Ιζήματα. Οι κόκκοι των ιζημάτων προέρχονται από

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ιζήματα. Οι κόκκοι των ιζημάτων προέρχονται από"

Transcript

1 Ιζήματα

2 Ιζήματα Τα ιζήματα είναι ανόργανοι και οργανικοί κόκκοι διαφόρων μεγεθών, οι οποίοι καθιζάνουν διαμέσου της υδάτινης στήλης και αποτίθονται στον ωκεάνιο πυθμένα σχηματίζοντας ένα κάλυμμα, στο πέρασμα του γεωλογικού χρόνου Οι κόκκοι των ιζημάτων προέρχονται από Την αποσάθρωση και διάβρωση των πετρωμάτων της χέρσου Τη δραστηριότητα των θαλάσσιων οργανισμών Τις ηφαιστειακές εκρήξεις Τις χημικές διεργασίες που αναπτύσσονται στο θαλάσσιο περιβάλλον Το διάστημα

3 Η μελέτη των θαλάσσιων ιζημάτων είναι πολύ πρόσφατη σε σχέση με τη μελέτη των ιζημάτων της στεριάς Η πρώτη έρευνα έγινε μεταξύ από το ερευνητικό σκάφος HMV Challenger το οποίο συνέλεξε επιφανειακά ιζήματα και συνεχίστηκε με το Meteor Το Albatros (Swedish Deep Sea Expedition) συλλέγει τους πρώτους πυρήνες μήκους έως και 10m Έκτοτε πολλές συστηματικές έρευνες έχουν λάβει χώρα σε όλες τις θάλασσες της γης

4

5 Ταξινόμηση ιζημάτων Η ταξινόμηση γίνεται σύμφωνα με: Α) το μέγεθος των κόκκων τους Β) το κυρίαρχο υλικό της σύστασής τους Γ) το περιβάλλον απόθεσής τους

6 Α) Ταξινόμηση με το μέγεθος κόκκων Οι κόκκοι χωρίζονται σε 7 κοκκομετρικές τάξεις Οι 7 τάξεις συντάσσουν 3 ευρύτερες κατηγορίες ιζημάτων τους ψηφίτες τις άμμους τις ιλείς Κοκκομετρική τάξη Κοκκομετρική κλάση Διάμετρος κόκκων (mm) Ογκόλιθοι (boulders) 256 1,024 Κροκάλες (cobbles) Ψηφίδες (gravel) Βότσαλα (pebbles) 4-64 Ψηφίδες (granules) 2 4 Άμμος (sand) Άμμος (sand) 0, Πηλός (silt) 0,004 0,062 Ιλύς (mud) Άργιλος (clay) < 0,004

7 Διάμετρος και Ø Ως μονάδα μέτρησης των κόκκων σε ένα ίζημα συχνά χρησιμοποιείται το Ø (phi) (προφέρεται φι) αντί των (mm) Το Ø ισούται με τον - log d (όπου το d: διάμετρος του κόκκου, μετράται σε mm) 2

8 ΚΟΚΚΟΜΕΤ ΡΙΚΗ ΚΛΑΣΗ ΨΗΦΙΤΕΣ (GRAVEL) ΚΟΚΚΟΜΕΤ ΡΙΚΗ ΤΑΞΗ ΚΟΚΚΟΜΕΤΡΙΚΟ ΚΛΑΣΜΑ ΔΙΑΜΕΤΡΟΣ ΚΟΚΚΩΝ (mm) ΔΙΑΜΕΤΡΟΣ ΚΟΚΚΩΝ (Ø* ΟΓΚΟΛΙΘ ΟΙ Ογκόλιθοι (-12)-(-8) ΚΡΟΚΑΛΕΣ ΒΟΤΣΑΛΑ Μεγάλες κροκάλες (-8)-(-7) Μικρές κροκάλες (-7)-(-6) Πολύ μεγάλα βότσαλα (-6)-(-5) Μεγάλα βότσαλα (-5)-(-4) Μεσαία βότσαλα 16-8 (-4)-(-3) Μικρά βότσαλα 8-4 (-3)-(-2) ΨΗΦΙΔΕΣ Ψηφίδες 4-2 (-2)-(-1) ΑΜΜΟΣ (SAND) ΑΜΜΟΣ Πολύ χονδρόκοκκη άμμος 2-1 (-1)-(0) Χονδόκοκκη άμμος Μεσόκοκκη άμμος Λεπτόκοκκη άμμος ΙΛΥΣ (MUD) ΠΗΛΟΣ Πολύ λεπτόκοκκη άμμος Χονδρόκοκκος πηλός Μεσόκοκκος πηλός Λεπτόκοκκος πηλός Πολύ λεπτόκοκκος πηλός ΑΡΓΙΛΟΣ Άργιλος x 10-6** 8-14

9 Β) Ταξινόμηση με τη σύσταση Λιθογενή ή χερσογενή ιζήματα Βιογενή ιζήματα Υδρογενή ή αυθιγενή ιζήματα Κοσμογενή ιζήματα Γ) Ταξινόμηση με την προέλευση Νηριτικά ιζήματα Πελαγικά ιζήματα Σημείωση: Σε βαθύτερα περιβάλλοντα αποτίθεται λεπτομερέστερο κοκκομετρικό κλάσμα

10 Κοκκομετρικές αναλύσεις Ογκόλιθοι Αμμος Ιλύς Μεγεθος κόκκων (mm) Udden -Wentworth κλίμακα Ογκόλιθοι Κροκάλες Βότσαλα Ψηφίδες Πολύ χονδρόκοκκη άμμος Χονδρόκοκκη άμμος Μεσόκοκκη άμμος Λεπτόκοκκη άμμος Πόλύ λεπτόκοκκη άμμος Άργιλος Iλύς Μεγεθος κόκκων (Φ) Μέθοδοι μέτρησης μεγέθους Απευθείας μέτρηση Κοσκίνισμα Πιπέττες ΜΙκροσκόπιο Λέιζερ

11 Τρόποι παρουσίασης αποτελεσμάτων

12 Τρόποι παρουσίασης αποτελεσμάτων

13 Σύγκριση δειγμάτων

14 Παράδειγμα Δείγμα 1 κόσκινο Διάμετρος (mm) Διάμετρος (phi) Bάρος (gr)

15 Παράδειγμα Δείγμα 1 Βάρος (gr) % = (0,1042 * 100) / 44,8678 = 0,2322 Αθροιστικό ποσοστό % 0, Σύνολο 44,8678 0, = 0, ,2560 = 0,

16 Στατιστικές παράμετροι Είναι χαρακτηριστικές τιμές που περιγράφουν τις κοκκομετρικές καμπύλες Αντιπροσωπευτικές παράμετροι είναι : το μέσο μέγεθος (mean) η διάμεσος (median) η επικρατούσα τιμή ή τύπος (mode) η τυπική απόκλιση (standard deviation) η ασυμμετρία (skewness) η κύρτωση (Kurtosis) Καθορίζονται είτε με γραφικό τρόπο, είτε με μαθηματικό τρόπο (μέθοδος των ροπών)

17 Στατιστικές παράμετροι Η γραφική μέθοδος: χρησιμοποιεί την αθροιστική % καμπύλη τάξεων μεγέθους (με διαμέτρους κόκκων σε (Ø)) Πάνω στην καπύλη λαμβάνονται ορισμένα εκατοστημόρια : το 5%,το 16%, το 50%, το 84%, το 95% κ.λ.π. (το εκατοστημόριο είναι μία υποδιαίρεση της καμπύλης αν τη χωρίσουμε σε 100 ίσα μέρη)

18 διάμεσος (median) διάμετρος των κόκκων όπου πέρα αυτής 50% των κόκκων είναι αδρομερέστερο υλικό και 50% των κόκκων είναι λεπτομερέστερο υλικό Αθροιστική κοκκομετρική καμπύλη

19 μέσο μέγεθος (mean) Μέσο μέγεθος κόκκων Γραφικός τρόπος υπολογισμού Αθροιστική κοκκομετρική καμπύλη

20 τυπική απόκλιση (standard deviation)...δείκτης μέτρησης της διαβάθμισης του δείγματος Γραφικός τρόπος υπολογισμού

21 τυπική απόκλιση (standard deviation) Τιμές από έως Αντιστοιχεί σε Πολύ καλή διαβάθμιση Καλή διαβάθμιση Μέτρια καλή διαβάθμιση Μέτρια διαβάθμιση Φτωχή διαβάθμιση Πολύ φτωχή διαβάθμιση 4.00 Εξαιρετικά φτωχή διαβάθμιση

22 ασυμμετρία (skewness) Βαθμός ασυμμετρίας της αθροιστικής καμπύλης Γραφικός τρόπος υπολογισμού

23 Τιμές από έως Μαθηματικά η Λοξότητα χαρακτηρίζεται ως Γραφικά, η καμπύλη λοξεύει προς Πολύ θετική πολύ αρνητικές τιμές = χονδρόκοκκο ίζημα θετική αρνητικές τιμές Σχεδόν συμμετρική Σχεδόν συμμετρία αρνητική Θετικές τιμές Πολύ αρνητική Πολύ θετικές τιμές = λεπτόκοκκο ίζημα

24 κύρτωση (Kurtosis) Δείκτης «κορύφωσης» της αθροιστικής καμπύλης Γραφικός τρόπος υπολογισμού

25 Τιμές από έως Αντιστοιχεί σε Πολύ πλατύκυρτη Πλατύκυρτη Μεσόκυρτη ή κανονική Λεπτόκυρτη Πολύ λεπτόκυρτη 3.00 Εξαιρετικά λεπτόκυρτη Καλύτερη διαβάθμιση στα άκρα από το κέντρο Καλύτερη διαβάθμιση στο κέντρο από τα άκρα κύρτωση

26 Λιθολογικοί τύποι Η ταξινόμηση σε λιθολογικούς τύπους ανάλογα με το μέγεθος των κόκκων γίνεται με τη βοήθεια Τριγωνικών διαγραμμάτων Ταξινόμησης και Ονοματολογίας Σύμφωνα με την εκατοστιαία συμμετοχή των διαφόρων κοκκομετρικών τάξεων Τα τριγωνικά συστήματα ταξινόμησης διακρίνονται σε: Διαγράμματα για λεπτόκοκκα ιζήματα με d < 2 mm (άμμο-πηλόάργιλο) Διαγράμματα για χονδρόκοκκα ιζήματα d > 2 mm (ψηφίδεςάμμος-ιλύς)

27 ΆΜΜΟΣ 90% S Ποσοστό άμμου 50% cs ms zs sc sm sz 10% C M Z ΆΡΓΙΛΟΣ 2:1 Αναλογία Άργιλος/Πηλός 1:2 ΠΗΛΟΣ S: αμμώδη ιζήματα sc: αμμούχος άργιλος C: αργιλικά ιζήματα ms: ιλυούχος άμμος Z: πηλητικά ιζήματα sm: αμμούχος ιλύς M: ιλύς zs: πηλούχος άμμος cs: αργιλούχος άμμος sz: αμμούχος πηλός

28 ΨΗΦΙΔΕΣ (>2 mm) 80% G Ποσοστό ψηφίδων 30% mg msg sg trace (0.01%) ΙΛΥΣ (< mm) gm gms gs 5% (g)m (g)ms (g)s M sm ms S 1:9 1:1 9:1 Αναλογία Άμμος/Ιλύς ΑΜΜΟΣ ( mm) G: ψηφίδες msg: ιλυοαμμούχες ψηφίδες S: αμμώδη ιζήματα gms: ιλυοψηφιδούχες άμμοι M: ιλύς (g)ms: ελαφρώς ψηφιδούχες ιλυούχες άμμοι MG: ιλυούχες ψηφίδες sg: αμμούχες ψηφίδες GM: ψηφιδούχος ιλύς (g)m: ελαφρά ψηφιδούχος ιλύς gs: ψηφιδούχες άμμοι (g)s: ελαφρώς ψηφιδούχες άμμοι

29 Άσκηση 3 Δίνονται οι ζυγίσεις για τέσσερα δείγματα ιζήματος τα οποία έχουν ληφθεί από την περιοχή της Κυλλήνης. Α) Να υπολογιστούν για τα δείγματα ιζήματος 1 και 2 τα % ποσοστά και τα αθροιστικά ποσοστά των τάξεων μεγέθους των κόκκων τους και να σχεδιαστούν οι αθροιστικές καμπύλες με χρήση αριθμητικής κλίμακας. Β) Να υπολογιστεί με τη γραφική μέθοδο το μέσο μέγεθος του κάθε δείγματος Γ) Να ταξινομηθούν και να ονομαστούν τα δείγματα 3, 4 σύμφωνα με τα τριγωνικά διαγράμματα κατά Folk

30 Για τη λύση στο ερώτημα (Β) Φ16: στην αθροιστική κοκκομετρική καμπύλη βρίσκουμε το 16 % στον άξονα των ποσοστών και αντιστοιχούμε στον άξονα των διαμέτρων την τιμή του σε (Ø) Αντίστοιχα για τα Φ50 και Φ84 Έπειτα εφαρμόζουμε τον τύπο και βρίσκουμε το μέσο μέγεθος σε μονάδες (Ø)

31 Για τη λύση στο ερώτημα (Γ) 1. Βρίσκουμε τα % ποσοστά για κάθε κάθε δείγμα 2. Επιλέγουμε τριγωνικό διάγραμμα (έχει ψηφίδες ή όχι?) 3. Υπολογίζουμε το αθροιστικό ποσοστό % που αντιστοιχεί σε κάθε κλάση. Δηλαδή, για τις ψηφίδες αθροίζουμε τα ποσοστά από (-4) (-1.5) Ø για την άμμο από (-1) (+3.5) Ø για τον πηλό από (+4) (+7) Ø για την άργιλο από (+8) (+10) Ø

32 παράδειγμα mm phi 1 % cum ,66-2, ,83-1, ,0850 0, , ,4-0,5 0,0966 0, ,1049 0, ,71 0,5 0,1544 0, ,5 1 0,3692 0, ,355 1,5 2,7605 6, ,25 2 8, , ,18 2,5 9, , , , , ,09 3,5 3,3505 8, , ,3033 3, , ,0442 4,5 1,4578 3, , ,9483 4, ,0221 5,5 1,4078 3, , ,9791 2, , ,8511 2, , ,5713 1, , , ,1345 0, , ,0862 0, ,7623 0,541432

33 παράδειγμα % πηλός 19, ,9376 άργιλος 1, , Σύνολο 21, Αθροίζουμε τα ποσοστά συμμετοχής για κάθε κλάση μεγέθους (πηλός, άργιλος, σύνολο) Βρίσκουμε την % συμμετοχή κάθε κλάσης και επομένως την αναλογία

34 παράδειγμα 4. Βρίσκουμε το ποσοστό της άμμου στην πλευρά Άργιλος-Άμμος και φέρουμε παράλληλη στον άξονα Άργιλος-Πηλός 5. Αθροίζουμε τα ποσοστά του Πηλού και της Αργίλου κι βρίσκουμε τη μεταξύ τους αναλογία (βλ. Προηγούμενη διαφάνεια) 6. Την πλοτάρουμε στην πλευρά Άργιλος-Πηλός. Θα πρέπει να βρούμε ένα σημείο 7. Ενώνουμε την κορυφή της Άμμου με το σημείο στην πλευρά Άργιλος-Πηλός 8. Το σημείο τομής των δύο ευθειών χαρακτηρίζει το πεδίο που ταξινομείται το δείγμα ΆΜΜΟΣ 10% Ποσοστό άμμου 90% S cs ms zs 50% sc sm sz C M Z S: άμμος zs: πηλούχος άμμος ms: ιλυούχος άμμος cs: αργιλούχος άμμος sz: αμμούχος πηλός sm: αμμούχος ιλύς sc: αμμούχος άργιλος Z: πηλός Μ: ιλύς C: άργιλος ΆΡΓΙΛΟΣ 2:1 Αναλογία Άργιλος/Πηλός 1:2 ΠΗΛΟΣ

35 S: άμμος zs: πηλούχος άμμος ms: ιλυούχος άμμος cs: αργιλούχος άμμος sz: αμμούχος πηλός sm: αμμούχος ιλύς sc: αμμούχος άργιλος Z: πηλός Μ: ιλύς C: άργιλος Άργιλος 66% 33% στο σύνολο άργιλος + πηλός στο σύνολο άργιλος + πηλός 66% 33% πηλός

36 G: ψηφίδες sg: αμμούχες ψηφίδες msg: ιλυούχες αμμούχες ψηφίδες mg: ιλυούχες ψηφίδες gs: ψηφιδούχος άμμος Gms: ψηφιδούχος ιλυούχος άμμος Gm: ψηφιδούχος ιλύς (g)s: ελαφριά ψηφιδούχος άμμος (g)ms: ελαφριά ψηφιδούχος ιλυούχος άμμος (g)m: ελαφριά ψηφιδούχος ιλύς ms: ιλυούχος άμμος sm: αμμούχος ιλύς S: άμμος Μ: ιλύς

6ο ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» «Θαλάσσια Ιζήματα»

6ο ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» «Θαλάσσια Ιζήματα» 6ο ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» «Θαλάσσια Ιζήματα» Με τι θα ασχοληθούμε Ταξινόμηση των ιζημάτων Ονοματολογία ιζημάτων Στατιστικές παράμετροι Χρήση τριγωνικών διαγραμμάτων Στατιστικές παράμετροι

Διαβάστε περισσότερα

ΩΚΕΑΝΟΓΡΑΦΙΑ. Πρακτική Άσκηση 4- Θεωρητικό Υπόβαθρο ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΚΛΙΜΑΤΟΛΟΓΙΑΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ & ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΩΚΕΑΝΟΓΡΑΦΙΑ. Πρακτική Άσκηση 4- Θεωρητικό Υπόβαθρο ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΚΛΙΜΑΤΟΛΟΓΙΑΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ & ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΩΚΕΑΝΟΓΡΑΦΙΑ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΚΛΙΜΑΤΟΛΟΓΙΑΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ & ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΩΚΕΑΝΟΓΡΑΦΙΑ Πρακτική Άσκηση 4- Θεωρητικό Υπόβαθρο Κοκκομετρική ανάλυση

Διαβάστε περισσότερα

ΘΑΛΑΣΣΙΑ ΙΖΗΜΑΤΑ_1 Ο ΣΚΛΗΡΟΣ ΔΙΣΚΟΣ ΤΟΥ ΠΑΓΚΟΣΜΙΟΥ ΩΚΕΑΝΟΥ

ΘΑΛΑΣΣΙΑ ΙΖΗΜΑΤΑ_1 Ο ΣΚΛΗΡΟΣ ΔΙΣΚΟΣ ΤΟΥ ΠΑΓΚΟΣΜΙΟΥ ΩΚΕΑΝΟΥ ΘΑΛΑΣΣΙΑ ΙΖΗΜΑΤΑ_1 Ο ΣΚΛΗΡΟΣ ΔΙΣΚΟΣ ΤΟΥ ΠΑΓΚΟΣΜΙΟΥ ΩΚΕΑΝΟΥ Χρονολόγιο HMV Challenger το 1873-1876 όπου χιλιάδες επιφανειακά δείγματα ιζημάτων συλλέχθηκαν από τα βάθη των ωκεανών και η σύστασή τους μελετήθηκε

Διαβάστε περισσότερα

Περιγραφική Στατιστική

Περιγραφική Στατιστική Περιγραφική Στατιστική Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Περιγραφική Στατιστική τεχνικές 3 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 0 / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΙΖΗΜΑΤΟΛΟΓΙΑ. Ενότητα 2: Κατάταξη ιζημάτων & ιζηματογενών πετρωμάτων Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

ΙΖΗΜΑΤΟΛΟΓΙΑ. Ενότητα 2: Κατάταξη ιζημάτων & ιζηματογενών πετρωμάτων Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας ΙΖΗΜΑΤΟΛΟΓΙΑ Ενότητα 2: Κατάταξη ιζημάτων & ιζηματογενών πετρωμάτων Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Σκοποί ενότητας Στην ενότητα αυτή περιγράφονται οι κύριες κατηγορίες ιζημάτων

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΟΜΟΙΟΓΕΝΕΙΑΣ ΔΕΙΓΜΑΤΩΝ ΑΡΠΑΓΗΣ ΚΑΙ ΛΟΓΙΣΜΙΚΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΟΚΚΟΜΕΤΡΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΑΠΟ ΤΗΝ ΠΑΡΑΚΤΙΑ ΠΕΡΙΟΧΗ ΤΗΣ ΜΥΤΙΛΗΝΗΣ

ΕΛΕΓΧΟΣ ΟΜΟΙΟΓΕΝΕΙΑΣ ΔΕΙΓΜΑΤΩΝ ΑΡΠΑΓΗΣ ΚΑΙ ΛΟΓΙΣΜΙΚΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΟΚΚΟΜΕΤΡΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΑΠΟ ΤΗΝ ΠΑΡΑΚΤΙΑ ΠΕΡΙΟΧΗ ΤΗΣ ΜΥΤΙΛΗΝΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΘΑΛΑΣΣΑΣ ΕΛΕΓΧΟΣ ΟΜΟΙΟΓΕΝΕΙΑΣ ΔΕΙΓΜΑΤΩΝ ΑΡΠΑΓΗΣ ΚΑΙ ΛΟΓΙΣΜΙΚΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΟΚΚΟΜΕΤΡΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΑΠΟ ΤΗΝ ΠΑΡΑΚΤΙΑ ΠΕΡΙΟΧΗ ΤΗΣ ΜΥΤΙΛΗΝΗΣ

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ ΕΔΑΦΟΜΗΧΑΝΙΚΗ

ΕΔΑΦΟΜΗΧΑΝΙΚΗ ΕΔΑΦΟΜΗΧΑΝΙΚΗ ΕΔΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 1 Εισαγωγή Ταξινόμηση εδαφών Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 1.1 ΕΔΑΦΟΜΗΧΑΝΙΚΗ Η Εδαφομηχανική ασχολείται με τη μελέτη της συμπεριφοράς του εδάφους

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών

Διαβάστε περισσότερα

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 205-206 ΔΙΔΑΣΚΟΝΤΕΣ ΔΗΜΗΤΡΗΣ ΚΑΛΛΙΒΩΚΑΣ, ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ ) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΑΣΚΗΣΗ Τα παρακάτω δεδομένα αναφέρονται στη

Διαβάστε περισσότερα

«γεωλογικοί σχηματισμοί» - «γεωϋλικά» όρια εδάφους και βράχου

«γεωλογικοί σχηματισμοί» - «γεωϋλικά» όρια εδάφους και βράχου «γεωλογικοί σχηματισμοί» - «γεωϋλικά» έδαφος (soil) είναι ένα φυσικό σύνολο ορυκτών κόκκων που μπορούν να διαχωριστούν με απλές μηχανικές μεθόδους (π.χ. ανακίνηση μέσα στο νερό) όλα τα υπόλοιπα φυσικά

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

ΩΚΕΑΝΟΓΡΑΦΙΑ. Δ ΕΞΑΜΗΝΟ Ακαδημαϊκό Έτος 2014-2015 ΤΑ ΘΑΛΑΣΣΙΑ ΙΖΗΜΑΤΑ. Βασίλης ΚΑΨΙΜΑΛΗΣ. Γεωλόγος-Ωκεανογράφος Κύριος Ερευνητής, ΕΛ.ΚΕ.Θ.Ε.

ΩΚΕΑΝΟΓΡΑΦΙΑ. Δ ΕΞΑΜΗΝΟ Ακαδημαϊκό Έτος 2014-2015 ΤΑ ΘΑΛΑΣΣΙΑ ΙΖΗΜΑΤΑ. Βασίλης ΚΑΨΙΜΑΛΗΣ. Γεωλόγος-Ωκεανογράφος Κύριος Ερευνητής, ΕΛ.ΚΕ.Θ.Ε. ΩΚΕΑΝΟΓΡΑΦΙΑ Δ ΕΞΑΜΗΝΟ Ακαδημαϊκό Έτος 2014-2015 ΤΑ ΘΑΛΑΣΣΙΑ ΙΖΗΜΑΤΑ Βασίλης ΚΑΨΙΜΑΛΗΣ Γεωλόγος-Ωκεανογράφος Κύριος Ερευνητής, ΕΛ.ΚΕ.Θ.Ε. Τηλ. Γραφείου: 22910 76378 Κιν.: 6944 920386 Email: kapsim@hcmr.gr

Διαβάστε περισσότερα

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε µε τη χρήση µιας εικοσαβάθµιας κλίµακας) παρουσιάζεται

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

ΙΖΗΜΑΤΟΛΟΓΙΑ. Ενότητα 5: Μηχανισμοί μεταφοράς ιζημάτων. Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

ΙΖΗΜΑΤΟΛΟΓΙΑ. Ενότητα 5: Μηχανισμοί μεταφοράς ιζημάτων. Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας ΙΖΗΜΑΤΟΛΟΓΙΑ Ενότητα 5: Μηχανισμοί μεταφοράς ιζημάτων Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η αναφορά της πηγής προέλευσης των διαφόρων

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

2.5. ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΔΑΦΩΝ

2.5. ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΔΑΦΩΝ 2.5. ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΔΑΦΩΝ 2.5.1. Εισαγωγή Το έδαφος περιέχει κόκκους διαφόρων μεγεθών και σε διάταξη που ποικίλλει. Από αυτή τη σύνθεση και τη δομή του εξαρτώνται οι μηχανικές του ιδιότητες,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ

ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ Εισαγωγή Όπως αναφέρθηκε στο Κεφάλαιο 1 υπάρχουν 154 υποψήφιοι που έχουν συµµετάσχει στις εξετάσεις των ετών 01 και 02. Για αυτούς γίνεται στο Κεφάλαιο 6 ξεχωριστή συγκριτική

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

ΙΖΗΜΑΤΟΛΟΓΙΚΕΣ ΕΡΕΥΝΕΣ ΣΤΟΥΣ ΚΥΡΙΟΤΕΡΟΥΣ ΑΙΓΙΑΛΟΥΣ ΤΗΣ ΑΝ ΡΟΥ

ΙΖΗΜΑΤΟΛΟΓΙΚΕΣ ΕΡΕΥΝΕΣ ΣΤΟΥΣ ΚΥΡΙΟΤΕΡΟΥΣ ΑΙΓΙΑΛΟΥΣ ΤΗΣ ΑΝ ΡΟΥ ΙΖΗΜΑΤΟΛΟΓΙΚΕΣ ΕΡΕΥΝΕΣ ΣΤΟΥΣ ΚΥΡΙΟΤΕΡΟΥΣ ΑΙΓΙΑΛΟΥΣ ΤΗΣ ΑΝ ΡΟΥ Αλίκη Αλεξούλη-Λειβαδίτη Τοµέας Γεωλογικών Επιστηµών, Σχολή Μηχ. Μεταλλείων-Μεταλλουργών, Εθνικό Μετσόβιο Πολυτεχνείο, Ηρώων Πολυτεχνείου 9,

Διαβάστε περισσότερα

Υλικά και τρόπος κατασκευής χωμάτινων φραγμάτων

Υλικά και τρόπος κατασκευής χωμάτινων φραγμάτων Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Υλικά και τρόπος κατασκευής χωμάτινων φραγμάτων

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΙΖΗΜΑΤΟΛΟΓΙΑ. Ενότητα 13: Επαναληπτικές ερωτήσεις μαθήματος & Εργαστηριακές ασκήσεις Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

ΙΖΗΜΑΤΟΛΟΓΙΑ. Ενότητα 13: Επαναληπτικές ερωτήσεις μαθήματος & Εργαστηριακές ασκήσεις Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας ΙΖΗΜΑΤΟΛΟΓΙΑ Ενότητα 13: Επαναληπτικές ερωτήσεις μαθήματος & Εργαστηριακές ασκήσεις Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι να τεθούν

Διαβάστε περισσότερα

Γιατί μετράμε την διασπορά;

Γιατί μετράμε την διασπορά; Γιατί μετράμε την διασπορά; Παράδειγμα Δίνεται το ετήσιο ποσοστό κέρδους δύο επιχειρήσεων για 6 χρόνια. Αν έπρεπε να επιλέξετε την μετοχή μιας εκ των 2 με κριτήριο το ποσοστό κέρδους αυτά τα 6 χρόνια.

Διαβάστε περισσότερα

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ

Διαβάστε περισσότερα

Ταξινόμηση Εδαφών. Costas Sachpazis, (M.Sc., Ph.D.) Διάρκεια: 7 Λεπτά. 20 δευτερόλεπτα

Ταξινόμηση Εδαφών. Costas Sachpazis, (M.Sc., Ph.D.) Διάρκεια: 7 Λεπτά. 20 δευτερόλεπτα Ταξινόμηση Εδαφών Costas Sachpazis, (M.Sc., Ph.D.) Διάρκεια: 7 Λεπτά. 20 δευτερόλεπτα 1 Στόχοι Η ανάπτυξη ενός συστηματικού τρόπου για την περιγραφή και ταξινόμηση των εδαφών, Η ομαδοποίηση των εδαφών

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσεων"

Περιγραφική Στατιστική. Π.Μ.Σ. Μαθηματικά των Υπολογιστών και των Αποφάσεων Περιγραφική Στατιστική Παράδειγμα Γίνεται μια μελέτη για τους τραυματισμούς στο μάτι (σοβαροί ή όχι τόσο σοβαροί) κατά τη διάρκεια αγώνων τέννις, squash, badminton και ρακέτας. Σοβαρός Τραυματισμός Επιπόλαιος

Διαβάστε περισσότερα

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας Κεφάλαιο 5 Οι δείκτες διασποράς 1 Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφικοί παράµετροι ή περιγραφικά µέτρα Τα περιγραφικά µέτρα διακρίνονται σε: µέτρα θέσης των στατιστικών δεδο- µένων ή παράµετροι κεντρικής τάσης µέτρα διασποράς µέτρα ή συντελεστές

Διαβάστε περισσότερα

8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 657

8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 657 8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 657 ΙΖΗΜΑΤΟΛΟΓΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΠΑΡΑΛΙΩΝ ΚΟΚΚΙΝΟ ΛΙΜΑΝΑΚΙ ΚΑΙ ΜΑΡΙΚΕΣ (ΠΕΡΙΟΧΗ ΡΑΦΗΝΑΣ) ΚΑΙ ΜΟΡΦΟΛΟΓΙΚΗ ΕΞΕΛΙΞΗ ΤΗΣ ΠΑΡΑΚΤΙΑΣ ΖΩΝΗΣ ΤΗΣ ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ

ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2000-2001 ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ Το τµήµα αυτό της έρευνας αναφέρεται στην Γ τάξη όλων των Ενιαίων Λυκείων του

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Λογιστικής & Χρηματοοικονομικής Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,

Διαβάστε περισσότερα

ΑΝΑΜΙΞΗ (ΣΥΝΘΕΣΗ) ΑΔΡΑΝΩΝ ΥΛΙΚΩΝ

ΑΝΑΜΙΞΗ (ΣΥΝΘΕΣΗ) ΑΔΡΑΝΩΝ ΥΛΙΚΩΝ Άσκηση 2 ΑΝΑΜΙΞΗ (ΣΥΝΘΕΣΗ) ΑΔΡΑΝΩΝ ΥΛΙΚΩΝ 2.1. Γενικά 2.2. Παράδειγμα 2.3. 1 η μέθοδος (διαδοχικών προσεγγίσεων) 2.4. 2 η μέθοδος (ελαχίστων τετραγώνων) 2.5. Άσκηση 1 2.6. Άσκηση 2 2.1. ΓΕΝΙΚΑ Κατά τη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΝΟΜΟΥ ΧΑΝΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΥΣ

ΚΕΦΑΛΑΙΟ 2 ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΝΟΜΟΥ ΧΑΝΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΥΣ ΚΕΦΑΛΑΙΟ 2 ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΝΟΜΟΥ ΧΑΝΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 21-22 ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΥΣ Το τμήμα αυτό της έρευνας αναφέρεται στην Γ τάξη όλων των Δημοσίων

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που

Διαβάστε περισσότερα

2. ΓΕΩΛΟΓΙΑ - ΝΕΟΤΕΚΤΟΝΙΚΗ

2. ΓΕΩΛΟΓΙΑ - ΝΕΟΤΕΚΤΟΝΙΚΗ 2. 2.1 ΓΕΩΛΟΓΙΑ ΤΗΣ ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ Στο κεφάλαιο αυτό παρουσιάζεται συνοπτικά το Γεωλογικό-Σεισμοτεκτονικό περιβάλλον της ευρύτερης περιοχής του Π.Σ. Βόλου - Ν.Ιωνίας. Η ευρύτερη περιοχή της πόλης του

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Πίνακας 1.1. Ελάχιστη ποσότητα δείγματος αδρανών (EN 933 1)

Πίνακας 1.1. Ελάχιστη ποσότητα δείγματος αδρανών (EN 933 1) 1 ΑΔΡΑΝΗ ΣΚΟΠΟΣ Σκοπός της άσκησης είναι η εξοικείωση των σπουδαστών με τις πειραματικές διαδικασίες που αφορούν στον έλεγχο ποιότητας αδρανών υλικών, με έμφαση σε εκείνες τις ιδιότητες που σχετίζονται

Διαβάστε περισσότερα

ΙΖΗΜΑΤΟΛΟΓΙΚΗ ΚΑΙ ΠΑΛΑΙΟΓΕΩΓΡΑΦΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΥΠΟΛΕΚΑΝΗΣ ΤΟΥ ΠΛΑΤΑΝΟΥ ΣΤΗΝ ΔΥΤΙΚΗ ΚΡΗΤΗ

ΙΖΗΜΑΤΟΛΟΓΙΚΗ ΚΑΙ ΠΑΛΑΙΟΓΕΩΓΡΑΦΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΥΠΟΛΕΚΑΝΗΣ ΤΟΥ ΠΛΑΤΑΝΟΥ ΣΤΗΝ ΔΥΤΙΚΗ ΚΡΗΤΗ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΙΖΗΜΑΤΟΛΟΓΙΑΣ ΙΖΗΜΑΤΟΛΟΓΙΚΗ ΚΑΙ ΠΑΛΑΙΟΓΕΩΓΡΑΦΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΥΠΟΛΕΚΑΝΗΣ ΤΟΥ ΠΛΑΤΑΝΟΥ ΣΤΗΝ ΔΥΤΙΚΗ ΚΡΗΤΗ ΑΒΡΑΑΜ ΖΕΛΗΛΙΔΗΣ ΚΑΘΗΓΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΓΙΑΧΑΛΗ

Διαβάστε περισσότερα

Κοκκομετρική Διαβάθμιση Αδρανών

Κοκκομετρική Διαβάθμιση Αδρανών Κοκκομετρική Διαβάθμιση Αδρανών Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) 1 Βασικά Συστατικά Σκυροδέματος + +??? Χημικώς Αδρανή Πρόσθετα Πρόσμικτα Εισαγωγή Ιδιαίτερα σημαντικός

Διαβάστε περισσότερα

ΓΕΝΙΚΑ. "Δομικά Υλικά" Παραδόσεις του Αναπλ. Καθηγητή Ξ. Σπηλιώτη

ΓΕΝΙΚΑ. Δομικά Υλικά Παραδόσεις του Αναπλ. Καθηγητή Ξ. Σπηλιώτη ΓΕΝΙΚΑ Κατά τη χρησιμοποίηση της άμμου ή των σκύρων για την παρασκευή διαφόρων σύνθετων υλικών (κονιαμάτων ή σκυροδεμάτων), ενδιαφέρον παρουσιάζει όχι το μέγεθος των κόκκων, αλλά το ποσοστό των διαφορετικού

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη, 2014-2015 Εµπειρικές Στατιστικές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ. 4.1 Κατανοµή γραπτού µέσου όρου ετήσιων πληθυσµών

ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ. 4.1 Κατανοµή γραπτού µέσου όρου ετήσιων πληθυσµών ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ Εισαγωγή Στο κεφάλαιο 4 υπολογίζονται τα κυριότερα στατιστικά µέτρα θέσης και µεταβλητότητας, κατασκευάζονται ιστογράµµατα συχνοτήτων και θηκογράµµατα για

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $) Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή

Διαβάστε περισσότερα

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Σύνολα Δεδομένων - Είδη Ποσοτικής Έρευνας: Παράλογες Ιδέες Γονέων (Δειγματοληπτική)

Διαβάστε περισσότερα

Κόσκινο κατά ASTM ή διάσταση

Κόσκινο κατά ASTM ή διάσταση Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Φυσικά χαρακτηριστικά εδαφών. Ημερομηνία: Δευτέρα 18 Οκτωβρίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο 3.1 ΑΝΑΛΥΣΗ ΒΑΘΜΟΛΟΓΙΑΣ Μαθήµατα γενικής παιδείας Ιστορία. Α. Σύνολο νοµού Αργολίδας

ΚΕΦΑΛΑΙΟ 3 ο 3.1 ΑΝΑΛΥΣΗ ΒΑΘΜΟΛΟΓΙΑΣ Μαθήµατα γενικής παιδείας Ιστορία. Α. Σύνολο νοµού Αργολίδας ΚΕΦΑΛΑΙΟ 3 ο 3.1 ΑΝΑΛΥΣΗ ΒΑΘΜΟΛΟΓΙΑΣ 3.1.1 Μαθήµατα γενικής παιδείας. 3.1.1.1 Ιστορία Α. Σύνολο νοµού Αργολίδας Στο µάθηµα της ιστορίας εξετάσθηκαν 862 µαθητές. Από τα αποτελέσµατα για το σύνολο του νοµού

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΠΑΝΤΕΛΑΚΗΣ ΔΗΜΗΤΡΙΟΣ. Δρ. Γεωπόνος Εγγείων Βελτιώσεων, Εδαφολογίας και Γεωργικής Μηχανικής Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης

ΠΑΝΤΕΛΑΚΗΣ ΔΗΜΗΤΡΙΟΣ. Δρ. Γεωπόνος Εγγείων Βελτιώσεων, Εδαφολογίας και Γεωργικής Μηχανικής Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης ΠΑΝΤΕΛΑΚΗΣ ΔΗΜΗΤΡΙΟΣ Δρ. Γεωπόνος Εγγείων Βελτιώσεων, Εδαφολογίας και Γεωργικής Μηχανικής Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης Εξάμηνο Διδασκαλίας: Ε (Βασικές έννοιες για το έδαφος) Τμήμα Τεχνολόγων

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Στατιστική Ι Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Παρασκευή, 30 Νοεμβρίου 2012 Στατιστική Ι Έννοιες - Κλειδιά Μεταβλητότητα Εύρος (range) Εκατοστημόρια

Διαβάστε περισσότερα

MIKΡΟΜΕΡΗ ΣΤΕΡΕΑ ΚΟΚΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ

MIKΡΟΜΕΡΗ ΣΤΕΡΕΑ ΚΟΚΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ Άσκηση 1 MIKΡΟΜΕΡΗ ΣΤΕΡΕΑ ΚΟΚΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ 1.1. Γενικά περί σωματιδίων 1.2. Σειρές προτύπων κοσκίνων 1.3. Κοκκομετρική ανάλυση 1.4. Υπολογισμοί από κοκκομετρικές αναλύσεις 1.5. Εργαστηριακή άσκηση

Διαβάστε περισσότερα

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια

Διαβάστε περισσότερα

Μάθηµα 3 ο. Περιγραφική Στατιστική

Μάθηµα 3 ο. Περιγραφική Στατιστική Μάθηµα 3 ο Περιγραφική Στατιστική ΗΣτατιστικήείναι Μια τυποποιηµένη σειρά αναλυτικών µεθόδων, οι οποίες χρησιµοποιούνται από τον εκάστοτε ερευνητή για την ανάλυση των διαθέσιµων δεδοµένων. Υπάρχουν δύο

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Στατιστική ανάλυση του γεωχηµικού δείγµατος µας δίνει πληροφορίες για τον γεωχηµικό πληθυσµό που µελετάµε. Συνυπολογισµός σφαλµάτων Πειραµατικά

Διαβάστε περισσότερα

ΟΙΚΟΣΥΣΤΗΜΑΤΑ ΤΗΣ ΓΗΣ

ΟΙΚΟΣΥΣΤΗΜΑΤΑ ΤΗΣ ΓΗΣ Κεφάλαιο 5 ο : Οικοσυστήµατα ΟΙΚΟΣΥΣΤΗΜΑΤΑ ΤΗΣ ΓΗΣ Η µελέτη των αλληλεπιδράσεων µεταξύ των µορφών ζωής και του περιβάλλοντός τους είναι η επιστήµη της οικολογίας. Το οικολογικό σύστηµα των οργανισµών και

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον

Διαβάστε περισσότερα

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική)

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική) Στατιστική Ι 9 η Διάλεξη (Περιγραφική Στατιστική) 1 2 Πληθυσμός ή στατιστικός πληθυσμός Ονομάζεται η κατανομή των τιμών μιας τ.μ., δηλαδή η κατανομή των τιμών που παίρνει ένα χαρακτηριστικό μιας ομάδας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

ΜΑΚΡΟΣΚΟΠΙΚΗ ΑΝΑΓΝΩΡΙΣΗ ΠΕΤΡΩΜΑΤΩΝ

ΜΑΚΡΟΣΚΟΠΙΚΗ ΑΝΑΓΝΩΡΙΣΗ ΠΕΤΡΩΜΑΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ MΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝ. ΓΕΩΛΟΓΙΑΣ & Υ ΡΟΓΕΩΛΟΓΙΑΣ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9, 157 80 ΖΩΓΡΑΦΟΥ, ΑΘΗΝΑ NATIONAL TECHNICAL

Διαβάστε περισσότερα

Βασικές μέθοδοι στρωματογραφίας

Βασικές μέθοδοι στρωματογραφίας Βασικές μέθοδοι στρωματογραφίας ΛΙΘΟΣΤΡΩΜΑΤΟΓΡΑΦΙΑ ΒΙΟΣΤΡΩΜΑΤΟΓΡΑΦΙΑ ΧΡΟΝΟΣΤΡΩΜΑΤΟΓΡΑΦΙΑ Μαγνητοστρωματογραφία Σεισμική στρωματογραφία ΣΥΣΧΕΤΙΣΜΟΣ Παραλληλισμός στρωμάτων από περιοχή σε περιοχή με στόχο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

ΑΔΡΑΝΗ. Σημαντικός ο ρόλος τους για τα χαρακτηριστικά του σκυροδέματος με δεδομένο ότι καταλαμβάνουν το 60-80% του όγκου του.

ΑΔΡΑΝΗ. Σημαντικός ο ρόλος τους για τα χαρακτηριστικά του σκυροδέματος με δεδομένο ότι καταλαμβάνουν το 60-80% του όγκου του. ΑΔΡΑΝΗ Κοκκώδη Υλικά που προέρχονται από φυσική κατάτμηση ή τεχνητή θραύση φυσικών πετρωμάτων. Είναι ανόργανα υλικά και δεν αντιδρούν χημικά (πρακτικά στο σκυρόδεμα η επιφάνειά τους αντιδρά με το σκυρόδεμα.

Διαβάστε περισσότερα

ΣΙΔΗΡΟΥΧΑ & ΚΛΑΣΤΙΚΑ ΙΖΗΜΑΤΟΓΕΝΗ ΙΖΗΜΑΤΑ. Αριάδνη Αργυράκη

ΣΙΔΗΡΟΥΧΑ & ΚΛΑΣΤΙΚΑ ΙΖΗΜΑΤΟΓΕΝΗ ΙΖΗΜΑΤΑ. Αριάδνη Αργυράκη 1 ΣΙΔΗΡΟΥΧΑ & ΚΛΑΣΤΙΚΑ ΙΖΗΜΑΤΟΓΕΝΗ ΙΖΗΜΑΤΑ Αριάδνη Αργυράκη Περιεχόμενα 2 Χαρακτηριστικά και ορυκτολογία σιδηρούχων ιζημάτων Διεργασίες FeR και SR Ταινιωτοί σιδηρούχοι σχηματισμοί (BIF) Λεπτόκοκκα κλαστικά

Διαβάστε περισσότερα

«γεωλογικοί σχηματισμοί» όρια εδάφους και βράχου

«γεωλογικοί σχηματισμοί» όρια εδάφους και βράχου «γεωλογικοί σχηματισμοί» έδαφος (soil) είναι ένα φυσικό σύνολο ορυκτών κόκκων που μπορούν να διαχωριστούν με απλές μηχανικές μεθόδους (π.χ. ανακίνηση μέσα στο νερό) όρια εδάφους και βράχου όλα τα υπόλοιπα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Εισαγωγή Στο Κεφάλαιο 8 υπολογίζονται και συγκρίνονται τα ποσοστά επιλογής του µαθήµατος στους ετήσιους πληθυσµούς, ανά φύλο και κατεύθυνση. Υπολογίζεται

Διαβάστε περισσότερα

ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ Ι ΜΕΛΕΤΗ ΚΑΤΑΣΚΕΥΗ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ βασική απαίτηση η απόκτηση της αναγκαίας γνώσης της συμπεριφοράς του «Εδάφους Υπεδάφους» (γεωλογικοί σχηματισμοί γεωϋλικά) από πλευράς

Διαβάστε περισσότερα

επ. Κωνσταντίνος Π. Χρήστου

επ. Κωνσταντίνος Π. Χρήστου 1 2 3 1 2 2 0 3 3 4 6 5 10 6 11 7 7 8 6 9 3 10 2 4 Εάν έχουµε οµαδοποιηµένη µεταβλητή τότε είναι το σηµείο τοµής των ευθυγράµµων τµηµάτων τα οποία ορίζονται από α) ΑΒ, όπου Α το άνω δεξί άκρο της κλάσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-07 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

E HNIKO A NOIKTO ANE I THMIO Ï Ó ÙË Ë. fiìô. ÂÒÚÁÈÔ ºÂÚÂÓÙ ÓÔ ı Ó ÛÈÔ ÂÔ ÒÚÔ ÂÒÚÁÈÔ apple ıâô ÒÚÔ. À ÚfiÛÊ ÈÚ

E HNIKO A NOIKTO ANE I THMIO Ï Ó ÙË Ë. fiìô. ÂÒÚÁÈÔ ºÂÚÂÓÙ ÓÔ ı Ó ÛÈÔ ÂÔ ÒÚÔ ÂÒÚÁÈÔ apple ıâô ÒÚÔ. À ÚfiÛÊ ÈÚ E HNIKO A NOIKTO ANE I THMIO Ï Ó ÙË Ë fiìô µ' ' ÂÒÚÁÈÔ ºÂÚÂÓÙ ÓÔ ı Ó ÛÈÔ ÂÔ ÒÚÔ ÂÒÚÁÈÔ apple ıâô ÒÚÔ À ÚfiÛÊ ÈÚ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Σχολή Θετικών Επιστηµών και Τεχνολογίας Πρόγραµµα Σπουδών ΣΠΟΥ

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΦΑΝΕΙΑΣ ΔΟΝΟΥΜΕΝΩΝ ΚΟΣΚΙΝΩΝ (ΘΕΩΡΙΑ)

ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΦΑΝΕΙΑΣ ΔΟΝΟΥΜΕΝΩΝ ΚΟΣΚΙΝΩΝ (ΘΕΩΡΙΑ) ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΦΑΝΕΙΑΣ ΔΟΝΟΥΜΕΝΩΝ ΚΟΣΚΙΝΩΝ (ΘΕΩΡΙΑ) 1 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΕΡΓΑΣΙΑΣ ΚΟΣΚΙΝΙΣΗΣ 2 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΟΣΚΙΝΙΣΗΣ 3 ΑΠΟΔΟΣΗ ΚΟΣΚΙΝΙΣΗΣ ΣΥΝΑΡΤΗΣΕΙ ΜΗΚΟΥΣ ΚΟΣΚΙΝΟΥ 4 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΟΣΚΙΝΙΣΗΣ Συμπεριφορά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Διοίκησης Επιχειρήσεων (Α.Ν.) Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Copyright 2009 Cengage Learning 4.1 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Δείκτες Κεντρικής Θέσης [Αριθμητικός] Μέσος, Διάμεσος, Επικρατούσα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

ΓΕΩΜΟΡΦΟΛΟΓΙΚΗ ΑΠΟΤΥΠΩΣΗ ΤΟΥ ΛΙΜΕΝΑ ΤΗΣ ΜΥΤΙΛΗΝΗΣ

ΓΕΩΜΟΡΦΟΛΟΓΙΚΗ ΑΠΟΤΥΠΩΣΗ ΤΟΥ ΛΙΜΕΝΑ ΤΗΣ ΜΥΤΙΛΗΝΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΘΑΛΑΣΣΑΣ ΓΕΩΜΟΡΦΟΛΟΓΙΚΗ ΑΠΟΤΥΠΩΣΗ ΤΟΥ ΛΙΜΕΝΑ ΤΗΣ ΜΥΤΙΛΗΝΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΚΑΡΑΒΟΥ ΑΥΓΟΥΣΤΙΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΧΑΣΙΩΤΗΣ ΘΩΜΑΣ ΜΥΤΙΛΗΝΗ,

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. Κύκλοι Βαρέων Μετάλλων. Βαρέα Μέταλλα στα Παράκτια Συστήματα

ΚΕΦΑΛΑΙΟ 3. Κύκλοι Βαρέων Μετάλλων. Βαρέα Μέταλλα στα Παράκτια Συστήματα ΚΕΦΑΛΑΙΟ 3 Κύκλοι Βαρέων Μετάλλων Βαρέα Μέταλλα στα Παράκτια Συστήματα Ο όρος βαρέα μέταλλα (heavy metals, trace metals, toxic metals, trace elements) χρησιμοποιείται συχνά για να περιγράψει τη παρουσία

Διαβάστε περισσότερα

ΘΑΛΑΣΣΙΑ ΓΕΩΧΗΜΕΙΑ- ΓΕΩΧΗΜΕΙΑ ΙΖΗΜΑΤΩΝ. Αριάδνη Αργυράκη

ΘΑΛΑΣΣΙΑ ΓΕΩΧΗΜΕΙΑ- ΓΕΩΧΗΜΕΙΑ ΙΖΗΜΑΤΩΝ. Αριάδνη Αργυράκη 1 ΘΑΛΑΣΣΙΑ ΓΕΩΧΗΜΕΙΑ- ΓΕΩΧΗΜΕΙΑ ΙΖΗΜΑΤΩΝ Αριάδνη Αργυράκη Περιεχόμενα 2 1. Σύσταση του θαλάσσιου νερού και παράγοντες ελέγχου συγκέντρωσης στοιχείων 2. Συντηρητικά, ανακυκλώσιμα (θρεπτικά), προσροφημένα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα