convk. c i c i t i. c i u i c < c i φ i (F (ω)) c < ( ) c i m i < i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "convk. c i c i t i. c i u i c < c i φ i (F (ω)) c < ( ) c i m i < i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1"

Transcript

1 Ολοκλήρωση συναρτήσεων με τιμές σε χώρους Baach Αν (Ω, S, µ είναι χώρος μέτρου και (X, είναι χώρος Baach, μια συνάρτηση F : Ω X θα λέγεται ασθενώς μετρήσιμη (αντίστοιχα, ασθενώς ολοκληρώσιμη αν για κάθε φ X η συνάρτηση φ F : Ω C είναι μετρήσιμη (αντίστοιχα, ολοκληρώσιμη. Λέμε ότι το ολοκλήρωμα F dµ υπάρχει αν υπάρχει ένα στοιχείο y X ώστε ( δηλ. φ φ(y = F (ωdµ(ω = φ(f (ωdµ(ω φ(f (ωdµ(ω για κάθε φ X. Ας σημειώσουμε ότι, αν το F dµ υπάρχει, τότε είναι μοναδικό, γιατί αν ένα y X ικανοποιεί φ(y = φ(f (ωdµ(ω για κάθε φ X τότε φ(y = φ(y για κάθε φ X και συνεπώς y = y από το Θεώρημα Hah-Baach. Θεώρημα 1 Εστω Q συμπαγής χώρος Hausdorff (π.χ. συμπαγής μετρικός, X χώρος Baach και µ ένα κανονικό μέτρο Borel πιθανότητας στον Q. Για κάθε συνεχή συνάρτηση F : Q X το ολοκλήρωμα F dµ υπάρχει και ανήκει στην κλειστή κυρτή θήκη του συνόλου τιμών F (Q της F. Επιπλέον ισχύει η ανισότητα F (ωdµ(ω F (ω dµ(ω (γνωστή και ως «ανισότητα Mikowski για ολοκληρώματα». Απόδειξη Θεωρούμε τον X ως πραγματικό χώρο Baach. Κατ αρχήν κάθε συνεχής συνάρτηση F : Q X είναι ασθενώς µ-ολοκληρώσιμη, αφού για κάθε φ X η φ F : Q R είναι συνεχής, άρα µ-ολοκληρώσιμη. Γράφουμε H = cov(f (Q. Πρέπει να δείξουμε ότι υπάρχει ένα στοιχείο y H ώστε φ(y = φ(f (ωdµ(ω ( για κάθε φ X. Η ιδέα είναι η ακόλουθη: Αν φ X, ο αριθμός m := φ(f (ωdµ(ω είναι η µ-μέση τιμή της φ F (το µ είναι μέτρο πιθανότητας άρα ανήκει στην κυρτή θήκη του συνόλου φ(f (Q των τιμών της φ F. Υπάρχουν λοιπόν t 1 = φ(f (ω 1, t 2 = φ(f (ω 2 και λ [0, 1] ώστε m = λt 1 + (1 λt 2. Δηλαδή φ(f (ωdµ(ω = λt 1 + (1 λt 2 = λφ(f (ω 1 + (1 λφ(f (ω 2 = φ(λf (ω 1 + (1 λf (ω 2 αφού η φ είναι γραμμική. Βρήκαμε λοιπόν ένα στοιχείο y φ = λf (ω 1 + (1 λf (ω 2 του cov(f (Q ώστε φ(f (ωdµ(ω = φ(y φ. Θα δείξουμε ότι για κάθε πεπερασμένο σύνολο L X υπάρχει ένα y L H που ικανοποιεί την ( για κάθε φ L ταυτόχρονα. 1

2 Και τέλος με ένα επιχείρημα συμπάγειας θα δείξουμε ότι υπάρχει ένα y H που ικανοποιεί την ( για κάθε φ X ταυτόχρονα. Εστω λοιπόν L = {φ 1,..., φ } X. Ονομάζω Φ την γραμμική απεικόνιση y Φ(y = (φ 1 (y,..., φ (y : X R και θέτω K = Φ(F (Q. Είναι ένα συμπαγές υποσύνολο του R (αφού η Φ F είναι συνεχής και το Q συμπαγές. Ορίζω m i := φ i (F (ωdµ(ω, 1 i και m := (m 1,..., m R. Ισχυρισμός Το m ανήκει στην κυρτή θήκη covk του K. Απόδειξη Εστω (t 1,..., t / covk. Υπάρχει τότε μια γραμμική μορφή ψ : R R και ένα c R που τα διαχωρίζει, δηλαδή ψ(u 1,..., u c < ψ(t 1,..., t για κάθε (u 1,..., u covk. Ξέρουμε όμως ότι η γραμμική μορφή ψ είναι της μορφής ψ(x 1,..., x = c i x i (όπου (x 1,..., x R για κατάλληλο (c 1,..., c R, οπότε c i u i c < c i t i για κάθε (u 1,..., u covk. Επομένως, για κάθε ω Q, εφόσον Φ(F (ω = (φ 1 (F (ω,..., φ (F (ω K, έχουμε c i φ i (F (ω c < c i t i. και ολοκληρώνοντας ως προς το μέτρο πιθανότητας µ, ( ( c i φ i (F (ω dµ(ω cµ(k < c i t i µ(k Δείξαμε λοιπόν ότι covk. δηλαδή c i c i m i < φ i (F (ωdµ(ω < c i t i. c i t i, επομένως (m 1,..., m (t 1,..., t, άρα (m 1,..., m Αφού m covk, υπάρχουν ω 1,... ω m Q και λ 1,... λ m 0 με λ k = 1 ώστε m = λk Φ(F (ω k. Αλλά η Φ είναι γραμμική, άρα m = Φ( λ k F (ω k. Βρήκαμε λοιπόν ένα y L := λk F (ω k covf (Q = H ώστε m = Φ(y L, δηλαδή (m 1,..., m = (φ 1 (y L,..., φ (y L. 2

3 Με άλλα λόγια, το y L H ικανοποιεί την ( για κάθε φ L. Δείξαμε λοιπόν ότι για κάθε πεπερασμένο σύνολο L X το σύνολο E L := {y H : φ(y = φ F dµ για κάθε φ L} είναι μη κενό, και είναι εύκολο να δει κανείς ότι είναι κλειστό (επειδή οι φ X είναι συνεχείς. Παρατηρούμε τώρα ότι η οικογένεια {E L : L X πεπερασμένο} έχει την ιδιότητα της πεπερασμένης τομής: πράγματι, αν L 1,... L m είναι πεπερασμένα υποσύνολα του X, η τομή τους m E L i είναι μη κενή, γιατί ισούται με E L όπου L = m L i, πεπερασμένο. Επειδή το σύνολο H είναι συμπαγές (από το θεώρημα του Mazur έπεται ότι η τομή {EL : L X πεπερασμένο} δεν είναι κενή. Εχουμε τελειώσει, αφού ένα y X που ανήκει στην τομή αυτή ανήκει στην κλειστή κυρτή θήκη H των τιμών F (Q της F και ικανοποιεί φ(y = φ F dµ για κάθε φ X, είναι δηλαδή το ζητούμενο ολοκλήρωμα F dµ. Για την τελευταία ανισότητα, παρατηρούμε ότι αν y = F dµ, τότε για κάθε φ X έχουμε φ(y = φ(f (ωdµ(ω φ(f (ω dµ(ω φ F (ω dµ(ω (από τον ορισμό της φ και συνεπώς sup{ φ(y : φ X, φ 1} F (ω dµ(ω. Ομως από το Θεώρημα Hah - Baach ξέρουμε ότι sup{ φ(y : φ X, φ 1} = y, οπότε έχουμε δείξει ότι F (ωdµ(ω = y F (ω dµ(ω. Θεώρημα 2 (Mazur Αν (X, είναι χώρος Baach και K X είναι -συμπαγές, τότε η κλειστή κυρτή θήκη cov(k του K είναι -συμπαγής. Απόδειξη Η ιδέα είναι η ακόλουθη: αφού το K είναι συμπαγές υποσύνολο μετρικού χώρου, είναι ολικά φραγμένο, δηλαδή «προσεγγίζεται» από ένα πεπερασμένο σύνολο K 1. Η κυρτή θήκη H 1 του πεπερασμένου αυτού συνόλου φαίνεται εύκολα ότι είναι συμπαγής, άρα ολικά φραγμένη. Τέλος, η κυρτή θήκη H = cov(k του K «προσεγγίζεται» από την κυρτή θήκη H 1 του K 1, άρα είναι και αυτή ολικά φραγμένη. 3

4 Αναλυτικά: Για κάθε ɛ > 0 το K καλύπτεται από πεπερασμένο πλήθος ανοικτές μπάλες B(x 1, ɛ/2,..., B(x, ɛ/2. Επομένως, αν ονομάσουμε K 1 το (πεπερασμένο σύνολο των κέντρων {x 1,..., x }, έχουμε K K 1 + B(0, ɛ/2 (* (κάθε y K ανήκει σε κάποια B(x k, ɛ/2 άρα y = x k + (y x k K 1 + B(0, ɛ/2. Παρατηρούμε τώρα ότι κάθε στοιχείο x H «προσεγγίζεται» από στοιχεία της κυρτής θήκης H 1 := cov(k 1 του K 1. Πράγματι, το x είναι κυρτός συνδυασμός κάποιων στοιχείων του K: υπάρχει m N και y 1,..., y m K ώστε x = m m c i y i, όπου c i 0 και c i = 1. Ομως κάθε y i K είναι ɛ/2-κοντά σε κάποιο z i K 1, από την (. Επεται ότι το x είναι ɛ/2-κοντά στο z = m c i z i που ανήκει στο cov(k 1 = H 1 : m c i z i Δείξαμε λοιπόν ότι m c i y i ( m m ɛ c i z i y i < c i 2 = ɛ 2. H H 1 + B(0, ɛ/2. Ομως, επειδή το K 1 είναι πεπερασμένο σύνολο, η κυρτή του θήκη είναι συμπαγής. Πράγματι, κάθε y H 1 είναι κυρτός συνδυασμός των συγκεκριμένων {x 1,..., x }, υπάρχουν δηλαδή λ 1,..., λ μη αρνητικά με λ k = 1 ώστε y = k λ kx k. Δηλαδή το H 1 είναι η εικόνα ψ(s του συνόλου S := {(λ 1,..., λ R : λ i 0, λ k = 1} μέσω της απεικόνισης ψ : R X : (λ 1,..., λ k λ kx k. Αλλά το S είναι κλειστό και φραγμένο υποσύνολο του R, άρα είναι συμπαγές, και η ψ είναι συνεχής συνάρτηση, άρα το H 1 = ψ(s είναι συμπαγές υποσύνολο του X. Συνεπώς το H 1 είναι ολικά φραγμένο: υπάρχει ένα πεπερασμένο σύνολο K 2 X ώστε Τότε όμως H 1 K 2 + B(0, ɛ/2. H K 2 + B(0, ɛ (για κάθε x H υπάρχει y H 1 ώστε x y < ɛ/2 και για το y υπάρχει u K 2 ώστε y u < ɛ/2, άρα x u < ɛ πράγμα που σημαίνει ότι το H είναι ολικά φραγμένο. Κατά συνέπεια η κλειστή του θήκη είναι συμπαγής. Για να ολοκληρώσουμε συναρτήσεις όπως η t f(tg t g L p (R, χρειαζόμαστε μια επέκταση του Θεωρήματος 1: : R L p (R (όπου f L 1 (R και Θεώρημα 3 Εστω X χώρος Baach, Ω τοπικά συμπαγής χώρος Hausdorff (π.χ. Ω = R και µ ένα κανονικό μέτρο Borel στον Ω. Για κάθε L 1 -συνάρτηση f : Ω C και κάθε συνεχή και φραγμένη συνάρτηση G : Ω X το ολοκλήρωμα fgdµ υπάρχει και ανήκει στην κλειστή γραμμική θήκη του συνόλου τιμών της G. Επιπλέον ισχύει η ανισότητα f(ωg(ωdµ(ω sup G(ω X f(ω dµ(ω. X ω 4

5 Απόδειξη Παρατηρούμε ότι η συνάρτηση F : ω f(ωg(ω : Ω X είναι ασθενώς ολοκληρώσιμη, εφόσον για κάθε φ X η συνάρτηση φ F : Ω C : ω f(ωφ(g(ω είναι ολοκληρώσιμη, καθώς είναι γινόμενο μιας ολοκληρώσιμης (της f και μιας συνεχούς και φραγμένης (της φ G. Τώρα, εφόσον f L 1 (Ω, µ, υπάρχει ακολουθία συνεχών συναρτήσεων f : Ω C με συμπαγή φορέα, έστω Q := suppf, ώστε f f 1 0. Οι συναρτήσεις F : ω µ(q f (ωg(ω : Q X είναι συνεχείς, με συμπαγές πεδίο ορισμού, το μέτρο ν = 1 µ(q µ είναι μέτρο πιθανότητας στον Q (θυμίζω ότι µ(q < συνεπώς από το Θεώρημα 1 το ολοκλήρωμα f (ωg(ωdµ(ω = F (ωdν (ω υπάρχει στον X και ανήκει στην κλειστή κυρτή θήκη του συνόλου {F (ω : ω Q }. Ομως cov{f (ω : ω Q } spa{g(ω : ω Q } spa{g(ω : ω Ω} και συνεπώς για κάθε N το ολοκλήρωμα f (ωg(ωdµ(ω ανήκει στην κλειστή γραμμική θήκη spa{g(ω : ω Ω}. Ισχυρισμός Η ακολουθία (y όπου y = f Gdµ είναι βασική στον X. Πράγματι, εφόσον η G είναι φραγμένη, υπάρχει M ώστε G(ω X M για κάθε ω Ω, οπότε έχουμε f Gdµ f m Gdµ f (ωg(ω f m (ωg(ω X dµ(ω X = f (ω f m (ω G(ω X dµ(ω M f (ω f m (ω dµ(ω αλλά η (f είναι βασική στον L 1 (Ω, µ, οπότε δείξαμε ότι η (y είναι βασική στον X. Εστω y = lim y. Για κάθε φ X έχουμε ( φ(y = lim φ(y = lim φ = lim = φ(f (ωg(ωdµ(ω = lim f(ωφ(g(ωdµ(ω, f (ωg(ωdµ(ω f (ωφ(g(ωdµ(ω γιατί f (ωφ(g(ωdµ(ω f(ωφ(g(ωdµ(ω M f f 1 0. Δείξαμε λοιπόν ότι υπάρχει ένα y X ώστε για κάθε φ X να έχουμε φ(y = f(ωφ(g(ωdµ(ω = φ(f(ωg(ωdµ(ω. Επομένως, το f Gdµ υπάρχει και ισούται με y = lim κάθε y ανήκει στην spa{g(ω : ω Ω}. y, άρα ανήκει στην spa{g(ω : ω Ω}, αφού 5

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine. 8 Έστω (, ) 4 Ασθενείς τοπολογίες σε χώρους με νόρμα 4. θεωρήματα Mazur, Alaoglou, Goldste. χώρος με νόρμα. Υπενθυμίζουμε ότι η ασθενής τοπολογία T του έχει ως βάση ( ανοικτών ) περιοχών του όλα τα σύνολα

Διαβάστε περισσότερα

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)].

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)]. 3 Ασκήσεις ) Έστω διανυσματικός χώρος, C κυρτό και C. (α) Αποδείξτε ότι τα ακόλουθα είναι ισοδύναμα: (ι) e( C) = +,(ιι), = = και (ιιι) Το σύνολο C \{ } είναι κυρτό. (β) Επίσης αποδείξτε ότι αν e( C) και

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για

Διαβάστε περισσότερα

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη 94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4.2 Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

Ενα δεύτερο μάθημα στις πιθανότητες Περιεχόμενα Μέρος I Γνώσεις Θεωρίας Μέτρου 1 1 σ-άλγεβρες 3 1.1 σ-άλγεβρες 3 1.2 Παραγόμενη σ-άλγεβρα 5 1.3 Τα σύνολα Borel 6 Ασκήσεις 7 2 Μέτρα 9 2.1 Μέτρα σε μετρήσιμο

Διαβάστε περισσότερα

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ). Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:

Διαβάστε περισσότερα

EukleÐdeiec emfuteôseic: ˆnw frˆgmata

EukleÐdeiec emfuteôseic: ˆnw frˆgmata EukleÐdeiec emfuteôseic: ˆnw frˆgmata Εστω f : X Y μια εμφύτευση του μετρικού χώρου (X, ρ) στο χώρο με νόρμα (Y, ). Η παραμόρφωση της f ορίζεται ως εξής: f(x) f(y) ρ(x, y) dist(f) = sup sup x y ρ(x, y)

Διαβάστε περισσότερα

Το Θεώρημα Stone - Weierstrass

Το Θεώρημα Stone - Weierstrass Το Θεώρημα Stone - Weierstrass Θεώρημα 1 Έστω ¹ X συμπαγής χώρος Hausdorff και έστω C R (X η πραγματική άλγεβρα όλων των συνεχών συναρτήσεων f : X R. Έστω ότι ένα υποσύνολο A C R (X (1 το A είναι υπάλγεβρα

Διαβάστε περισσότερα

π B = B και άρα η π είναι ανοικτή απεικόνιση.

π B = B και άρα η π είναι ανοικτή απεικόνιση. 3 Παράρτημα 2 Παρατηρήσεις, ασκήσεις και Διορθώσεις Παράγραφος ) Σελίδα, : Παρατηρούμε τα ακόλουθα για το χώρο πηλίκο / Y : Y = / Y και (α) { } (β) = Y / Y { } Επίσης από τον τύπο () έπεται ιδιαίτερα ότι

Διαβάστε περισσότερα

f 1 (A) = {f 1 (A i ), A i A}

f 1 (A) = {f 1 (A i ), A i A} ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 2017-18 ΜΕΜ231-ΤΟΠΟΛΟΓΙΑ, 11Η ΔΙΑΛΕΞΗ ΣΥΜΠΑΓΕΙΑ ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ Μετά τη συνεκτικότητα, όπου είδαμε κάπως αναλυτικά την ιδιότητα εκείνη που επιτρέπει σύνολα

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για

Διαβάστε περισσότερα

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη 94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4. Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος

Διαβάστε περισσότερα

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη)

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη) Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 009 (μπορεί να περιέχουν λάθη) (L) Θέμα 1 α) i Ένα σύνολο A X λέγεται γραμμικά ανεξάρτητο αν κάθε πεπερασμένο υποσύνολό του είναι γραμμικά ανεξάρτητο.

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Μιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης Μιχάλης Παπαδημητράκης Αρμονική Ανάλυση Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα 1 Το ολοκλήρωμα Lebesgue. 1 1.1 Σύνολα μηδενικού μέτρου..................................... 1 1.2 Η συλλογή C

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n Οι ασκήσεις αυτές έχουν σκοπό να βοηθήσουν τους φοιτητές στην μελέτη τους για το μάθημα «Ανάλυση ΙΙ» του Τμήματος Μαθηματικών του Πανεπιστημίου Αιγαίου. Συνιστούμε στους φοιτητές να επεξεργαστούν αυτές

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΕΒΔΟΜΟ ΜΑΘΗΜΑ Θα γυρίσουμε πίσω για να κάνουμε μια απόδειξη που είχαμε παραλείψει σε κάποιο προηγούμενο παράδειγμα. Παράδειγμα. Έστω ξ [, b] και η συνάρτηση { 0, αν x [, b],

Διαβάστε περισσότερα

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους. 7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός

Διαβάστε περισσότερα

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1), Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο

Διαβάστε περισσότερα

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t) Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων

Διαβάστε περισσότερα

Κ X κυρτό σύνολο. Ένα σημείο x Κ

Κ X κυρτό σύνολο. Ένα σημείο x Κ 8 5 Το θεώρημα Kre-Mlm Βασικές ιδιότητες συμπαγών και κυρτών συνόλων. Ορισμός 5. Έστω X διανυσματικός χώρος και Κ X κυρτό σύνολο. Ένα σημείο x Κ λέγεται ακραίο ( extreme ) σημείο του Κ, αν δεν είναι γνήσιος

Διαβάστε περισσότερα

Αρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3

Αρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3 Αρµονική Ανάλυση (2017 2018) Φυλλάδιο Ασκήσεων 3 0. (α) Εστω f L (T). είξτε ότι σ n ( f ) f n N. (ϐ) Εστω f L (T). είξτε ότι (γ) είξτε ότι S n ( f ) f + n k=1 sin(kt) k n k= n [Υπόδειξη: Για το (γ) ϑεωρήστε

Διαβάστε περισσότερα

Θεωρία μέτρου και ολοκλήρωσης

Θεωρία μέτρου και ολοκλήρωσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία μέτρου και ολοκλήρωσης Ενότητα 4: Ολοκλήρωση επί Καρτεσιανών γινομένων Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim

= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim Άσκηση: Η προβολή στην τομή δύο υποχώρων Αν P, Q είναι δύο ορθές προβολές σε έναν χώρο Hilbert H και R = P Q είναι η προβολή στην τομή im P im Q, δείξτε ότι, για κάθε x H, Rx = lim (P QP ) x = lim (P Q)

Διαβάστε περισσότερα

Θεωρία μέτρου και ολοκλήρωσης

Θεωρία μέτρου και ολοκλήρωσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία μέτρου και ολοκλήρωσης Ενότητα 2: Το Θεώρημα Καραθεοδωρή και τα μέτρα Borel Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΔΕΚΑΤΟ ΤΡΙΤΟ ΜΑΘΗΜΑ Χρησιμοποιούμε τα σύμβολα f και f() d για να συμβολίσουμε όλα μαζί τα αόριστα ολοκληρώματα της f σε ένα διάστημα I. Δηλαδή, γράφουμε f = f + c ή f() d =

Διαβάστε περισσότερα

2. d(x, y) = 0 x = y. 3. d(x, y) = d(y, x)

2. d(x, y) = 0 x = y. 3. d(x, y) = d(y, x) Τελεστές σε χώρους Hilbert Γεωργάτος Σπυρίδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Επιτροπή Επιβλέπων: Φελουζής Ευάγγελος - Αναπληρωτής Καθηγητής Μέλη : Τσολομύτης Αντώνιος - Καθηγητής Νικολόπουλος Χρήστος

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Ας θυμηθούμε από την περασμένη φορά ότι ένα σύνολο M σε έναν μετρικό χώρο (X, d είναι συμπαγές όταν: αν έχουμε οποιαδήποτε ανοικτά σύνολα που καλύπτουν

Διαβάστε περισσότερα

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα Χαράλαμπος Μαγιάτης Ανάλυση & Κβαντική Θεωρία Πληροφορίας Σεμινάριο Τμήματος Μαθηματικών ΕΚΠΑ 17/05/2019 1 / 56 Hilbert C

Διαβάστε περισσότερα

ΚΥΡΤΗ ΓΕΩΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ

ΚΥΡΤΗ ΓΕΩΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ Α. Γιαννόπουλος, Α. Τσολομύτης ΚΥΡΤΗ ΓΕΩΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ( ) 2013 2018 Απαγορεύεται η αναπαραγωγή του αρχείου από άλλες ιστοσελίδες εκτός των http://yria.ath.aegea.gr/~atsol και http://users.uoa.gr/~apgiaop

Διαβάστε περισσότερα

R f. P = {a = x 0 < x 1 < x 2 <... < x n = b} m k = inf{f(x) : x k x x k+1 } και M k = sup{f(x) : x k x x k+1 }

R f. P = {a = x 0 < x 1 < x 2 <... < x n = b} m k = inf{f(x) : x k x x k+1 } και M k = sup{f(x) : x k x x k+1 } Σημειώσεις Θεωρίας Μέτρου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2014 ii Πρώτη έκδοση, πιθανόν με τυπογραφικά λάθη. Περιεχόμενα Εισαγωγή 1 1 σ-άλγεβρες 5 1.1 Άλγεβρες και σ-άλγεβρες.........................

Διαβάστε περισσότερα

Je rhma John L mma Dvoretzky-Rogers

Je rhma John L mma Dvoretzky-Rogers Kefˆlaio 2 Je rhma Joh L mma Dvoretzky-Rogers 2.1 Elleiyoeidèc mègistou ìgkou eìc kurtoô s matoc Ορισμός 2.1.1. Ελλειψοειδές στον R είναι ένα κυρτό σώμα της μορφής { } (2.1.1) E = x R x, v i 2 : 1, όπου

Διαβάστε περισσότερα

n = r J n,r J n,s = J

n = r J n,r J n,s = J Ανάλυση Fourer και Ολοκλήρωμα Lebesgue (2011 12) 4ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω E [a, b] με µ (E) = 0. Δείξτε ότι το [a, b] \ E είναι πυκνό υποσύνολο του [a, b]. Υπόδειξη. Θεωρήστε ένα μη κενό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΕΚΤΟ ΜΑΘΗΜΑ Τώρα θα μας απασχολήσουν τρία ερωτήματα σε σχέση με την κατά σημείο σύγκλιση ακολουθίας συναρτήσεων. Και για τα τρία ερωτήματα θα υποθέσουμε ότι f f στο

Διαβάστε περισσότερα

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ Περιεχόμενα 1. Το εξωτερικό μέτρο Lebesgue 2 2. Mετρήσιμα σύνολα 4 3. Η κανονικότητα του μέτρου Lebesgue

Διαβάστε περισσότερα

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2... ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω ( X, ) και (, ) X Y {( x, ) : x X και Y} Y χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 14, 30 Απριλίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Χώροι με εσωτερικό γινόμενο (Ευκλείδειοι χώροι) 2. Βέλτιστες προσεγγίσεις

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον Χώροι πηλίκα Έστω διανυσματικός χώρος και Y διανυσματικός υπόχωρος του. Για κάθε θεωρούμε το σύμπλοκο σχετικά με τον Y, = + y y Y = + Y ορ { : } δηλαδή το είναι η παράλληλη μεταφορά του Y κατά το διάνυσμα.

Διαβάστε περισσότερα

5 Σύγκλιση σε τοπολογικούς χώρους

5 Σύγκλιση σε τοπολογικούς χώρους 121 5 Σύγκλιση σε τοπολογικούς χώρους Στο κεφάλαιο αυτό πρόκειται να μελετήσουμε την έννοια της σύγκλισης σε γενικούς τοπολογικούς χώρους, πέραν των μετρικών χώρων. Όπως έχουμε ήδη διαπιστώσει ( πρβλ.

Διαβάστε περισσότερα

Θεωρία μέτρου και ολοκλήρωσης

Θεωρία μέτρου και ολοκλήρωσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία μέτρου και ολοκλήρωσης Ενότητα 5: Οι χώροι L p Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

Σημειώσεις Θεωρίας Μέτρου. Θέμης Μήτσης. Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο

Σημειώσεις Θεωρίας Μέτρου. Θέμης Μήτσης. Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Σημειώσεις Θεωρίας Μέτρου Θέμης Μήτσης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Περιεχόμενα Κεφάλαιο 1. Μέτρα 5 Κεφάλαιο 2. Εξωτερικά μέτρα 7 Κεφάλαιο 3. Το μέτρο Lebesgue 9 Κεφάλαιο 4. Το σύνολο

Διαβάστε περισσότερα

S n = ( 1, 0] 1 + b 1 a1 + b 1 I 1 I 2 I 3...,

S n = ( 1, 0] 1 + b 1 a1 + b 1 I 1 I 2 I 3..., ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 017-18 ΜΕΜ31-ΤΟΠΟΛΟΓΙΑ 1, 3Η ΔΙΑΛΕΞΗ ΣΥΝΤΟΜΗ ΕΠΑΝΑΛΗΨΗ ΤΗΣ ΤΟΠΟΛΟΓΙΑΣ ΤΟΥ R ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ 1. Ανοικτα και κλειστα συνολα του R Το σύνολο R των πραγματικών

Διαβάστε περισσότερα

Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης.

Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης. Κεφάλαιο 1 Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης. Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Stein and Shakarchi 2009 και Wheeden 2015. 1.1 Μέτρο Lebesgue στο R Αν E R το μέτρο

Διαβάστε περισσότερα

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]} 7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]

Διαβάστε περισσότερα

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν 3 4.3 Τελείως κανονικοί χώροι ( ). 3 2 Έχοντας υπόψιν το Λήμμα του Urysoh, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν κανονικός χώρος, x και κλειστό ώστε x. Υπάρχει τότε συνεχής συνάρτηση f :, ώστε

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κεφάλαιο 1. Πλειότιµες απεικονίσεις. 1.1 Ορισµοί

Κεφάλαιο 1. Πλειότιµες απεικονίσεις. 1.1 Ορισµοί Κεφάλαιο 1 Πλειότιµες απεικονίσεις 1.1 Ορισµοί Εστω X,Y µη κενά σύνολα. Μία (πλειότιµη) απεικόνιση φ : X Y, από το X στο Y είναι ένας κανόνας που σε κάθε σηµείο x του X αντιστοιχεί ένα υποσύνολο φ(x) του

Διαβάστε περισσότερα

Σύγκλιση των μερικών αθροισμάτων της σειράς Fourier

Σύγκλιση των μερικών αθροισμάτων της σειράς Fourier Κεφάλαιο 6 Σύγκλιση των μερικών αθροισμάτων της σειράς Fourier Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Zygmund 2002, Katznelson 2004 και Stein and Shakarchi 20. 6. Όχι σύγκλιση σε

Διαβάστε περισσότερα

B = F i. (X \ F i ) = i I

B = F i. (X \ F i ) = i I Κεφάλαιο 3 Τοπολογία μετρικών χώρων Ομάδα Α 3.1. Εστω (X, ρ) μετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το G \ F είναι

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Riemann και ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Riemann και ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Riemnn και ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

5o Επαναληπτικό Διαγώνισμα 2016

5o Επαναληπτικό Διαγώνισμα 2016 5o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A Α Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Να αποδείξετε ότι αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο του Δ, να αποδείξετε

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 10

Λογισμός 4 Ενότητα 10 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10: Διαιρέσεις της μονάδας και επέκταση του ολοκληρώματος. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με

Διαβάστε περισσότερα

h(x, y) = card ({ 1 i n : x i y i

h(x, y) = card ({ 1 i n : x i y i Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,

Διαβάστε περισσότερα

Apì ton diakritì kôbo ston q ro tou Gauss

Apì ton diakritì kôbo ston q ro tou Gauss Apì ton diaritì Ôbo ston q ro tou Gauss 1 Isoperimetri anisìthta sto diaritì Ôbo Θεωρούμε την οικογένεια J των συναρτήσεων J : [0 1] [0 ) που ικανοποιούν τα εξής: J0) = J1) = 0. Για κάθε a b [0 1] a +

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συµπάγεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα. Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΚΕΦΑΛΑΙΟ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΣΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ KAI ΟΛΟΚΛΗΡΩΤΙΚΟ-ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ O μετασχηματισμός lc-ο αντίστροφος μετασχηματισμός

Διαβάστε περισσότερα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα 33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.

Διαβάστε περισσότερα

f(x) f(c) x 1 c x 2 c

f(x) f(c) x 1 c x 2 c Μαθηματικός Λογισμός Ι Φθινόπωρο 2014 Σημειώσεις 1-12-14 Μ. Ζαζάνης 1 Πραγματικές Συναρτήσεις και Ορια Εστω S R ένα υποσύνολο του R και f : S R μια συνάρτηση με πεδίο ορισμού το S και τιμές στους πραγματικούς

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

f x 0 για κάθε x και f 1

f x 0 για κάθε x και f 1 06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.

Διαβάστε περισσότερα

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ. και την ΟΙΚΟΝΟΜΙΑ»

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ. και την ΟΙΚΟΝΟΜΙΑ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ» Εφαρμογές

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη Κεφάλαιο 1 ιατεταγµένοι χώροι 1.1 Κώνοι και διάταξη Εστω E γραµµικός χώρος. Ενα κυρτό, µη κενό υποσύνολο P του E είναι κώνος αν λ P για κάθε λ R +. Αν επιπλέον ισχύει P ( P) = {0} το P είναι οξύς κώνος

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

Θεωρία Μέτρου και ολοκλήρωσης Ασκήσεις

Θεωρία Μέτρου και ολοκλήρωσης Ασκήσεις Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεωρία Μέτρου και ολοκλήρωσης Ασκήσεις Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, Οκτώβριος 23 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

1 Το ϑεώρηµα του Rademacher

1 Το ϑεώρηµα του Rademacher Το ϑεώρηµα του Rademacher Νικόλαος Μουρδουκούτας Περίληψη Σε αυτήν την εργασία ϑα αποδείξουµε το ϑεώρηµα του Rademacher, σύµφωνα µε το οποίο κάθε Lipschiz συνάρτηση f : R m είναι διαφορίσιµη σχεδόν παντού.

Διαβάστε περισσότερα

σημειωσεις θεωριας μετρου

σημειωσεις θεωριας μετρου σημειωσεις θεωριας μετρου Σάμος 2009 Επιλογή υλικού Αντώνης Τσολομύτης Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών. Δημιουργία πρώτου ηλεκτρονικού αρχείου Μαγδαληνή Πλιόγκα Απόφοιτος του Τμήματος Μαθηματικών

Διαβάστε περισσότερα

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό 81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα

Διαβάστε περισσότερα

Sunarthsiak Anˆlush. Shmei seic gia metaptuqiakì mˆjhma

Sunarthsiak Anˆlush. Shmei seic gia metaptuqiakì mˆjhma Sunarthsiak Anˆlush Shmei seic gia metaptuqiakì mˆjhma Μ. Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης νοιξη 2004 2 Perieqìmena 1 Εισαγωγικά 7 1.1 Διατάξεις............................... 7 1.2

Διαβάστε περισσότερα

Υπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο.

Υπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο. Κεφάλαιο 2 Ολοκλήρωµα Lebesgue 2.1 Οµάδα Α 1. Αν η f : (a, b) R είναι παραγωγίσιµη, τότε η f είναι µετρήσιµη. Υπόδειξη. Θεωρούµε την ακολουθία f : (a, b) R µε f (x) = [f(x + 1/) f(x)]. Εφόσον, η f είναι

Διαβάστε περισσότερα

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, εαρινό εξάμηνο Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3.

Συναρτησιακή Ανάλυση, εαρινό εξάμηνο Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3. Συναρτησιακή Ανάλυση, εαρινό εξάμηνο 2016-17. Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3. 1. Αν ο X είναι χώρος Bnch, αποδείξτε ότι ο X είναι αυτοπαθής

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 7 ΘΕΜΑ Α A Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ Αν f σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου

Μαθηματικά Γ Λυκείου Μαθηματικά Γ Λυκείου Θέμα Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε ότι η f είναι σταθερή σε όλο το διάστημα

Διαβάστε περισσότερα

Μη Γραµµική Συναρτησιακή Ανάλυση Το Θεώρηµα των Cauchy, Lipschitz, Picard.

Μη Γραµµική Συναρτησιακή Ανάλυση Το Θεώρηµα των Cauchy, Lipschitz, Picard. Μη Γραµµική Συναρτησιακή Ανάλυση Το Θεώρηµα των Cauchy, ipschitz, Picard. Νίκος Σταµάτης nstam84@gmail.com 7 Φεβρουαρίου 212 Περίληψη Σε αυτή την εργασία παρουσιάζουµε µια αναλυτική απόδειξη του ϑεωρήµατος

Διαβάστε περισσότερα

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { } Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Πραγματική Ανάλυση. Μέτρο και ολοκλήρωμα Lebesgue στο R. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Μιχάλης Παπαδημητράκης. Πραγματική Ανάλυση. Μέτρο και ολοκλήρωμα Lebesgue στο R. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης Μιχάλης Παπαδημητράκης Πραγματική Ανάλυση Μέτρο και ολοκλήρωμα Lebesgue στο R Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα Το μέτρο Lebesgue.. Μήκη διαστημάτων..................................2

Διαβάστε περισσότερα

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x.

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x. Infimum Ορισμός κάτω φράγματος συνόλου A Το σύνολο A R είναι κάτω φραγμένο αν k R : x A k x k = κάτω φράγμα Ορισμός infimum του συνόλου A inf A = infimum του συνόλου A Το μεγαλύτερο από τα κάτω φράγματα

Διαβάστε περισσότερα

x, y = x 1 y 1 + x 2 y 2 + x 3 y 3. x k y k. k=1 k=1

x, y = x 1 y 1 + x 2 y 2 + x 3 y 3. x k y k. k=1 k=1 Σημειώσεις για τους χώρους Hilbert και άλλα Αριστείδης Κατάβολος Από το βιβλίο «Εισαγωγή στη Θεωρία Τελεστών», εκδ. «Συμμετρία», 2008. Περιεχόμενα I Χώροι Hilbert 1 1 Εσωτερικά γινόμενα 1 1.0.1 Παραδείγματα.........................

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Ορισµός

ΓΕΝΙΚΕΥΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Ορισµός ΓΕΝΙΚΕΥΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ f() τοπικά ολοκληρώσιµη στο (, b) αν για κάθε κλειστό [c, d] (, b) η f() είναι ολοκληρώσιµη. πχ f() =e είναι τοπικά ολοκληρώσιµη στο [, ) f() = είναι τοπικά ολοκληρώσιµη στο (, )

Διαβάστε περισσότερα

Eisagwg sthn JewrÐa Mètrou, thn JewrÐa thc Olokl rwshc me efarmogèc sthn JewrÐa Pijanot twn. A. N. Giannakìpouloc,

Eisagwg sthn JewrÐa Mètrou, thn JewrÐa thc Olokl rwshc me efarmogèc sthn JewrÐa Pijanot twn. A. N. Giannakìpouloc, Eisagwg sthn JewrÐa Mètrou, thn JewrÐa thc Olokl rwshc me efarmogèc sthn JewrÐa Pijanot twn A. N. Giannakìpouloc, 21 MartÐou 2012 Perieqìmena 1 Εισαγωγικές έννοιες 3 1.1 Εισαγωγή.................................................

Διαβάστε περισσότερα

Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων

Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Πρ. Η f : [0, ] R είναι συνεχής στο [0, ]. Χρησιμοποιώντας το Θεώρημα Bolzao- Weierstraß δείξτε ότι η f είναι φραγμένη στο [0, ]. Μην επικαλεστείτε κάποιο άλλο θεώρημα.

Διαβάστε περισσότερα

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1, ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Αποδεικνύουμε το θεώρημα στην περίπτωση που

Διαβάστε περισσότερα