΤΑΣΗΣ s + ( ) ( ) s s s s, s s s s, s s s θ θ θ GPS-6(Θ) Γ.Σ. Βέργος 4-5

14 GPS-6(Θ) Γ.Σ. Βέργος 4-5 ) F( v A b + Άγνωστες αληθείς και προσεγγιστικές άγνωστες παράμετροι m 3 m 3 α α α α α m 3 α α α α α m 3 Βέλτιστες διορθώσεις προσεγγιστικών τιμών και βέλτιστες εκτιμήσεις αγνώστων παραμέτρων Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων

15 GPS-6(Θ) Γ.Σ. Βέργος 4-5 α α α α α 3 3 b b b b b 3 α α α α α 3 Άγνωστες αληθείς και προσεγγιστικές παρατηρούμενες παράμετροι Διάνυσμα παρατηρήσεων και βέλτιστες εκτιμήσεις παρατηρούμενων παραμέτρων Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων

16 GPS-6(Θ) Γ.Σ. Βέργος 4-5 σ σ σ σ 3 C V σ σ σ σ 3 C V P Πίνακας βαρών παρατηρήσεων Πίνακας μεταβλητοτήτων/συμμεταβλητοτήτων παρατηρήσεων Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων

17 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων Πίνακας ανοιγμένων παρατηρήσεων b b b b b b b b b b GPS-6(Θ) Γ.Σ. Βέργος 4-5

18 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων A Πίνακας σχεδιασμού για - παρατηρήσεις και m- αγνώστους ( ) f ( ) m-άγνωστοι m m m -παρατηρήσεις m j f j GPS-6(Θ) Γ.Σ. Βέργος 4-5

19 GPS-6(Θ) Γ.Σ. Βέργος 4-5 ( ) v A A b v Pb, A PA A Pb A u PA, A N u, N b T T T T, + + Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων

20 GPS-6(Θ) Γ.Σ. Βέργος 4-5 f m T T Pv v Pv v C P + σ σ σ σ Πίνακας βαρών, ακρίβειες των παρατηρήσεων Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων

21 Συνόρθωση με το μοντέλο των εξισώσεων παρατηρήσεων C m m N ( T ) A PA Πίνακας μεταβλητοτήτων/συμμεταβλητοτήτων αγνώστων παρατηρήσεων C σ GPS-6(Θ) Γ.Σ. Βέργος 4-5 σ σ.. σ

22 Βέλτιστη προσαρμογή ευθείας σε σημεία GPS-6(Θ) Γ.Σ. Βέργος 4-5

23 Βέλτιστη προσαρμογή ευθείας +b GPS-6(Θ) Γ.Σ. Βέργος 4-5

24 Βέλτιστη προσαρμογή ευθείας Έστω ότι έχουμε μετρήσει συντεταγμένες και διακεκριμένων σημείων πάνω σε ένα σχέδιο, τα οποία θεωρούμε ότι αποτελούν σημεία μια ευθείας με εξίσωση +b Αν ο αριθμός των διακεκριμένων σημείων, όπου και,,,,,, οι συντεταγμένες τους, θεωρητικά θα έπρεπε κάθε σημείο να ικανοποιεί πλήρως την εξίσωση ευθείας, κάτι τέτοιο όμως δεν συμβαίνει εξαιτίας σφαλμάτων που υπεισέρχονται στις μετρήσεις, με αποτέλεσμα αντί για ευθεία γραμμή να έχουμε μια τεθλασμένη γραμμή. GPS-6(Θ) Γ.Σ. Βέργος 4-5

25 Βέλτιστη προσαρμογή ευθείας Επειδή λοιπόν λόγω σφαλμάτων δεν μπορούμε να υλοποιήσουμε την ευθεία που μας ζητείται, θα πρέπει να βρεθεί εκείνη η εξίσωση ευθείας που προσαρμόζεται καλύτερα στο σύνολο των παραπάνω σημείων. Βασιζόμενοι στην απαίτηση της βέλτιστης προσαρμογής οι τιμές των συντελεστών και b της εξίσωσης μπορούν να προκύψουν από την εφαρμογή του κριτηρίου των ελαχίστων τετραγώνων. Το κριτήριο των ελαχίστων τετραγώνων για την βέλτιστη προσαρμογή μιας συνάρτησης f() είναι : GPS-6(Θ) Γ.Σ. Βέργος 4-5

26 Βέλτιστη προσαρμογή ευθείας φ [ f( )] m Και για την εξίσωση ευθείας γίνεται [ ( +b) ] m Για να πάρουμε την λύση που ελαχιστοποιεί την παραπάνω εξίσωση θα πρέπει να μηδενίζονται οι πρώτες παράγωγοι ως προς παραμέτρους και b της ευθείας, δηλαδή GPS-6(Θ) Γ.Σ. Βέργος 4-5

27 Βέλτιστη προσαρμογή ευθείας ϕ ϕ b [ ( + b) ] [ ( + b) ] και b είναι οι άγνωστες παράμετροι που θέλουμε να προσιορίσουμε και (, ) οι παρατηρήσεις που έχουμε διαθέσιμες από ταχυμετρία. GPS-6(Θ) Γ.Σ. Βέργος 4-5

28 [ ] ( +b) [ ] ( +b) Βέλτιστη προσαρμογή ευθείας b b + + GPS-6(Θ) Γ.Σ. Βέργος 4-5

29 Με λύση ως προς τακαιbέχουμε Βέλτιστη προσαρμογή ευθείας â b GPS-6(Θ) Γ.Σ. Βέργος 4-5

30 Βέλτιστη προσαρμογή ευθείας + b GPS-6(Θ) Γ.Σ. Βέργος 4-5

31 Βέλτιστη προσαρμογή ευθείας Παράδειγμα Σημείο X GPS-6(Θ) Γ.Σ. Βέργος 4-5

32 Βέλτιστη προσαρμογή ευθείας Παράδειγμα Σημείο X Οι τύποι που μας δίνουν τους συντελεστές και b της εξίσωσης της ευθείας είναι GPS-6(Θ) Γ.Σ. Βέργος 4-5

33 Βέλτιστη προσαρμογή ευθείας Παράδειγμα b GPS-6(Θ) Γ.Σ. Βέργος 4-5

34 Βέλτιστη προσαρμογή ευθείας Παράδειγμα GPS-6(Θ) Γ.Σ. Βέργος 4-5

35 Βέλτιστη προσαρμογή ευθείας Παράδειγμα ( ) b ( ) GPS-6(Θ) Γ.Σ. Βέργος 4-5

36 Βέλτιστη προσαρμογή ευθείας ΜΕ Παρατηρήσεων Ακολουθώντας την μεθοδολογία συνόρθωσης με τη μέθοδο των εξισώσεων παρατηρήσεων. Για την επίλυση θα θεωρήσουμε απόλυτα γνωστές ποσότητες τις και συνεπώς τα σφάλματα θα συμπεριληφθούν όλα στη παράμετρο. H εξίσωση της ευθείας θα είναι : +b GPS-6(Θ) Γ.Σ. Βέργος 4-5

37 Βέλτιστη προσαρμογή ευθείας ΜΕ Παρατηρήσεων Ακολουθώντας την μεθοδολογία συνόρθωσης με τη μέθοδο των εξισώσεων παρατηρήσεων. Για την επίλυση θα θεωρήσουμε απόλυτα γνωστές ποσότητες τις και συνεπώς τα σφάλματα θα συμπεριληφθούν όλα στη παράμετρο. H εξίσωση της ευθείας θα είναι : +b H εξίσωση είναι εξ αρχής γραμμική και συνεπώς δεν απαιτείται γραμμικοποίηση κατά Tlr. Kατά συνέπεια δεν απαιτούνται προσεγγιστικές τιμές ούτε για τις άγνωστες ποσότητες αλλά ούτε και τις παρατηρούμενες ποσότητες. Το γραμμικό σύστημα των εξισώσεων έχει την μορφή GPS-6(Θ) Γ.Σ. Βέργος 4-5

38 GPS-6(Θ) Γ.Σ. Βέργος 4-5 Βέλτιστη προσαρμογή ευθείας ΜΕ Παρατηρήσεων + b + b + b v A b +

39 Βέλτιστη προσαρμογή ευθείας ΜΕ Παρατηρήσεων A[ ] b[ ] [â b] GPS-6(Θ) Γ.Σ. Βέργος 4-5

40 Βέλτιστη προσαρμογή ευθείας ΜΕ Παρατηρήσεων A[ ] b[ ] [â b] Αν οι παρατηρήσεις θεωρηθούν ασυσχέτιστες και ισοβαρείς με ακρίβεια σ, τότε ο πίνακας βάρους P είναι ο μοναδιαίος πίνακας PI GPS-6(Θ) Γ.Σ. Βέργος 4-5

41 Βέλτιστη προσαρμογή ευθείας ΜΕ Παρατηρήσεων N u N T u A T b A A ( ) ( ) A T A A T b GPS-6(Θ) Γ.Σ. Βέργος 4-5

42 GPS-6(Θ) Γ.Σ. Βέργος 4-5 Βέλτιστη προσαρμογή ευθείας ΜΕ Παρατηρήσεων ( ) ( ) b A A A T T A A T T b A

43 Βέλτιστη προσαρμογή ευθείας ΜΕ Παρατηρήσεων ( ) ( ) A T A A T b N (A T A) ( )[ ] N u ( )[ ] [ ] GPS-6(Θ) Γ.Σ. Βέργος 4-5

44 Βέλτιστη προσαρμογή ευθείας ΜΕ Παρατηρήσεων ( )[ + ] [â b] ( ( ) ) GPS-6(Θ) Γ.Σ. Βέργος 4-5

45 Αξιολόγηση της Ποιότητας των Οριζοντίων και Κατακόρυφων δικτύων GPS-6(Θ) Γ.Σ. Βέργος 4-5

46 Ποιότητα Τοπογραφικών Δικτύων Οι έννοια της ποιότητας των τοπογραφικών δικτύων έχει διττή υπόσταση. Αποτελείται δηλαδή από δύο συνιστώσες, την αξιοπιστία και την ακρίβεια Η έννοια της αξιοπιστίας συνδέεται με την υπόθεση ότι τα σφάλματα των παρατηρήσεων είναι τυχαία, δηλαδή ότι δεν υπάρχουν χονδροειδή ή συστηματικά σφάλματα στις παρατηρήσεις. Οπότε η αξιοπιστία συνδέεται με τον έλεγχο των παρατηρήσεων για την ύπαρξη χονδροειδών ή/και συστηματικών σφαλμάτων Προκειμένου να ανειχνευτούν σφάλματα τέτοιας φύσης, εφαρμόζονται στατιστικές μέθοδοι τόσο κατά τη μέτρηση και προεπεξεργασία των παρατηρήσεων αλλά κατά βάση κατά τη συνόρθωση του δικτύου Κατά τη μέτρηση ή/και προεπεξεργασία των παρατηρήσεων εφαρμόζεται η συνόρθωση σταθμού, ο έλεγχος των σφαλμάτων κλεισίματος (όδευσης, χωροστάθμησης, γωνιομέτρησης, κ.λπ.) η πολλαπλή μέτρηση μίας απόστασης, κ.λπ. GPS-6(Θ) Γ.Σ. Βέργος 4-5

47 Ποιότητα Τοπογραφικών Δικτύων Στη φάση της συνόρθωσης, και κατά τη διάρκεια ελέγχου των μετρήσεων για χονδροειδή ή/και συστηματικά σφάλματα, μπορεί κάποιες παρατηρήσεις που είχαν περάσει τους προηγούμενους ελέγχους (κατά την εφαρμογή των αλγορίθμων στις φάσεις της μέτρησης/προεπεξεργασίας), να απορρίπτονται Αυτό μπορεί να συμβαίνει για πολλούς λόγους μεταξύ των οποίων περιλαμβάνονται:. Σφάλματα στις μετρήσεις των διευθύνσεων και γωνιών που δεν μπορούν να ανιχνευθούν κατά τα προηγούμενα στάδια ελέγχου (π.χ. σφάλμα κέντρωσης, οριζοντίωσης, κ.λπ.). Σφάλμα στις μετρήσεις των αποστάσεων που δεν μπορούν να ανιχνευθούν κατά τις επαναληπτικές μετρήσεις της εν λόγω απόστασης (π.χ. ατμοσφαιρικές επιδράσεις, σφάλμα κλίμακας οργάνου, σφάλμα αναγωγής της κεκλιμένης απόστασης σε οριζόντια) GPS-6(Θ) Γ.Σ. Βέργος 4-5

48 Ποιότητα Τοπογραφικών Δικτύων. Σφάλματα που δεν εντοπίζονται κατα τη συνόρθωση κάθε σταθμού ξεχωριστά αλλά κατά τη συνόρθωση του συνολικού δικτύου λόγω της καλύτερης εσωτερικής αξιοπιστίας. Σφάλματα/λάθη που μπορεί να γίνουν κατά την εισαγωγή των παρατηρήσεων σε κάποιον Η/Υ από αναγραμματισμό, κ.λπ. Είναι επομένως ανάγκη, πέρα από τους ελέγχους κατά την προεπεξεργασία των παρατηρήσεων, να γίνονται και στατιστικοί έλεγχοι των αποτελεσμάτων της συνόρθωσης Ένας αρχικός έλεγχος γίνεται με τη βοήθεια του στατιστικού ελέγχου της μεταβλητότητας αναφοράς. Ελέγχεται δηλαδή η μηδενική υπόθεση Η ο : σ σ ο έναντι της εναλακτικής υπόθεσης Η : σ σ ο. Επίσης μπορεί να ελεγχθεί η μηδενική υπόθεση Η ο : σ σ ο έναντι των υποθέσεων Η : σ <σ ο και Η : σ >σ ο. Στα οριζόντια και κατακότυφα δίκτυα μπορεί να θεωρηθεί ότι σ ο. GPS-6(Θ) Γ.Σ. Βέργος 4-5

49 Ποιότητα Τοπογραφικών Δικτύων Η απόρριψη της μηδενικής υπόθεσης Η ο : σ σ ο και η ιχύς της Η : σ <σ ο μπορεί να οφείλεται σε λανθασμένη επιλογή του πίνακα βάρους P των παρατηρήσεων. Η ισχύς της Η : σ >σ ο μπορεί να οφείλεται σε λανθασμένη επιλογή του πίνακα βάρους P των παρατηρήσεων ή/και στην ύπαρξη χονδροειδών σφαλμάτων Ας θεωρήσουμε ότι κάνουμε μέτρηση μιας απόστασης ανάμεσα σε ένα γνωστό σημείο και ένα άγνωστο. Τότε ΑΚΡΙΒΕΙΑ: Δηλώνει πόσο «συγκεντρωμένες» είναι οι παρατηρήσεις, δηλαδή πόσο κοντά είναι οι παρατηρήσεις η μία στην άλλη ΑΞΙΟΠΙΣΤΙΑ: Δηλώνει πόσο κοντά είναι οι παρατηρήσεις που πραγματοποιούμε στην πραγματική τιμή της απόστασης GPS-6(Θ) Γ.Σ. Βέργος 4-5

50 Ποιότητα Τοπογραφικών Δικτύων Καλή ακρίβεια, κακή αξιοπιστία Κακή ακρίβεια, κακή αξιοπιστία Κακή ακρίβεια, καλή αξιοπιστία Καλή ακρίβεια, καλή αξιοπιστία GPS-6(Θ) Γ.Σ. Βέργος 4-5

51 Η Εκτίμηση της Ακρίβειας Ο πίνακας μεταβλητοτήτων/συμμεταβλητοτήτων των εκτιμήσεων των αγνώστων παραμέτρων (βέλτιστες εκτιμήσεις των διορθώσεων των προσεγγιστικών τιμών), όπως είδαμε είναι ο C σ σ σ.. σ όπου είναι οι άγνωστες παράμετροι GPS-6(Θ) Γ.Σ. Βέργος 4-5

52 Άς υποθέσουμε ότι οι άγνωστες παράμετροι είναι οι συντεταγμένες κορυφών ενός δικτύου(, ) τότε ο πίνακας των ακριβειών θα έχει τη μορφή μεταβλητότητες συμμεταβλητότητες C Η Εκτίμηση της Ακρίβειας σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ GPS-6(Θ) Γ.Σ. Βέργος 4-5

53 Η Εκτίμηση της Ακρίβειας Απόλυτη Έλλειψη Σφάλματος Σε κάθε κορυφήp του δικτύου αντιστοιχεί ο υποπίνακας C σ σ σ από τα στοιχεία του οποίου υπολογίζονται οι παράμετροι των απόλυτων ελλείψεων σφάλματος, δηλαδή ο μεγάλος () και ο μικρός (b) ημιάξονας της έλλειψης και ο προσανατολισμός της (ψ) GPS-6(Θ) Γ.Σ. Βέργος 4-5 σ σ σ + σ + σ σ + σ 4 ( ) m b σ σ + σ σ σ + σ 4 σ rct ψ σ σ ( ) m

54 Η Εκτίμηση της Ακρίβειας Απόλυτη Έλλειψη Σφάλματος Η απόλυτη έλλειψη σφάλματος κεντρώνεται στην κορυφή του δικτύου στην οποία αναφέρεται και δείχνει την ακρίβεια με την οποία βρίσκεται η κορυφή του δικτύου στο σημείο/περιοχή την οποία περιγράφει η έλλειψη σφάλματος Για παράδειγμα άν.5 cm, b. cm και c5 grd τότε ψ b GPS-6(Θ) Γ.Σ. Βέργος 4-5

55 Η Εκτίμηση της Ακρίβειας Απόλυτη Έλλειψη Σφάλματος Το μειονέκτημα των απόλυτων ελλείψεων σφάλματος έγκειται στο ότι αναφέρονται στην ακρίβεια με την οποία προσδιορίζεται μια μόνο κοτυφή του δικτύου, και μας δίνει την ακρίβεια με την οποία προσδιορίζεται η θέση της Δεν λαμβάνει όμως υπόψη τις συμμεταβλητότητες μεταξύ των διαφόρων κορυφών, δηλαδή το πώς επηρεάζεται η ακρίβεια προσδιορισμού μίας κορυφής από την άλλη Αυτό επιτυγχάνεται με τις σχετικές ελλείψεις σφάλματος που αναφέρονται σε δύο κορυφές του δικτύου και εκφράζει την εκτίμηση της ακρίβειας της θέσης μιας κορυφής σε σχέση με την άλλη Στην περίπτωση αυτή έχουμε ένα πίνακα ακριβειών C σ σ σ σ GPS-6(Θ) Γ.Σ. Βέργος 4-5

56 Η Εκτίμηση της Ακρίβειας Απόλυτη Έλλειψη Σφάλματος C σ σ j σ σ j σ σ + σ σ j j σ σ + σ σ j j σ σ + σ σ σ j j j j GPS-6(Θ) Γ.Σ. Βέργος 4-5

57 Η Εκτίμηση της Ακρίβειας Σχετική Έλλειψη Σφάλματος Οι παράμετροι της σχετικής έλλειψης σφάλματος υπολογίζονται από τις προηγούμενες σχέσεις με τις προφανείς αντικαταστάσεις των,, με Δ, Δ, ΔΔ, δηλαδή b σ ( ) m σ σ σ σ σ σ ( ) m σ σ σ σ σ ψ σ rct σ σ GPS-6(Θ) Γ.Σ. Βέργος 4-5

58 Η Εκτίμηση της Ακρίβειας Σχετική Έλλειψη Σφάλματος Η σχετική έλλειψη σφάλματος κεντρώνεται στο μέσο της απόστασης μεταξύ των δύο κορυφών του διτκύου Για παράδειγμα άν.5 cm, b. cm και c5 grd τότε P j ψ b P GPS-6(Θ) Γ.Σ. Βέργος 4-5

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 1 Για τον υπολογισμό των συντεταγμένων ενός σημείου P μετρήθηκαν οι οριζόντιες αποστάσεις προς τρία γνωστά σημεία (βλέπε σχήμα).

Διαβάστε περισσότερα

Σύντομος οδηγός του προγράμματος DEROS

Σύντομος οδηγός του προγράμματος DEROS Τοπογραφικά Δίκτυα και Υπολογισμοί Σύντομος οδηγός του προγράμματος DEROS Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική Σχολή ΑΠΘ SUPPLEMENTARY COURSE NOTES Για περισσότερες λεπτομέρειες

Διαβάστε περισσότερα

Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου

Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 11: Ανάλυση αξιοπιστίας δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

Παράδειγμα συνόρθωσης οριζόντιου δικτύου

Παράδειγμα συνόρθωσης οριζόντιου δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 216-217 Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο

Διαβάστε περισσότερα

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή 6 Εντάξεις δικτύων GPS 6.1 Εισαγωγή Oι απόλυτες (X, Y, Z ή σχετικές (ΔX, ΔY, ΔZ θέσεις των σηµείων, έτσι όπως προσδιορίζονται από τις µετρήσεις GPS, αναφέρονται στο γεωκεντρικό σύστηµα WGS 84 (Wrld Gedetic

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 5: Προ επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο ΠΑΛΙΟ http://eclass.survey.teiath.gr NEO

Διαβάστε περισσότερα

Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου

Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 016-017 Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,

Διαβάστε περισσότερα

Ανάλυση αξιοπιστίας δικτύων (μέρος Ι)

Ανάλυση αξιοπιστίας δικτύων (μέρος Ι) Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανάλυση αξιοπιστίας δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η έννοια

Διαβάστε περισσότερα

Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS

Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS 5 Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS H τεχνική των "µεµονωµένων βάσεων" εφαρµόζεται όταν διατίθενται δύο µόνο δέκτες και χρησιµοποιείται για τα συνήθη δίκτυα πύκνωσης µε µικρό α- ριθµό σηµείων.

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ. Διδακτικές σημειώσεις. Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ, MSc Γεωπληροφορική ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ

ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ. Διδακτικές σημειώσεις. Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ, MSc Γεωπληροφορική ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ Διδακτικές σημειώσεις Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ MSc Γεωπληροφορική

Διαβάστε περισσότερα

Δορυφορική Γεωδαισία (GPS)

Δορυφορική Γεωδαισία (GPS) Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ Δορυφορική Γεωδαισία (GPS)

Διαβάστε περισσότερα

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι)

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι) Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,

Διαβάστε περισσότερα

Αλγόριθμοι συνόρθωσης δικτύων

Αλγόριθμοι συνόρθωσης δικτύων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Μου τη

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Εφαρμογές Παγκοσμίου

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ

ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ Για το μάθημα των Ασκήσεων Υπαίθρου (και όχι μόνο..) Χ. Κωτσάκης ΤΑΤΜ ΑΠΘ Ιούλιος 2016 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Βασικές σχέσεις.3 Γραμμική vs. μη-γραμμική προσέγγιση του

Διαβάστε περισσότερα

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ ΕΙΔΙΚΕΣ ΟΔΗΓΙΕΣ. προς τους φοιτητές/τριες που θα πάρουν μέρος στις ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 2016

ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ ΕΙΔΙΚΕΣ ΟΔΗΓΙΕΣ. προς τους φοιτητές/τριες που θα πάρουν μέρος στις ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 2016 Θεσσαλονίκη, 13 Ιουνίου 2016 ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 8 Ο ΕΞΑΜΗΝΟ ΤΑΤΜ/ΑΠΘ ΕΙΔΙΚΕΣ ΟΔΗΓΙΕΣ προς τους φοιτητές/τριες που θα πάρουν μέρος στις ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 2016 Αντικείμενο του μαθήματος Το αντικείμενο των

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Εφαρμογές Παγκοσμίου

Διαβάστε περισσότερα

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο

Διαβάστε περισσότερα

Δορυφορική Γεωδαισία (GPS)

Δορυφορική Γεωδαισία (GPS) Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ Δορυφορική Γεωδαισία (GPS)

Διαβάστε περισσότερα

Αναλυτική Φωτογραμμετρία

Αναλυτική Φωτογραμμετρία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 5: Βασικά Φωτογραμμετρικά προβλήματα I Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Πρόλογος 5. Πρόλογος

Πρόλογος 5. Πρόλογος Πρόλογος 5 Πρόλογος Η Τοπογραφία είναι ο επιστημονικός χώρος μέσω του οποίου κατόρθωσε να επιτύχει ο άνθρωπος την απεικόνιση τμημάτων της γήινης επιφάνειας στο επίπεδο. Ενδιάμεσο και απαραίτητο στάδιο

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΚ. ΕΤΟΣ 2006-2007 ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Ηρώων Πολυτεχνείου 9, 157 80 Ζωγράφος Αθήνα Τηλ.: 210 772 2666 2668, Fax: 210 772 2670 ΓΕΩΔΑΙΤΙΚΗ

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 69 8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 8.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό πλάτος ενός τόπου είναι η γωνία μεταξύ της διεύθυνσης της κατακορύφου του τόπου και του επιπέδου του ουράνιου Ισημερινού. Ο προσδιορισμός

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 9: Η έννοια και η χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Η έννοια και χρήση των εσωτερικών δεσμεύσεων

Η έννοια και χρήση των εσωτερικών δεσμεύσεων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ

ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ SMANET1 Πρόγραµµα Συνόρθωσης και Ελέγχου Γεωµετρικών Συνθηκών σε 3 Τοπογραφικά ίκτυα ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Χριστόφορος Κωτσάκης Επίκουρος Καθηγητής ΤΑΤΜ/ΑΠΘ Τοµέας Γεωδαισίας και Τοπογραφίας Τµήµα

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Αποτυπώσεις - Χαράξεις

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΦΑΛΜΑΤΩΝ ΤΟΠΟΓΡΑΦΙΚΩΝ ΟΡΓΑΝΩΝ ΤΜΗΜΑΤΟΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ - ΙΟΡΘΩΣΕΙΣ

ΕΛΕΓΧΟΣ ΣΦΑΛΜΑΤΩΝ ΤΟΠΟΓΡΑΦΙΚΩΝ ΟΡΓΑΝΩΝ ΤΜΗΜΑΤΟΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ - ΙΟΡΘΩΣΕΙΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΟΠΟΓΡΑΦΙΑΣ ΕΛΕΓΧΟΣ ΣΦΑΛΜΑΤΩΝ ΤΟΠΟΓΡΑΦΙΚΩΝ ΟΡΓΑΝΩΝ ΤΜΗΜΑΤΟΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ - ΙΟΡΘΩΣΕΙΣ ΚΥΡΙΑΚΙ ΟΥ ΣΟΦΙΑ Πτυχιακή εργασία

Διαβάστε περισσότερα

Σύντομος οδηγός του μαθήματος

Σύντομος οδηγός του μαθήματος Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016 Σύντομος οδηγός του μαθήματος Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Γενικές πληροφορίες

Διαβάστε περισσότερα

Αναλυτική Φωτογραμμετρία

Αναλυτική Φωτογραμμετρία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 6: Βασικά Φωτογραμμετρικά προβλήματα II Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

Περιεχόµενα. Περιεχόµενα... 7. Ευρετήριο Γραφηµάτων... 11. Ευρετήριο Εικόνων... 18. Κεφάλαιο 1

Περιεχόµενα. Περιεχόµενα... 7. Ευρετήριο Γραφηµάτων... 11. Ευρετήριο Εικόνων... 18. Κεφάλαιο 1 Περιεχόµενα Περιεχόµενα... 7 Ευρετήριο Γραφηµάτων... 11 Ευρετήριο Εικόνων... 18 Κεφάλαιο 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ... 19 Θεωρία... 19 1.1 Έννοιες και ορισµοί... 20 1.2 Μονάδες µέτρησης γωνιών και µηκών...

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών

Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών Ενημερωτικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

Γενική λύση συνόρθωσης δικτύου

Γενική λύση συνόρθωσης δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Πως ξεπερνάμε το

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας

Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας 1.1. ΧΩΡΟΒΑΤΗΣ Ο χωροβάτης είναι το Τοπογραφικό όργανο, που χρησιμοποιείται στη μέτρηση των υψομέτρων σημείων.

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 7: Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στο Πεδίο Βαρύτητας

Εισαγωγή στο Πεδίο Βαρύτητας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 3: Συστήματα Υψών Η.Ν. Τζιαβός - Γ.Σ. Βέργος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Εισαγωγή στο

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΜΕΤΡΗΣΗ ΚΑΙ ΕΠΙΛΥΣΗ ΤΡΙΔΙΑΣΤΑΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ ΔΙΚΤΥΟΥ ΑΚΡΙΒΕΙΑΣ ΣΤΟΝ Η/Σ ΒΑΣΙΛΙΚΟ ΤΗΣ ΑΗΚ, ΜΕ ΧΡΗΣΗ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΓΕΩΔΑΙΤΙΚΩΝ

Διαβάστε περισσότερα

ύο λόγια από τους συγγραφείς.

ύο λόγια από τους συγγραφείς. ύο λόγια από τους συγγραφείς. Το βιβλίο αυτό γράφτηκε από τους συγγραφείς με σκοπό να συμβάλουν στην εκπαιδευτική διαδικασία του μαθήματος της Τοπογραφίας Ι. Το βιβλίο είναι γραμμένο με τον απλούστερο

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 9: Εργαστηριακές ασκήσεις Δρ. Γρηγόριος Βάρρας

Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 9: Εργαστηριακές ασκήσεις Δρ. Γρηγόριος Βάρρας Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 9: Εργαστηριακές ασκήσεις Δρ. Γρηγόριος Βάρρας 1.1. ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1η ΘΕΜΑ: Μονάδες μέτρησης της Τοπογραφίας. Μετατροπή μονάδων. Συστήματα μέτρησης. 1.

Διαβάστε περισσότερα

ΑΝΘΡΩΠΟΓΕΩΓΡΑΦΙΑ- ΟΙΚΟΝΟΜΙΚΗ ΤΟΥ ΧΩΡΟΥ κ. ΦΟΥΤΑΚΗΣ ΔΗΜΗΤΡΙΟΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ &ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ

ΑΝΘΡΩΠΟΓΕΩΓΡΑΦΙΑ- ΟΙΚΟΝΟΜΙΚΗ ΤΟΥ ΧΩΡΟΥ κ. ΦΟΥΤΑΚΗΣ ΔΗΜΗΤΡΙΟΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ &ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΑΝΘΡΩΠΟΓΕΩΓΡΑΦΙΑ- ΟΙΚΟΝΟΜΙΚΗ ΤΟΥ ΧΩΡΟΥ κ. ΦΟΥΤΑΚΗΣ ΔΗΜΗΤΡΙΟΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ &ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού

Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές

Διαβάστε περισσότερα

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που

Διαβάστε περισσότερα

ΣΥΜΒΟΥΛΕΣ και ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΘΕΜΑ ΤΗΣ ΤΟΠΟΓΡΑΦΙΑΣ ΙΙ

ΣΥΜΒΟΥΛΕΣ και ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΘΕΜΑ ΤΗΣ ΤΟΠΟΓΡΑΦΙΑΣ ΙΙ Σύνταξη από τη φοιτήτρια Αθηνά Πεϊδου Με τη συμβολή ομάδας φοιτητών του ΤΑΤΜ-ΑΠΘ ΣΥΜΒΟΥΛΕΣ και ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΘΕΜΑ ΤΗΣ ΤΟΠΟΓΡΑΦΙΑΣ ΙΙ Όργανο: Ταχύμετρο WILD T16 ΑΝΑΓΝΩΡΙΣΗ ΠΕΔΙΟΥ Επιλέγουμε τα σημεία εξάρτησης

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΟΙ ΜΕΤΡΗΣΕΙΣ ΕΓΙΝΑΝ ΣΤΟ : ΕΛΛΗΝΙΚΟ ΓΕΩΔΑΙΤΙΚΟ ΣΥΣΤΗΜΑ ΑΝΑΦΟΡΑΣ 1987 (Ε.Γ.Σ.Α. 87)

ΕΙΣΑΓΩΓΗ ΟΙ ΜΕΤΡΗΣΕΙΣ ΕΓΙΝΑΝ ΣΤΟ : ΕΛΛΗΝΙΚΟ ΓΕΩΔΑΙΤΙΚΟ ΣΥΣΤΗΜΑ ΑΝΑΦΟΡΑΣ 1987 (Ε.Γ.Σ.Α. 87) ΕΙΣΑΓΩΓΗ 1 Η ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ ΑΠΟΤΕΛΟΥΜΕΝΗ ΑΠΟ ΤΟΥΣ ΣΠΟΥΔΑΣΤΕΣ ΚΑΛΟΜΑΛΟ ΠΑΝΑΓΙΩΤΗ, ΛΑΓΟ ΣΠΥΡΙΔΩΝ ΚΑΙ ΠΟΘΟ ΣΠΥΡΙΔΩΝ ΑΝΕΛΑΒΕ, ΚΑΤΟΠΙΝ ΣΥΝΝΕΝΟΗΣΕΩΣ ΜΕ ΤΟ ΕΡΓΑΣΤΗΡΙΟ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΤΟΝ ΚΑΘΗΓΗΤΗ κ. ΚΩΝΣΤΑΝΤΙΝΟ

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥ- ΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥ- ΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥ- ΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Τζ. Τσιτοπούλου, Ι. Χριστακόπουλος]

Διαβάστε περισσότερα

Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 8: Λυμένες ασκήσεις Δρ. Γρηγόριος Βάρρας

Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 8: Λυμένες ασκήσεις Δρ. Γρηγόριος Βάρρας Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 8: Λυμένες ασκήσεις Δρ. Γρηγόριος Βάρρας 1.1.1.1. ΠΑΡΑΔΕΙΓΜΑ 1 Στον πίνακα, που ακολουθεί, δίνονται τα στοιχεία κλειστής πολυγωνικής Όδευσης 1-2-3-4-1. Ζητούνται

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΥΨΟΜΕΤΡΗΣΗ. hab = ο - ε.

ΥΨΟΜΕΤΡΗΣΗ. hab = ο - ε. ΒΙΒΛΙΟΓΡΑΦΙΑ: Π. Σαββαΐδης, Ι. Υφαντής, Κ. Λακάκης, ΣΗΜΕΙΩΣΕΙΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΘΕΜΑΤΙΚΗΣ ΧΑΡΤΟΓΡΑΦΙΑΣ ΓΙΑ ΤΟ ΤΜΗΜΑ ΑΡΧΙΤΕΚΤΟΝΩΝ Α. Π. Θ., Θεσσαλονίκη 2007 ΥΨΟΜΕΤΡΗΣΗ 1. H γεωµετρική χωροστάθµηση Στη γεωµετρική

Διαβάστε περισσότερα

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες:

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες: Το αντικείμενο του θέματος είναι η ταχυμετρική αποτύπωση σε κλίμακα 1:200 της περιοχής που ορίζεται από τo Σκαρίφημα Λιμνίου με Συντεταγμένες Σημείων το οποίο παραδόθηκε στο μάθημα και βρίσκεται στο eclass.

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας

Διαβάστε περισσότερα

Εισαγωγή στο Πεδίο Βαρύτητας

Εισαγωγή στο Πεδίο Βαρύτητας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 6: Σφαιρικές Αρμονικές Συναρτήσεις & Αναπτύγματα Συνιστωσών του Πεδίου Βαρύτητας Η.Ν. Τζιαβός - Γ.Σ.

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 8: Συστήματα γραμμικών αλγεβρικών εξισώσεων Εργαλεία Excel minverse & mmult Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

Αστικά υδραυλικά έργα

Αστικά υδραυλικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Στην πράξη, για πολύ σημαντικές εφαρμογές, γίνονται μετρήσεις τιμών μιας ποσότητας σε μια κλινική, για μια σφυγμομέτρηση,

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα