p(α 1 ) = u 1. p(α n ) = u n. Definícia (modulárna reprezentácia polynómu). Zobrazenie

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "p(α 1 ) = u 1. p(α n ) = u n. Definícia (modulárna reprezentácia polynómu). Zobrazenie"

Transcript

1 1. Rychlá Fourierová transformácia Budeme značiť teleso T a ω jeho prvok. Veta 1.1 (o interpolácií). Nech α 0, α 1,..., α n sú po dvoch rôzne prvky telesa T[x]. Potom pre každé u 0, u 1,..., u n T existuje práve jeden polynóm p T[x] stupňa najviac n splňujúci p(α 0 ) = u 0 p(α 1 ) = u 1. p(α n ) = u n. Definícia (modulárna reprezentácia polynómu). Zobrazenie T[x] T[x]/(x α 0 ) T[x]/(x α n ), p (p(α 0 ),..., p(α n )) je modulárnou reprezentáciou polynómu nad telesom T[x] vzhľadom k bodom α 0, α 1,..., α n. Síce skutočná všeobecná definícia modulárnej reprezentácia je založená na pozorovaniach, ktoré vyplývajú z čínskej vety o zbytkoch a z vety o interpolácií polynómu, bude nám pre ďalšie účely postačovať definícia modulárnej reprezentácii polynómu vyššie, preto nebudeme zavádzať všeobecnú definíciu. Diskrétnou Fourierovou transformáciou DFT(ω) s parametrom ω rozumieme výpočet hodnôt polynómu p T[x] stupňa nejviac n 1 v bodoch 1, ω, ω 2,..., ω. Diskrétnu Fourierovú transformáciu môžeme chápať aj ako zobrazenie medzi vektorovými priestormi T n T n, ktoré vektoru koeficientov priradí vektor hodnôt v týchto bodoch. Teda pre polynóm p = i=0 a ix i platí DFT(ω)(a 0, a 1,..., a ) = (p(1), p(ω),..., p(ω )). Pretože hodnotu polynómu v ľubovoľnom bode α môžeme dostať násobením istého riadkového vektoru závislého na α a stále rovnakého stĺpcového vektoru podľe vzorca a 0 a 1 p(α) = i=0 a i α i = ( 1, α, α 2..., α ) pre diskrétnu Fourierovu transformáciu platí vzorec DFT(ω)(u) = A(ω) u,. a kde u je stĺpcový vektor (a 0, a 1,..., a ) T a A(ω) je Vandermondova matice tvaru ω ω 2... ω A(ω) = 1 ω 2 ω 4... ω 2(). 1 ω ω 2()... ω ()() Teda DFT(ω) je lineárne zobrazenie. Naviac, ak sú prvky 1, ω,..., ω po dvoch rôzne, potom je toto zobrazenie bijektívne, pretože determinant Vandermondovej 1,

2 2 matice A(ω) je rovný súčinu i>j (ωi ω j ). Za tohoto predpokladu môžeme uvažovať inverzné zobrazenie DFT(ω) 1, ktoré sa nazýva inverzná diskrétna Fourierová transformácia a budeme ho značiť IDFT(ω). Môžeme vidieť, že IDFT(ω)(u) = A(ω) 1 u. IDFT je vlastne interpolácia polynómu z hodnôt v bodoch 1, ω, ω 2,..., ω a celá diskrétna Fourierová transformácia a jej inverz sú špeciálnym prípadom modulárnej reprezentácie. Jej zmysel je v tom, že pre isté ω existuje veľmi rýchly algoritmus na ich výpočet. Definícia (n-tá odmocnina z jednej). Povieme, že prvok ω T je primitívna n-tá odmocnina z jednej v telese T, ak platí (1) ω n = 1, (2) ω i 1 pre všetky i = 1, 2,..., n 1. Inými slovami, ak je rád prvku ω v grupe T rovný n. Príklad (n-té odmocniny z jednej). (1) V telese C je ω = e 2πi n = cos 2π n + i sin 2π n primitívnou n-tou odmocninou z jednej, ako sa dá ukázať, keď si nakreslíte jej mocniny v komplexnej rovine (tvorí vrcholy pravidelného n- uholníka) (2) V telese Z 5 je ω = 2 primitívnou štvrtou odmocninou z jednej, pretože 2 2 = 4, 2 3 = 3 a 2 4 = 1. Všeobecne, každý generátor grupy Z p je primitívnou p 1-tou odmocninou z jednej v telese Z p. Všimnime si, že ak je ω primitívna n-tá odmocnina z jednej, tak potom je matica A(ω) regulárna. Tvrdenie 1.2. Ak je ω primitívna n-tá odmocnina z jednej v telese T a potom Inými slovami, A(ω) = ( ω ij) i,j=0, A(ω) 1 = 1 n (ω ij) i,j=0. IDFT(ω) = 1 n DFT(ω 1 ). Proof. Dokážeme, že súčin týchto dvoch matíc je jednotková matica (z toho vyplýva, že sú navzájom inverzné). Podľa vzorca pre súčin matíc platí Pritom pre i = j máme Naopak, pre i j ( ω ij ) i,j=0 1 n (ω ij) = 1 i,j=0 n ( 1 n ω ik ω ki = 1 n 1 = 1 n ω ik ω kj) i,j=0. (n 1) = 1. ω ik ω kj = ω k(i j) = (ω i j ) k,

3 3 dostali sme geometrickú radu. Pretože ω je primitívna odmocnina, máme ω i j 1 a môžeme použiť známy vzorec, ktorý hovorí, že (ω i j ) k = (ωi j ) n 1 ω i j 1. Zároveň však ω n = 1, a teda (ω i j ) n = (ω n ) i j = 1 i j = 1. Máme výsledek a ten je 0. Dokázali sme, že na diagonále súčinu týchto dvoch matíc sú jednotky a mimo diagonálu nuly. Súčinom je teda jednotková matica. Nemusíme sa teda zaoberať výpočtom IDFT, pretože ten môžeme urobiť rovnako ako DFT, len s iným parametrom. Princípom rýchleho algoritmu na výpočet DFT je metóda rozdeľ a panuj. Ak je n nepárne, môžeme počítať hodnotu polynómu p = i=0 a ix i v bode α rekurzívne takto: tj. p(α) = (a 0 + a 2 α 2 + a 4 α a n 2 α n 2 ) + (a 1 α + a 3 α a α ), }{{}}{{} q(α 2 ) αr(α 2 ) pričom q, r sú polynómy definované n 2 1 p(α) = q(α 2 ) + αr(α 2 ), q(x) = a 2i x i a r(x) = a 2i+1 x i. i=0 n 2 1 Teda úlohu dosadenia hodnoty α do polynómu s n koeficientmi sme rozdelili na dve úlohy dosadenia hodnoty α 2 do polynómov polovičnej veľkosti. Aby sme mohli úlohu deliť na polovičnú vo všetkých krokoch, predpokladajme naďalej, že n je mocninou dvojky. Algoritmus 1.3 (Rýchla Fourierová transformácia). FFT(ω) VSTUP: a 0, a 1,..., a. VÝSTUP: DFT(ω)(a 0, a 1,..., a ). 0. IF n = 1 THEN RETURN a 0, STOP. 1. (b 0,..., b n 2 1 ) := FFT(ω 2 )(a 0, a 2,..., a n 2 ), (c 0,..., c n 2 1 ) := FFT(ω 2 )(a 1, a 3,..., a ). 2. Pro i = 0,..., n 2 1 polož d i := b i + ω i c i, d i+ n 2 i ω i c i, RETURN (d 0,..., d ). Tvrdenie 1.4. Ak je n mocnina dvojky a ω primitívna n-tá odmocnina z jednej v telese T, potom Algoritmus 1.3 funguje. Proof. Dôkaz predvedieme indukciou podľa n. Pre n = 1 je DFT(ω) dosadenie do konštantného polynómu s koeficientom a 0, teda výsledok je a 0. Prevedieme indukční krok. Nech p = n i=0 a ix i a definujeme polynómy q, r ako vyššie. Podľa indukčného predpokladu a i=0 (b 0,..., b n 2 1 ) = (q(1), q(ω 2 ), q(ω 4 ),..., q(ω n 2 )) (c 0,..., c n 2 1 ) = (r(1), r(ω 2 ), r(ω 4 ),..., r(ω n 2 )).

4 4 Chceme dokázať, že pre i = 0, 1,..., n 2 1 platí d i = p(ω i ) a d i+ n 2 = p(ωi+n/2 ). Prvý vzťah plynie priamo zo vzorca odvodeného vyššie: Podobne odvodíme aj druhý vzťah: p(ω i ) = q(ω 2i ) + ω i r(ω 2i ) = b i + ω i c i = d i. p(ω i+n/2 ) = q(ω 2i+n ) + ω i+n/2 r(ω 2i+n ) = b i ω i c i = d i+ n 2. Na tomto mieste využívame jednoduché pozorovanie, že ω 2i+n = ω 2i ω n = ω 2i a že ω i+n/2 = ω i ω n/2 = ω i. Pritom ω n/2 = 1, pretože to je druhá odmocnina z jednej, a tie sú len dve: 1 (tá to nie je, pretože ω je primitívna odmocnina) a 1. K funkčnosti algoritmu ostáva dokázať, že ω 2 je primitívna n 2 -tá odmocnina z jednej. Zrejme (ω 2 ) n/2 = ω n = 1 a ďalej pre všetky i = 1, 2,..., n 2 1 platí (ω 2 ) i = ω 2i 1, pretože 2i < n a ω je primitívna odmocnina. Tvrdenie 1.5. Algoritmus 1.3 má časovú zložitosť O(n log n) (ako jednotkovú operáciu uvažujeme akúkoľvek operáciu v telese T). Proof. Budeme postupovať podľa už niekoľkokrát použitého schématu pre algoritmy rozdeľ a panuj. Predpokladajme, že n = 2 k. Označme T (n) počet operácií v telese T, ktoré algoritmus vykoná na vstupe dĺžky n. Všimnime si, že T (1) = 0 a T (n) = 2T ( n 2 ) + cn pre istú konštantu c. Platí teda T (2 k ) = 2T (2 k 1 ) + c2 k = 2(2T (2 k 2 ) + c2 k 1 ) + c2 k = 4T (2 k 2 ) + c(2 k + 2 k ) =... = 2 k T (2 k k ) + ck2 k = 2 k T (1) + ck2 k = O(k2 k ). Teda T (n) = O(n log n). Príklad (FFT). Uvažujme polynóm p = 5x 3 + x + 1 Z 41 [x]. Môžeme zvoliť ω = 9, pretože ω 2 = 1, ω 3 = 9 a ω 4 = 1. Spočítajme DFT(ω)(1, 1, 0, 5) pomocou Rýchlej Fourierovej transformácie: FFT(ω 2 )(1, 0) = (1, 1), FFT(ω 2 )(1, 5) = (6, 4), výsledok teda je (1 + ω 0 6, 1 + ω 1 ( 4), 1 ω 0 6, 1 ω 1 ( 4)) = (1 + 6, 1 + ( 9) ( 4), 1 6, 1 ( 9) ( 4)) = (7, 4, 5, 6). Ostáva vyriešiť otázku, ako zvoliť parameter ω, tj. odkiaľ vziať v telese T primitívnu n-tú odmocninu z jednej. Ako už bolo povedané, v telese C existuje primitívna n-tá odmocnina z jednej pre každé n, napr. ω = e 2πi 2πi 2πi n = cos + i sin n n. Pre telesa Z p platí nasledujúce tvrdenie: Tvrdenie 1.6. V telese Z p existuje primitívna n-tá odmocnina z jednej práve vtedy, ak n p 1. V tom prípade je primitívnou n-tou odmocninou každý prvok a p 1 n, kde a je generátor grupy Z p.

5 5 Proof. Pripomeňme, že primitívna n-tá odmocnina z jednej je vlastne prvok ω Z p rádu n. Vieme, že Z p = p 1, a teda, podľa Lagrangeovej vety, ak n p 1, potom žiadny prvok rádu n neexistuje. V opačnom prípade využijeme faktu, že grupa Z p je cyklická, teda existuje prvok a Z p, ktorý túto grupu generuje, a teda má rád p 1. Zrejme ω = a p 1 n je prvok rádu n, pretože ω i = a i p 1 n 1 pre každé i < n a pritom ω n = a p 1 = 1 v Z p. Ako ale také a v Z p nájsť? Vieme, že grupa Z p obsahuje ϕ(p 1) generátorov, kde ϕ značí Eulerovu funkciu. Ich hustota je teda relatívne veľká a existuje odhad (dokazovaný obvykle v teórií čísel) ϕ(p 1) p 3 π 2. = 0, 3. Nejefektívnejšia metóda je teda náhodna voľba a následne overenie, či skutočne rád náhodne zvoleného prvku je p 1. Spomenutý odhad Hovorí, že se trafíme do generátoru v priemere v každom treťom prípade. Poznamenejme, že nás vlastne zaujímajú primitívne n-té odmocniny z jednej pre n rovno mocnine dvojky. Zaujímavé sú telesa Z p, kde 2 k p 1 pre veľmi veľké k (napr. 17, 41, atď.) Záverom okomentujeme nepríjemnú námietku, ktorá vás už možno napadla: čo ak v našom obľúbenom telese T (ako napríklad v racionálnych číslach) žiadne primitívne n-té odmocniny z jednej nie sú? Potom v T nemôžeme robiť Rýchlu Fourierovú transormáciu. Nikto nám však nebráni si príslušnú odmocninu k T adjungovať a pracovať v algebraickom rozšíreni T(ω). Ako T(ω) si samozrejme zvolíme vhodné koreňové nadteleso polynómu x n 1. V prípade racionálnych čísel je prirodzenou voľbou Q(e 2πi n ). 2. Rýchle násobenie polynómov Princípom rýchleho algoritmu na násobenie a delenie polynómov je nasledujúcie pozorovanie: ak je (c 0,..., c n ) modulárna reprezentácia polynómu p a (d 0,..., d n ) modulárna reprezentácia polynómu q vzhľadom k daným bodom α 0,..., α n, a ak je naviac n deg(p) + deg(q), potom modulárna reprezentácia polynómu p q vzhľadom k týmto bodom je (c 0 d 0,..., c n d n ), pretože (p q)(α i ) = p(α i ) q(α i ) pre ľubovoľný bod α i. Analogicky, ak q p, potom p q má modulárnu reprezentáciu ( c 0,..., c n ). d 0 d n Pritom k výpočtu súčinu a podielu v takejto modulárnej reprezentácii stačí n + 1 operacií (násobení, resp. delení) v telese T. Vzhľadem k tomu, že užívateľ obvykle vyžaduje vstup aj výstup v štandardnej reprezentácii, zložitost násobenia a delenia závisí na algoritmu pre prevod do vhodne zvolenej modulárnej bázi.

6 6 Algoritmus 2.1 (Rýchle násobenie). VSTUP: p = n i=0 a ix i, q = m i=0 b ix i T[x]. VÝSTUP: p q = m+n i=0 f ix i. 1. Zvoľ N = 2 k > m + n a nejakú primitívnu n-tú odmocninu z jednej ω v T. 2. c := FFT(ω)(a 0,..., a n, 0,..., 0), d := FFT(ω)(b 0,..., b m, 0,..., 0). 3. ē := c d = (c 0 d 0,..., c N 1 d N 1 ). 4. f := 1 N FFT(ω 1 )(e 0,..., e N 1 ). 5. RETURN N 1 i=0 f ix i. Tvrdenie 2.2. Predpokladajme, že ω je daná. Časová zložitosť Algoritmu 2.1 je O(n log n), kde n je väčší zo stupňov p, q. Proof. Rozoberieme zložitosť jednotlivých krokov: 1. je triviálny. Krok 2. má zložitosť 2O(N log N). Krok 3. má zložitosť N. Krok 4. má zložitosť O(N log N). A krok 5. je triviálny. Pretože N 4n, máme celkovú časovú zložitosť algoritmu O(N log N) = O(n log n). Poznámka. Zložitosť hľadania primitívnej odmocniny z jednej sme nepočítali, pretože toto záleží na telese T. Napríklad v prípade Q nemusíme nič hľadať, stačí položiť ω = e 2πi N a ω 1 = e 2πi N a počítať v telese Q(ω). V prípade Z p môžeme hľadať pravdepodobnostným algoritmom popísaným v predošlej sekcii. Ak v Z p žiadna primitívna N-tá odmocnina z jednej neexistuje, pracujeme v príslušnom rozšíreni. Príklad. Spočítajme súčin (3x 3 + x 2 4x + 1) (x 3 + 2x 2 + 5x 3) v Z 41. (1) zvoľme N = 2 3 = 8 > a ω = 14. (2) c = FFT(14)(1, 4, 1, 3, 0, 0, 0, 0) = (1, 9, 19, 18, 3, 16, 19, 3), d = FFT(14)( 3, 5, 2, 1, 0, 0, 0, 0) = (5, 5, 0, 14, 7, 6, 10, 16). (3) ē = (5, 4, 0, 6, 20, 14, 15, 7). (4) Platí ω 1 = 3 a 1 N = 1 8 = 5. Tedy f = 5 FFT(3)(5, 4, 0, 6, 20, 14, 15, 7) = ( 3, 17, 20, 11, 13, 7, 3, 0). (5) Súčin je x + 20x 2 11x x 4 + 7x 5 + 3x 6 Poznámka. Algoritmus na rýchle delenie funguje analogicky. V kroku 1. stačí N = 2 k > n a v kroku 3. počítame ē = ( c0 d 0,..., c N 1 d N 1 ). Aj v tomto prípade bude časová zložitosť O(n log n).

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

1-MAT-220 Algebra februára 2012

1-MAT-220 Algebra februára 2012 1-MAT-220 Algebra 1 12. februára 2012 Obsah 1 Grupy 3 1.1 Binárne operácie.................................. 3 1.2 Cayleyho veta.................................... 3 2 Faktorizácia 5 2.1 Relácie ekvivalencie

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2 Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický

Διαβάστε περισσότερα

Planárne a rovinné grafy

Planárne a rovinné grafy Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus 1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

BANACHOVE A HILBERTOVE PRIESTORY

BANACHOVE A HILBERTOVE PRIESTORY BANACHOVE A HILBERTOVE PRIESTORY 1. ZÁKLADNÉ POJMY Normovaným lineárnym priestorom (NLP) nazývame lineárny (= vektorový) priestor X nad telesom IK, na ktorom je daná nezáporná reálna funkcia : X IR + (norma)

Διαβάστε περισσότερα

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA S MATEMATICÁ OLYMPIÁDA skmo.sk 2008/2009 58. ročník Matematickej olympiády Riešenia úloh IMO. Nech n je kladné celé číslo a a,..., a k (k 2) sú navzájom rôzne celé čísla z množiny {,..., n} také, že n

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Reálna funkcia reálnej premennej

Reálna funkcia reálnej premennej (ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od

Διαβάστε περισσότερα

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3 Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 1.3 Základné označenia................................. 3 2 Množiny a zobrazenia

Διαβάστε περισσότερα

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie, Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne

Διαβάστε περισσότερα

Príklady na precvičovanie Fourierove rady

Príklady na precvičovanie Fourierove rady Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Riešenie sústavy lineárnych rovníc. Priame metódy.

Riešenie sústavy lineárnych rovníc. Priame metódy. Riešenie sústavy lineárnych rovníc. Priame metódy. Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Priame metódy 1/16 Obsah 1 Základy 2 Systémy

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17 Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy

Διαβάστε περισσότερα

Prirodzené čísla. Kardinálne čísla

Prirodzené čísla. Kardinálne čísla Prirodzené čísla Doteraz sme sa vždy uspokojili s tým, že sme pod množinou prirodzených čísel rozumeli množinu N = { 1, 2,3, 4,5, 6, 7,8,9,10,11,12, } Túto množinu sme chápali intuitívne a presne sme ju

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

PageRank algoritmus. Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky

PageRank algoritmus. Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky PageRank algoritmus Bakalárska práca Študijný program: Informatika Študijný odbor: 9.2.1 Informatika Školiace pracovisko: Katedra

Διαβάστε περισσότερα

Deliteľnosť a znaky deliteľnosti

Deliteľnosť a znaky deliteľnosti Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

Teória pravdepodobnosti

Teória pravdepodobnosti 2. Podmienená pravdepodobnosť Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 23. februára 2015 1 Pojem podmienenej pravdepodobnosti 2 Nezávislosť náhodných udalostí

Διαβάστε περισσότερα

ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov

ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme

Διαβάστε περισσότερα

G. Monoszová, Analytická geometria 2 - Kapitola III

G. Monoszová, Analytická geometria 2 - Kapitola III text obsahuje znenia viet, ktoré budeme dokazovat na prednáškach text je doplnený aj o množstvo poznámok, ich ciel om je dopomôct študentom k lepšiemu pochopeniu pojmov aj súvislostí medzi nimi text je

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

Lineárne kódy. Ján Karabáš. Kódovanie ZS 13/14 KM FPV UMB. J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19

Lineárne kódy. Ján Karabáš. Kódovanie ZS 13/14 KM FPV UMB. J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19 Lineárne kódy Ján Karabáš KM FPV UMB Kódovanie ZS 13/14 J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19 Algebraické štruktúry Grupy Grupa je algebraická štruktúra G = (G;, 1, e), spolu s binárnou

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných

Διαβάστε περισσότερα

Učební texty k státní bakalářské zkoušce Matematika Vektorové prostory. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vektorové prostory. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vektorové prostory študenti MFF 15. augusta 2008 1 9 Vektorové priestory Požiadavky Základné vlastnosti vektorových priestorov, podpriestorov generovania,

Διαβάστε περισσότερα

Polynómy. Hornerova schéma. Algebrické rovnice

Polynómy. Hornerova schéma. Algebrické rovnice Polynómy. Hornerova schéma. Algebrické rovnice Teoretické základy Definícia 1 Nech (koeficienty) a 0, a 1,..., a n sú komplexné čísla a nech n je nezáporné celé číslo. Výraz P n (x) = a n x n + a n 1 x

Διαβάστε περισσότερα

MATEMATICKÁ ANALÝZA 1

MATEMATICKÁ ANALÝZA 1 UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta Ústav matematických vied Božena Mihalíková, Ján Ohriska MATEMATICKÁ ANALÝZA Vysokoškolský učebný text Košice, 202 202 doc. RNDr. Božena

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc

MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc MATEMATIKA I Doc. RNDr. Michal Šabo, CSc 2 Obsah Predhovor 5 2 VYBRANÉ STATE Z ALGEBRY 2. Úvod................................... 2.2 Reálne n-rozmerné vektory...................... 2.3 Matice..................................

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27

Διαβάστε περισσότερα

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA. Martin Samuelčík

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA. Martin Samuelčík UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA Martin Samuelčík BRATISLAVA 2004 UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Διαβάστε περισσότερα

1. POLIA A VEKTOROVÉ PRIESTORY. V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom

1. POLIA A VEKTOROVÉ PRIESTORY. V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom 1. POLIA A VEKTOROVÉ PRIESTORY V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom ďalšom výklade kľúčovú úlohu, a dokážeme o nich niekoľko jednoduchých základných tvrdení.

Διαβάστε περισσότερα

XVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú

XVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú Pomocný text Číselné obory Číselné obory Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú ľudia začali vnímať. Abstrakcia spočívala v tom, že množstvo, ktoré sa snažili

Διαβάστε περισσότερα

primitívnoufunkcioukfukncii f(x)=xnamnožinereálnychčísel.avšakaj 2 +1 = x, tedaajfunkcia x2

primitívnoufunkcioukfukncii f(x)=xnamnožinereálnychčísel.avšakaj 2 +1 = x, tedaajfunkcia x2 Neurčitý integrál. Primitívna funkcia a neurčitý integrál Funkcia F(x)sanazývaprimitívnoufunkcioukfunkcii f(x)naintervale(a,b),akpre každé x (a,b)platí F (x)=f(x). Z definície vidíme, že pojem primitívnej

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák Prednáška 6 6.1. Fourierove rady Základná myšlienka: Nech x Haφ 1,φ 2,...,φ n,... je ortonormálny systém v H, dá sa tento prvok rozvinút do radu x=c 1 φ 1 + c 2 φ 2 +...,c n φ n +...? Ako nájdeme c i,

Διαβάστε περισσότερα

Obyčajné diferenciálne rovnice

Obyčajné diferenciálne rovnice (ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú

Διαβάστε περισσότερα

Základy matematickej štatistiky

Základy matematickej štatistiky 1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov

Διαβάστε περισσότερα

Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií

Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií Derivácia funkcie Derivácia funkcie je jeden z najužitočnejších nástrojov, ktoré používame v matematike a jej aplikáciách v ďalších odboroch. Stručne zhrnieme základné informácie o deriváciách. Podrobnejšie

Διαβάστε περισσότερα

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti 4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme

Διαβάστε περισσότερα

(IP3) (f, g) = (g, f) (symetria), (IP4) (f, f) > 0 pre f 0 (kladná definitnosť). Z podmienok (IP1) (IP4) sa ľahko dokážu rovnosti:

(IP3) (f, g) = (g, f) (symetria), (IP4) (f, f) > 0 pre f 0 (kladná definitnosť). Z podmienok (IP1) (IP4) sa ľahko dokážu rovnosti: Hilbertove priestory Veľké množstvo aplikácií majú lineárne normované priestory, v ktorých norma je odvodená od skalárneho (vnútorného) súčinu, podobne ako v bežnom trojrozmernom euklidovskom priestore.

Διαβάστε περισσότερα

Numerické metódy matematiky I

Numerické metódy matematiky I Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc

Διαβάστε περισσότερα

9 Neurčitý integrál. 9.1 Primitívna funkcia a neurčitý integrál. sa nazýva primitívnou funkciou k funkcii f ( x) každé x ( a,

9 Neurčitý integrál. 9.1 Primitívna funkcia a neurčitý integrál. sa nazýva primitívnou funkciou k funkcii f ( x) každé x ( a, Hí, P Pokorný, M: Maemaika pre informaikov a prírodné vedy 9 Neurčiý inegrál 9 Primiívna funkia a neurčiý inegrál Funkia F sa nazýva primiívnou funkiou k funkii f na inervale ( b) každé ( a, b) plaí F

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

Zložené funkcie a substitúcia

Zložené funkcie a substitúcia 3. kapitola Zložené funkcie a substitúcia Doteraz sme sa pri funkciách stretli len so závislosťami medzi dvoma premennými. Napríklad vzťah y=x 2 nám hovoril, ako závisí premenná y od premennej x. V praxi

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

Numerické metódy, pravdepodobnosť a matematická štatistika

Numerické metódy, pravdepodobnosť a matematická štatistika Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Strana 1 z 262 Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Strana

Διαβάστε περισσότερα

Numerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER

Numerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Prvé vydanie Za

Διαβάστε περισσότερα

Aproximačné algoritmy. (7. októbra 2010) DRAFT

Aproximačné algoritmy. (7. októbra 2010) DRAFT R. Královič Aproximačné algoritmy (7. októbra 2010) ii Obsah 1 Úvod 1 1.1 Algoritmy a zložitosť........................... 1 1.2 Lineárne programovanie......................... 1 1.3 Použité vzťahy..............................

Διαβάστε περισσότερα

Teória funkcionálneho a logického programovania

Teória funkcionálneho a logického programovania Prírodovedecká fakulta UPJŠ Košice Teória fucionálneho a logického programovania (poznámky z prednášok z akademického roka 2002/2003) prednáša: Prof. RNDr. Peter Vojtáš, DrSc. 2 TEÓRIA FUNKCIONÁLNEHO A

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =. Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií

Διαβάστε περισσότερα

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c)

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Božena Mihalíková, Ivan Mojsej Strana 1 z 43 DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) 1 Obyčajné diferenciálne rovnice 3 1.1 Úlohy

Διαβάστε περισσότερα

Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus

Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus KrAv11-T List 1 Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus RNDr. Jana Krajčiová, PhD. U: Najprv si zopakujme, ako znie definícia logaritmu. Ž: Ja si pamätám, že logaritmus súvisí

Διαβάστε περισσότερα

4 Reálna funkcia reálnej premennej a jej vlastnosti

4 Reálna funkcia reálnej premennej a jej vlastnosti Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický

Διαβάστε περισσότερα

Matematika 2. Lineárna algebra. (ver )

Matematika 2. Lineárna algebra. (ver ) Matematika 2 Lineárna algebra (ver.01.03.2011) 1 Úvod Prehľad. Tieto poznámky obsahujú podklady k prednáške Matematika 2 na špecializácii Aplikovaná informatika: jedná sa o 12 dvojhodinových prednášok

Διαβάστε περισσότερα

1.1 Zobrazenia a funkcie

1.1 Zobrazenia a funkcie 1 Teória vypočítateľnosti poznámky z prednášky #1 1.1 Zobrazenia a funkcie Definícia. Čiastočné (totálne) zobrazenie trojice (A, B, f) pre ktoré platí: f A B Ku každému vstupu a A existuje najviac jeden

Διαβάστε περισσότερα

Goniometrické substitúcie

Goniometrické substitúcie Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať

Διαβάστε περισσότερα

Fakulta matematiky, fyziky a informatiky. Univerzita Komenského. Contents I. Úvod do problematiky numeriky 2

Fakulta matematiky, fyziky a informatiky. Univerzita Komenského. Contents I. Úvod do problematiky numeriky 2 NUMERICKÁ MATEMATIKA ročník Fakulta matematiky, fyziky a informatiky Univerzita Komenského Contents I Úvod do problematiky numeriky II Počítačová realizácia reálnych čísel 3 III Diferenčný počet 5 IV CORDIC

Διαβάστε περισσότερα

4. decembra decembra 2003 Teria grafov 1

4. decembra decembra 2003 Teria grafov 1 4. decembra 2003 19. decembra 2003 Teria grafov 1 9. Teória grafov Definícia. Obyčajný graf G je dvojica (V, E), kde V je množina vrcholov grafu G, E množina hrán grafu G je podmnožinou množiny ( V 2).

Διαβάστε περισσότερα

Úvod do lineárnej algebry

Úvod do lineárnej algebry Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.

Διαβάστε περισσότερα

Numerické metódy Zbierka úloh

Numerické metódy Zbierka úloh Blanka Baculíková Ivan Daňo Numerické metódy Zbierka úloh Strana 1 z 37 Predhovor 3 1 Nelineárne rovnice 4 2 Sústavy lineárnych rovníc 7 3 Sústavy nelineárnych rovníc 1 4 Interpolačné polynómy 14 5 Aproximácia

Διαβάστε περισσότερα

Motivácia na zlepšenie obrazu sa používajú frekvenčné metódy a priestorové metódy.

Motivácia na zlepšenie obrazu sa používajú frekvenčné metódy a priestorové metódy. OBRAZOVÉ TRANSFORMÁCIE Motivácia na zlepšenie obrazu sa používajú frekvenčné metódy a priestorové metódy. Fourierova transformácia Jednorozmerný spojitý prípad Nech f(x je spojitá funkcia reálnej premennej

Διαβάστε περισσότερα

ZÁPISKY Z MATEMATICKEJ ANALÝZY 1

ZÁPISKY Z MATEMATICKEJ ANALÝZY 1 UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta Ústav matematických vied 4 3 4 n 6 4 3 2 3 2 4 3 6 5 6 7 3 4 2 3 3/5 /2 2/5 /3 /4 /5 /0 d 0/ /0 /5 /4 /3 2/5 6 3 2 3 2 6 5 6 7 3 4 2

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα