M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou"

Transcript

1 M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny model Hydraulický ytém 4. imulujte dynamiku ytému ako odozvu na rôzne vtupné ignály Pre riešenie úloh uvažujeme naledovné: Obr. Hydraulický ytém

2 Fyzikálne veličiny: U (t) Napätie ora (akčný záah) Q c (t) h (t) h (t) h 3 (t) Prietok čerpadla Výška hladiny v prívodnej trubici Výška hladiny v prvej nádobe Výška hladiny v druhej nádobe (regulovaná veličina) Parametre: 3 C Prierez prívodnej trubice Prierez prvej nádoby Prierez druhej nádoby Prierez netenoti čerpadla V Prierez ventilu č. V Prierez ventilu č. g U necit k h ma h ma h 3ma U ma Gravitačné zrýchlenie Necitlivoť ora konštanta ora Maimálna výška hladiny v prívodnej trubici Maimálna výška hladiny v prvej nádobe Maimálna výška hladiny v druhej nádobe Maimálna hodnota napájacieho napätia Hutota kvapaliny ( 0 3 )

3 Úloha č.: Zotavte matematický popi modelu M5 Matematický opi dynamického modelu Hydraulický ytém vychádza zo základných fyzikálnych princípov z oblati hydrauliky ako ú rovnica kontinuity Q m. v konšt Torricelliho vzorec v. g. h či materiálová bilancia záobníkov ktorá je daná takto: (účet vtupujúcich tokov hnoti) - (účet vytupujúcich tokov hnoti) = (rýchloť akumulácie hnoti v ytéme). () Záviloť prietoku čerpadlom vyjadrujú rovnice () a (3). Q C od veľkoti napájacieho napätia U Q C k( U U necit ) pre U U necit () Q C 0 pre U U necit. (3) Matematický opi dynamického modelu M5 pozotáva z naledujúcich diferenciálnych rovníc. rádu: h ( t) k( U U ) gh ( t) necit C pre U U (4a) necit h ( t) 0 gh ( t) C pre U U necit. (4b) h ( t) k( U ( t) U ) gh ( t) L g[ h ( t) h ( t)] ak h ( ) t h ma (5a) necit C V V 3 h ( t) 0 gh ( t) L g[ h ( t) h ( t)] C V V 3 h ( t) L g[ h ( t) h ( t)] L gh ( t) 3 V V 3 V V 3 3 ak h t) (5b) ( h ma (6)

4 Úloha č. : Vytvorte imulačný model v jazyku:.a Matlab Naprogramujte imulačný model M5 v protredí Matlab na základe matematického modelu (diferenciálne rovnice (4a) (4b) (5a) (5b) (6)) pri zadefinovaných vtupných parametrov modelu (zadá cvičiaci) a pri naledujúcej voľbe tavových veličín: ( t) h ( t) ( t) h ( t) ( t) h ( t) 3 3 (7) ( t) k( U ( t) U ) g ( t) pre U ( t) U necit C necit ( t) 0 g ( t) pre U ( t) U necit C ( t) k( U ( t) U ) g ( t) L g ( ) ( ) t t ak h ( t) h necit C V V 3 ma () t 0 C g( t) ( ) 3( ) V LV g ak ( ) ma t t h t h ( t). L. g ( ) ( ).. ( ) t t L g t. 3 V V 3 V V 3 3 (8) Úlohu riešte pomocou:.a. - eitujúcej funkcie ode45 v Matlabe.a. - vlatnej naprogramovanej funkcie Runge-Kutta 4.rádu.

5 .b imulink Vytvorte nelineárny imulačný model M5 pomocou základných knižných blokov v protredí imulink na základe matematického modelu (diferenciálne rovnice (4a) (4b) (5a) (5b) (6)) pri zadefinovaných vtupných parametrov modelu a pri uvažovaní fyzikálnych obmedzení ytému (zadá cvičiaci). Obr. chéma ytému M5 v imulinku

6 Úloha č.3: Linearizujte nelineárny model Hydraulický ytém Vytvorte lineárny matematický model modelu M5: a) metódou rozvoja do Taylorovho radu b) použitím Jacobiho matice. 3.a Linearizujte model M5 metódou rozvoja do Taylorovho radu Lineárny matematický model zotavíme na základe naledujúcich rovníc: y A A A n n (9) kde Δ i = i X i predtavuje odchýlku od pracovného bodu. Po doadeni parametrov modelu do nelineárnych rovníc dotávame naledujúce diferenciálne rovnice. h ( t) ku ku g h glv h ( t) h ( t) c V ma 3 h ( t) glv h ( t) h ( t) LV h V V Majme dva pracovné body: U = 8 V L V = 0.4 L V = 0. H 0 = 0.33 m H 30 = 0.6 m Pracovný bod A U = 9 V L V = L V = 0.3 H 0 = 0.3 m H 30 = 0.3 m Pracovný bod B

7 Vytvoríme odchýlkový model d( H0 h( t)) c k( U U) kunec H0 dt V d( H h ( t)) glv H h ( t) H h ( t) LV H h ( t) V V dt 3 3 glv H h ( t) H h ( t) Po úpravách a doadení jednotlivých parametrov dotávame: h ( t) ku a h ( t) a h ( t) 3 h ( t) a h ( t) a h ( t) 3 3 (0) Z týchto rovníc i vytvoríme tavový opi ytému: A B h () () t a a h t k h3() t h () t U a a h3() t 0 y [ 0 ] D h3() t U () C využitím vzorca F( ) C( I A) B D pričom I je jednotková matica môžeme opi ytému v tavovom prietore prepíať na tvar obrazového prenou. Zíkame tak obrazový preno zlinearizovaného hydraulického ytému vo zvolenom pracovnom bode. b F ( ) a a a 0 0 ()

8 3.b Linearizujte model M5 využitím Jacobiho matice Jacobiho matica má naledujúci tvar: f f A J( ) f f Funkcie f a f ú rovnice 5a a 6 ktoré je potrebné linearizovať v pracovnom bode. Maticu B vypočítame naledovne: f u B J( ) f u (3) (4)

9 Úloha č. 4: imulujte dynamiku ytému ako odozvu na rôzne vtupné ignály doba imulácie: 000 perióda vzorkovania: 4. Verifikácia nelineárneho modelu M5

10

11 4. Verifikácia lineárneho odchýlkového modelu

M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"

M8 Model Valcová a kužeľová nádrž v sérií bez interakcie M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie" Úlohy: 1. Zostavte matematický popis modelu M8 2. Vytvorte simulačný model v prostredí: a) Simulink zostavte blokovú schému, pomocou rozkladu

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Matematický model robota s diferenciálnym kolesovým podvozkom

Matematický model robota s diferenciálnym kolesovým podvozkom Matematický model robota s diferenciálnym kolesovým podvozkom Demonštračný modul Úlohy. Zostavte matematický model robota s diferenciálnym kolesovým podvozkom 2. Vytvorte simulačný model robota v simulačnom

Διαβάστε περισσότερα

M6 Model Dve nádrže pod tlakom s potrubím, čerpadlom, snímačmi tlaku a prietoku

M6 Model Dve nádrže pod tlakom s potrubím, čerpadlom, snímačmi tlaku a prietoku Úlohy: M6 Model Dve nádrže pod tlakom s potrubím, čerpadlom, snímačmi tlaku a prietoku 1. Zostavte simulačný model hydraulického systému M6 v aplikačnej knižnici SimHydraulics 2. Simulujte dynamiku hydraulického

Διαβάστε περισσότερα

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet

Διαβάστε περισσότερα

M7 Model Hydraulický ráz

M7 Model Hydraulický ráz Úlohy: M7 Model Hydraulický ráz 1. Zostavte simulačný model hydraulického systému M7 v aplikačnej knižnici SimHydraulics 2. Simulujte dynamiku hydraulického systému M7 na rôzne vstupy Doplňujúce úlohy:

Διαβάστε περισσότερα

Otáčky jednosmerného motora

Otáčky jednosmerného motora Otáčky jednosmerného motora ZADANIE: Uvažujte fyzikálno - matematický model dynamického systému, ktorý je popísaný lineárnou diferenciálnou rovnicou (LDR) 2. a vyššieho rádu. ÚLOHA: Navrhnite m-file v

Διαβάστε περισσότερα

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,... Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,... Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia

Διαβάστε περισσότερα

1.4 Rovnice, nerovnice a ich sústavy

1.4 Rovnice, nerovnice a ich sústavy 1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,

Διαβάστε περισσότερα

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA: 1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených

Διαβάστε περισσότερα

Výpočet. grafický návrh

Výpočet. grafický návrh Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado

Διαβάστε περισσότερα

OTÁZKY SKÚŠKA z TE 2

OTÁZKY SKÚŠKA z TE 2 OTÁZKY SKÚŠKA z TE 2 1. Elektrické obvody s periodickými neharmonickými veličinami a) vymenujte všetky možnosti pôvodu periodickej neharmonickej časovej závislosti obvodových veličín; b) uveďte všetky

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Strana 1/5 Príloha k rozhodnutiu č. 544/2011/039/5 a k osvedčeniu o akreditácii č. K-052 zo dňa Rozsah akreditácie

Strana 1/5 Príloha k rozhodnutiu č. 544/2011/039/5 a k osvedčeniu o akreditácii č. K-052 zo dňa Rozsah akreditácie Strana 1/5 Rozsah akreditácie Názov akreditovaného subjektu: CHIRANALAB, s.r.o., Kalibračné laboratórium Nám. Dr. A. Schweitzera 194, 916 01 Stará Turá IČO: 36 331864 Kalibračné laboratórium s fixným rozsahom

Διαβάστε περισσότερα

MATEMATIKA I ZBIERKA ÚLOH

MATEMATIKA I ZBIERKA ÚLOH TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA

Διαβάστε περισσότερα

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana. Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia

Διαβάστε περισσότερα

MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015

MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015 MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015 Mgr. Valeria Godovičová 1. Mesiac 1 Úvodná hodina Telo 2-5 Druhá a tretia mocnina - čo už poznáme - opačné čísla a ich mocniny SEPTEMBER

Διαβάστε περισσότερα

η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa

η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa 1.4.1. Návrh priečneho rezu a pozĺžnej výstuže prierezu ateriálové charakteristiky: - betón: napr. C 0/5 f ck [Pa]; f ctm [Pa]; fck f α [Pa]; γ cc C pričom: α cc 1,00; γ C 1,50; η 1,0 pre f ck 50 Pa η

Διαβάστε περισσότερα

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk

Διαβάστε περισσότερα

Ohmov zákon pre uzavretý elektrický obvod

Ohmov zákon pre uzavretý elektrický obvod Ohmov zákon pre uzavretý elektrický obvod Fyzikálny princíp: Každý reálny zdroj napätia (batéria, akumulátor) môžeme považova za sériovú kombináciu ideálneho zdroja s elektromotorickým napätím U e a vnútorným

Διαβάστε περισσότερα

STRIEDAVÝ PRÚD - PRÍKLADY

STRIEDAVÝ PRÚD - PRÍKLADY STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan

Διαβάστε περισσότερα

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

Numerické riešenie jednorozmerného Stefanovho problému na konečnej oblasti BAKALÁRSKA PRÁCA

Numerické riešenie jednorozmerného Stefanovho problému na konečnej oblasti BAKALÁRSKA PRÁCA Numerické riešenie jednorozmerného Stefanovho problému na konečnej oblasti BAKALÁRSKA PRÁCA Lukáš Papranec UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY KATEDRA APLIKOVANEJ

Διαβάστε περισσότερα

SAMPLE / UKÁŽKA. Identifikácia sústav

SAMPLE / UKÁŽKA. Identifikácia sústav Identifikácia sústav Gergely Takács, Ján Vachálek, Boris Rohaľ-Ilkiv Identifikácia sústav SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE 2014 Všetky práva vyhradené. Žiadna časť textu nesmie byť použitá

Διαβάστε περισσότερα

Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP

Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP 7 Obsah Analýza poruchových stavov pri skrate na sekundárnej strane transformátora... Nastavenie parametrov prvkov

Διαβάστε περισσότερα

8. TRANSFORMÁCIA SÚRADNÍC

8. TRANSFORMÁCIA SÚRADNÍC 8. TRANSFORMÁCIA SÚRADNÍC V geodetickej pra je častou úlohou zmeniť súradnice bodov bez toho aby sa zmenila ich poloha na zemskom povrchu. Zmenu súradníc označujeme pojmom transformácia. Transformácia

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky

Διαβάστε περισσότερα

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY ANALÝZA RIEŠENÍ NELINEÁRNYCH PARCIÁLNYCH DIFERENCIÁLNYCH ROVNÍC FINANČNEJ MATEMATIKY DIPLOMOVÁ PRÁCA 2015 Bc. Karol ĎURIŠ UNIVERZITA

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

Technická univerzita v Košiciach. ROČNÍKOVÁ PRÁCA č. 3 PRIBLIŽNÝ VÝPOČET TEPELNÉHO OBEHU LTKM

Technická univerzita v Košiciach. ROČNÍKOVÁ PRÁCA č. 3 PRIBLIŽNÝ VÝPOČET TEPELNÉHO OBEHU LTKM Technická univerzita Letecká fakulta Katedra leteckého inžinierstva ROČNÍKOVÁ PRÁCA č. 3 PRIBLIŽNÝ VÝPOČET TEPELNÉHO OBEHU LTKM Študent: Cvičiaci učiteľ: Peter Majoroš Ing. Marián HOCKO, PhD. Košice 6

Διαβάστε περισσότερα

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B . písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c

Διαβάστε περισσότερα

STATIKA STAVEBNÝCH KONŠTRUKCIÍ I Doc. Ing. Daniela Kuchárová, PhD. Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov

STATIKA STAVEBNÝCH KONŠTRUKCIÍ I Doc. Ing. Daniela Kuchárová, PhD. Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov zaťaženia Prostý nosník Konzola 31 Príklad č.14.1 Vypočítajte a vykreslite priebehy vnútorných síl na nosníku s previslými koncami,

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 10 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Προσομοίωση απόκρισης συστήματος στο MATLAB μέσω της συνάρτησης ode45 (Runge-Kutta) Προσομοίωση απόκρισης

Διαβάστε περισσότερα

Smernicový tvar rovnice priamky

Smernicový tvar rovnice priamky VoAg1-T List 1 Smernicový tvar rovnice priamk RNDr.Viera Vodičková U: Medzi prevratné objav analtickej geometrie patrí to, že s priamkou nenarábame ako s geometrickým objektom, ale popisujeme ju rovnicou.

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

Matematika test M-1, 2. časť

Matematika test M-1, 2. časť M O N I T O R 001 pilotné testovanie maturantov MONITOR 001 Matematika test M-1,. časť forma A Kód školy: Číslo žiaka A B C F H I K L M O P S Kód A B C F H I triedy: 01 0 03 04 05 06 07 08 09 10 11 1 13

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

Lineárne kódy. Ján Karabáš. Kódovanie ZS 13/14 KM FPV UMB. J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19

Lineárne kódy. Ján Karabáš. Kódovanie ZS 13/14 KM FPV UMB. J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19 Lineárne kódy Ján Karabáš KM FPV UMB Kódovanie ZS 13/14 J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19 Algebraické štruktúry Grupy Grupa je algebraická štruktúra G = (G;, 1, e), spolu s binárnou

Διαβάστε περισσότερα

9 Mechanika kvapalín. 9.1 Tlak v kvapalinách a plynoch

9 Mechanika kvapalín. 9.1 Tlak v kvapalinách a plynoch 137 9 Mechanika kvapalín V predchádzajúcich kapitolách sme sa zaoberali mechanikou pevných telies, telies pevného skupenstva. V nasledujúcich kapitolách sa budeme zaoberať mechanikou kvapalín a plynov.

Διαβάστε περισσότερα

Technické zariadenia riadiacich systémov

Technické zariadenia riadiacich systémov Kapitola 7 Technické zariadenia riadiacich systémov Základným predpokladom úspešného riadenia procesov je ich pripravenosť pre riadenie. Úspešnosť riadenia závisí však aj od pripravenosti technických zariadení

Διαβάστε περισσότερα

Príklady z hydrodynamiky (Steltenpohl, OCHBI) Zadanie 1

Príklady z hydrodynamiky (Steltenpohl, OCHBI) Zadanie 1 Príklady z hydrodynamiky (Steltenpohl, OCHBI) Zadanie Zadanie: Pivo prúdi potrubím s kruhovým prierezom o priemere 0 cm. Jeho hmotnostný prietok je 300 kg min -, Aká bude priemerná rýchlosť prúdenia piva

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť. Vzdelávacia oblasť:

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť. Vzdelávacia oblasť: Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Vzdelávacia oblasť: Predmet:

Διαβάστε περισσότερα

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY VLASTNOSTI HODNOTOVEJ FUNKCIE ÚLOHY PARAMETRICKÉHO KVADRATICKÉHO PROGRAMOVANIA A ICH VYUŽITIE V OPTIMALIZÁCII PORTFÓLIA DIPLOMOVÁ

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

Príklad 7 - Syntézny plyn 1

Príklad 7 - Syntézny plyn 1 Príklad 7 - Syntézny plyn 1 3. Bilančná schéma 1. Zadanie príkladu n 1A = 100 kmol/h n 1 = n 1A/x 1A = 121.951 kmol/h x 1A = 0.82 x 1B = 0.18 a A = 1 n 3=? kmol/h x 3D= 1 - zmes metánu a dusíka 0.1 m 2C

Διαβάστε περισσότερα

MONITOR 9 (2007) riešenia úloh testu z matematiky

MONITOR 9 (2007) riešenia úloh testu z matematiky MONITOR 9 (007) riešenia úloh testu z matematiky Autormi nasledujúcich riešení sú pracovníci spoločnosti EXAM testing Nejde teda o oficiálne riešenia, ktoré môže vydať ia Štátny pedagogický ústav (wwwstatpedusk)

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/34 Motivácia k metódam vol nej optimalizácie p. 2/34 Metódy na riešenie úloh typu min f 0 (x) x K R n (MP) kde K = {x R n f i (x) 0,i I, h

Διαβάστε περισσότερα

ELEKTROTECHNICKÉ PRAKTIKUM (Návody na cvičenia)

ELEKTROTECHNICKÉ PRAKTIKUM (Návody na cvičenia) TECHNCKÁ NVEZTA V KOŠCACH FAKLTA ELEKTOTECHNKY A NFOMATKY Katedra teoretickej elektrotechniky a elektrického merania Miroslav Mojžiš Ján Molnár ELEKTOTECHNCKÉ PAKTKM (Návody na cvičenia) Košice 009 Miroslav

Διαβάστε περισσότερα

Obyčajné diferenciálne rovnice

Obyčajné diferenciálne rovnice (ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom...

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom... (TYP M) izolačná doska určená na vonkajšiu fasádu (spoj P+D) ρ = 230 kg/m3 λ d = 0,046 W/kg.K 590 1300 40 56 42,95 10,09 590 1300 60 38 29,15 15,14 590 1300 80 28 21,48 20,18 590 1300 100 22 16,87 25,23

Διαβάστε περισσότερα

Kontrolné otázky z hydrostatiky a hydrodynamiky

Kontrolné otázky z hydrostatiky a hydrodynamiky Verzia zo dňa 28. 10. 2008. Kontrolné otázky z hydrostatiky a hydrodynamiky Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte

Διαβάστε περισσότερα

6. V stene suda naplneného vodou je v hĺbke 1 m pod hladinou otvor veľkosti 5 cm 2. Aká veľká tlaková sila pôsobí na zátku v otvore?

6. V stene suda naplneného vodou je v hĺbke 1 m pod hladinou otvor veľkosti 5 cm 2. Aká veľká tlaková sila pôsobí na zátku v otvore? Mechanika tekutín 1. Aká je veľkosť tlakovej sily na kruhový poklop ponorky s priemerom 1 m v hĺbke 50 m? Hustota morskej vody je 1,025 g cm 3. [402 kn] 2. Obsah malého piesta hydraulického zariadenia

Διαβάστε περισσότερα

3. Meranie indukčnosti

3. Meranie indukčnosti 3. Meranie indukčnosti Vlastná indukčnosť pasívna elektrická veličina charakterizujúca vlastnú indukciu, symbol, jednotka v SI Henry, symbol jednotky H, základná vlastnosť cievok. V cievke, v ktorej sa

Διαβάστε περισσότερα

Využitie programu Microsoft Excel pri ekonometrickom modelovaní

Využitie programu Microsoft Excel pri ekonometrickom modelovaní Využitie programu Microsoft Excel pri ekonometrickom modelovaní Martin Lukáčik, Adriana Lukáčiková, Karol Szomolányi Aplikovanú ekonometriu, najmä odhad parametrov modelu a testovanie predpokladov si už

Διαβάστε περισσότερα

Základná škola Sačurov, Školská 389, Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník

Základná škola Sačurov, Školská 389, Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník Základná škola Sačurov, Školská 389, 094 13 Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník Vypracované podľa učebných osnov ŠkVP A schválených radou školy dňa 28.8.2008 s platnosťou

Διαβάστε περισσότερα

PORTMANTEAU TESTY LINEARITY STACIONÁRNYCH RADOV MARIÁN VÁVRA ZACHARIAS PSARADAKIS NETECHNICKÉ

PORTMANTEAU TESTY LINEARITY STACIONÁRNYCH RADOV MARIÁN VÁVRA ZACHARIAS PSARADAKIS NETECHNICKÉ PORTMANTEAU TESTY LINEARITY STACIONÁRNYCH RADOV MARIÁN VÁVRA ZACHARIAS PSARADAKIS NETECHNICKÉ ZHRNUTIE Národná banka Slovenska www.nbs.sk Imricha Karvaša 1 813 25 Bratislava research@nbs.sk Apríl 2016

Διαβάστε περισσότερα

SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 49. ročník, školský rok 2012/2013 Kategória C. Krajské kolo

SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 49. ročník, školský rok 2012/2013 Kategória C. Krajské kolo SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 49. ročník, školský rok 1/1 Kategória C Krajské kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH Z ANORGANICKEJ A VŠEOBECNEJ

Διαβάστε περισσότερα

Transformátory 1. Obr. 1 Dvojvinuťový transformátor. Na Obr. 1 je naznačený rez dvojvinuťovým transformátorom, pre ktorý platia rovnice:

Transformátory 1. Obr. 1 Dvojvinuťový transformátor. Na Obr. 1 je naznačený rez dvojvinuťovým transformátorom, pre ktorý platia rovnice: Transformátory 1 TRANSFORÁTORY Obr. 1 Dvojvinuťový transformátor Na Obr. 1 je naznačený rez dvojvinuťovým transformátorom, pre ktorý platia rovnice: u d dt Φ Φ N i R d = Φ Φ N i R (1) dt 1 = ( 0+ 1) 1+

Διαβάστε περισσότερα

Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: Matematické kyvadlo

Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: Matematické kyvadlo Názov projektu: CIV Centru Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 005/1-046 ITMS: 113010011 Úvod Mateatické kvadlo Miroslav Šedivý FMFI UK Poje ateatické kvadlo sa síce nenachádza v povinných

Διαβάστε περισσότερα

PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO

PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO ŽILINSKÁ UNIVERZITA V ŽILINE Fakulta špeciálneho inžinierstva Doc. Ing. Jozef KOVAČIK, CSc. Ing. Martin BENIAČ, PhD. PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO Druhé doplnené a upravené vydanie Určené

Διαβάστε περισσότερα

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY KONSTRUKCE HHO GENERÁTORU DESIGN OF HHO GENERATOR

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY KONSTRUKCE HHO GENERÁTORU DESIGN OF HHO GENERATOR VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS,

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

13. AEROTRIANGULÁCIA Prístrojová aerotriangulácia

13. AEROTRIANGULÁCIA Prístrojová aerotriangulácia 13. AEROTRIANGULÁCIA Pod pojmom aerotriangulácia rozumieme zhusťovanie bodového poľa s využitím leteckých fotogrametrických snímok. K prvému už absolútne orientovanému optickému modelu priradíme orientáciou

Διαβάστε περισσότερα

Slovenská Technická Univerzita Stavebná fakulta

Slovenská Technická Univerzita Stavebná fakulta Slovenská Technická Univerzita Stavebná fakulta Matematika I. Zbierka úloh ku cvičeniam Jozef Kollár Bratislava 04 Slovenská Technická Univerzita Stavebná fakulta Matematika I. Zbierka úloh ku cvičeniam

Διαβάστε περισσότερα

Z O S I L Ň O V A Č FEARLESS SÉRIA D

Z O S I L Ň O V A Č FEARLESS SÉRIA D FEARLESS SÉRIA D FEARLESS SÉRIA D Fearless 5000 D Fearless 2200 D Fearless 4000 D Fearless 1000 D FEARLESS SÉRIA D Vlastnosti: do 2 ohmov Class-D, vysoko výkonný digitálny kanálový subwoofer, 5 kanálový

Διαβάστε περισσότερα

Model redistribúcie krvi

Model redistribúcie krvi .xlsx/pracovný postup Cieľ: Vyhodnoťte redistribúciu krvi na začiatku cirkulačného šoku pomocou modelu založeného na analógii s elektrickým obvodom. Úlohy: 1. Simulujte redistribúciu krvi v ľudskom tele

Διαβάστε περισσότερα

Kvapalina s dostatočnou polohovou energiou sa dá dopravovať potrubím aj samospádom.

Kvapalina s dostatočnou polohovou energiou sa dá dopravovať potrubím aj samospádom. 4 ZARIADENIA NA DOPRAVU KVAPALÍN Zariadenia na dopravu kvapalín patria medzi najpoužívanejšie dopravné zariadenia. Používajú sa vo všetkých priemyselných odvetviach, napr. chemickom a potravinárskom priemysle,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

c 1 p amb -p w ρ x g

c 1 p amb -p w ρ x g ZÁKLADNÉ PARAMETRE A CHARAKTERISTIKY ÈERPADLA Doc. Ing. Michal VARCHOLA Strojnícka fakulta STU, Bratislava Slovenská republika Kavitaèná rezerva. Pre prácu èerpadla bez kavitácie je nevyhnutné, aby na

Διαβάστε περισσότερα

Seminár Environmentálne záťaže, Štrbské Pleso, a Ing. Jaromír Helma, PhD. SAŽP, OAHŽPES

Seminár Environmentálne záťaže, Štrbské Pleso, a Ing. Jaromír Helma, PhD. SAŽP, OAHŽPES HYDRODYNAMICKÉ SKÚŠKY Seminár Environmentálne záťaže, Štrbské Pleso, 21.3. a 22.3.2016 Ing. Jaromír Helma, PhD. SAŽP, OAHŽPES Chyby pri organizácií, realizácií a vyhodnotení HDS 1. nevhodné čerpadlo z

Διαβάστε περισσότερα

Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu.

Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Laboratórna práca č.1 Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Zapojenie potenciometra Zapojenie reostatu 1 Zapojenie ampémetra a voltmetra

Διαβάστε περισσότερα

ŽILINSKÁ UNIVERZITA V ŽILINE. ELEKTROTECHNICKÁ FAKULTA Katedra mechatroniky a elektroniky BAKALÁRSKA PRÁCA

ŽILINSKÁ UNIVERZITA V ŽILINE. ELEKTROTECHNICKÁ FAKULTA Katedra mechatroniky a elektroniky BAKALÁRSKA PRÁCA ŽILINSKÁ UNIVERZITA V ŽILINE ELEKTROTECHNICKÁ FAKULTA Katedra mechatroniky a elektroniky BAKALÁRSKA PRÁCA ESM BP/13-2008 Turčák Michal ŽILINSKÁ UNIVERZITA V ŽILINE ELEKTROTECHNICKÁ FAKULTA Katedra mechatroniky

Διαβάστε περισσότερα

ÚVOD DO TERMODYNAMIKY

ÚVOD DO TERMODYNAMIKY UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH PRÍRODOVEDECKÁ FAKULTA ÚSTAV FYZIKÁLNYCH VIED MICHAL JAŠČUR MICHAL HNATIČ ÚVOD DO TERMODYNAMIKY Vysokoškolské učebné texty Košice 2013 ÚVOD DO TERMODYNAMIKY

Διαβάστε περισσότερα

matematika 1. časť pre 9. ročník základnej školy a 4. ročník gymnázia s osemročným štúdiom

matematika 1. časť pre 9. ročník základnej školy a 4. ročník gymnázia s osemročným štúdiom .. B Publikácia bola hradená z finančných prostriedkov Ministerstva školstva, vedy, výskumu a športu Slovenskej republiky. ISBN 978-80-10-02291-5 w w w. s p n - m l a d e l e t a. s k matematika 9 1. časť

Διαβάστε περισσότερα

Fakulta matematiky, fyziky a informatiky. Univerzita Komenského. Contents I. Úvod do problematiky numeriky 2

Fakulta matematiky, fyziky a informatiky. Univerzita Komenského. Contents I. Úvod do problematiky numeriky 2 NUMERICKÁ MATEMATIKA ročník Fakulta matematiky, fyziky a informatiky Univerzita Komenského Contents I Úvod do problematiky numeriky II Počítačová realizácia reálnych čísel 3 III Diferenčný počet 5 IV CORDIC

Διαβάστε περισσότερα

STABILITA CHARAKTERISTIKY ODSTŘEDIVÉHO ČERPADLA

STABILITA CHARAKTERISTIKY ODSTŘEDIVÉHO ČERPADLA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE STABILITA CHARAKTERISTIKY ODSTŘEDIVÉHO ČERPADLA

Διαβάστε περισσότερα

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE Zovšeobecnená brachystochróna 007 Milan Jurči Zovšeobecnená brachystóchrona BAKALÁRSKA PRÁCA Milan JURČI UNIVERZITA KOMENSKÉHO

Διαβάστε περισσότερα