5. Δεικτες Παραμετροι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5. Δεικτες Παραμετροι"

Transcript

1 Μαθηματικά και Στατιστικη στην Βιολογια ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (1 ο ) Τμημα Βιολογιας Αριστοτελειο Πανεπιστημιο Θεσσαλονικης Mathematics and Statistics in Biology WINTER SEMESTER (1 st ) School of Biology Aristotle University of Thessaloniki 5. Δεικτες Παραμετροι Iωαννης Αντωνιου iantonio@math.auth.gr Χαραλαμπος Μπρατσας cbratsas@math.auth.gr Το παρόν εκπαιδευτικό υλικό υπόκειται σε Αδεια Χρήσης Creative Commons

2 Σκοπος-Περιεχομενο Ποιοι οι βασικοι Δεικτες- Στατιστικες Παραμετροι Στατιστικοι Δεικτες- Παραμετροι Θεση Κατανομης (Location Parameters) Eξαπλωση- Εκταση Κατανομης (Spread or Dispersion) Σχημα Κατανομης (Shape Parameters) Εξαρτηση Μεταβλητων Μέση Τιμή (mean) Ροπες (Moments) Kορυφες (modes) Διάμεσος (median). Ποσοστημορια (Quantiles, Percentiles) Εύρος (range). Διασπορα (variance) Τυπική Απόκλιση (standard deviation) Σχετικο Σφαλμα (relative error) = Mεταβλητοτης (CV) Αποστασεις Ποσοστημοριων Eντροπια Entropy (και για κατηγορικες μεταβλητες) Λοξότητα (skewness). Κύρτωση (kurtosis). Συντελεστης Συνδιασπορας Pearson Αμοιβαια Πληροφορια (Mutual Information) (και για κατηγορικες μεταβλητες)

3 Στατιστικοι Δεικτες- Παραμετροι Οι Στατιστικοι Δεικτες (Παραμετροι) οριζονται: Θεωρητικα από την Κατανομη Πιθανοτητας ρ: θ = θ ρ Εμπειρικα από τα Δεδομενα των Παρατηρησεων θεωρωντας ως Πιθανοτητα την Εμπειρικη Σχετικη Συχνοτητα. θ = D (Data) D : Η Εμπειρικη Εκτιμητρια (Συναρτηση) της Παραμετρου Διαπιστωθηκε όμως ότι οι Εμπειρικες Παραμετροι θ δεν ειναι παντοτε ικανοποιητικες Εκτιμησεις Η Εμπειρικη Τυπικη Αποκλιση δεν είναι Αμεροληπτη. Διορθωση Bessel Τεθηκαν ως εκ τουτου Κριτηρια Αξιολογησης- Επιλογης Εκτιμησεων από Δεδομενα Παρατηρησεων και προεκυψαν διαφορες Εκτιμητριες των Παραμετρων που συμβολιζονται ως: θ = D (Data) D : Η Εκτιμητρια (Συναρτηση) της Παραμετρου

4 Θεση Κατανομης (Location Parameters) Eξαπλωση- Εκταση Κατανομης (Spread or Dispersion) Σχημα Κατανομης (Shape Parameters) Εξαρτηση Μεταβλητων Μέση Τιμή (mean) Ροπες (Moments) Kορυφες (modes) Διάμεσος (median). Ποσοστημορια (Quantiles, Percentiles) Εύρος (range). Διασπορα (variance) Τυπική Απόκλιση (standard deviation) Σχετικο Σφαλμα (relative error) = Mεταβλητοτης (CV) Αποστασεις Ποσοστημοριων Eντροπια (και για κατηγορικες μεταβλητες) Λοξότητα (skewness). Κύρτωση (kurtosis). Συντελεστης Συνδιασπορας Pearson Αμοιβαια Πληροφορια (Mutual Information)

5 Μεση Τιμη m = X = Ε Χ the Expectation Value of the Variable X m = ν x ν p ν, για Διακριτες Μεταβλητες m = + xx(x)dd, για Συνεχεις Μεταβλητες

6 η Μεταβλητη Αθροισμα Ενδειξεων 2 Ζαριων Το Αθροισμα των ενδειξεων 2 Ζαριων Παρατηρησιμα Γεγονοτα (Κελια) Observable Events (Cells) Μέση Τιμή m= m= = 7 Πιθανοτητα Probability 2 Ξ 2 ={ (1,1)} 1/36=3% 3 Ξ 3 ={ (1,2), (2,1)} 2/36=6% 4 Ξ 4 ={ (2,2), (1,3),(3,1)} 3/36=8% 5 Ξ 5 ={ (1,4), (2,3),(3,2), (4,1)} 4/36=11% 6 Ξ 6 ={ (1,5), (2,4),(3,3), (4,2), (5,1)} 5/36=14% 7 Ξ 7 ={ (1,6), (2,5),(3,4), (4,3), (5,2), (6,1)} 6/36=17% 8 Ξ 8 ={ (2,6), (3,5),(4,4), (5,3), (6,2)} 5/36=14% 9 Ξ 9 ={ (3,6), (4,5),(5,4), (6,3)} 4/36=11% 10 Ξ 10 ={ (4,6), (5,5),(6,4)} 3/36=8% 11 Ξ 11 ={ (5,6), (6,5)} 2/36=6% 12 Ξ 12 ={ (6,6)} 1/36=3%

7 Μεση Τιμη Ιδιοτητες Θεωρημα 1) Γραμμικοτης E[cX]= ce[x], c πραγματικος αριθμος E[X 1 +X 2 ]= E[X 1 ] + E[X 2 ] 2) Θετικοτης E[Χ] 0, εάν Χ 0 3) Κανονικοποιηση E[1]=1, 1(y)=1, η Μεταβλητη με σταθερη τιμη 1 Ε[Ο]=0, Ο(y)= 0, η Μεταβλητη με σταθερη τιμη 0 4) E[X 1 ] E[X 2 ], αν X 1 X 2 5) Ε[Χ] E[ X ] 6) Ε[g(Χ)] g(e[x]), g:χ R, πραγματικη συναρτηση της μεταβλητης Χ Οπου: Ε[g(Χ)] = g(x 1 ) p 1 + g(x 2 )p 2 + για διακριτες μεταβλητες + = g(x)ρ(x)dd για συνεχεις μεταβλητες

8 Μεση Τιμη Ιδιοτητες Θεωρημα: Ανισοτητα Μarkov P[ X α] E X α, α>0 E X α είναι το ποσοστο τιμων της Μεταβλητης Χ με μεγεθος τουλαχιστον α Παραδειγμα: X = Το Αθροισμα των ενδειξεων 2 Ζαριων E X P[ X 7] = 7 = P[ X 7]= = 22 = P[ X 8] E X 8 = 7 8 = P[ X 8]= = P[ X 9] E X 9 = 7 9 = P[ X 9]= = = =

9 Μεση Τιμη Εκτιμηση από το Δειγμα Μ Μετρησεις: χ 1,, χ Μ Φασμα n Tιμων: x 1,, x n, n M m = χ χ Μ Μ = x 1f x n f n n = x 1 ρ x n ρ n Η Εμπειρικη Μεση Τιμη είναι Αμεροληπτη Εκτιμητρια

10 Poπη ν-ταξεως, ν=1,2,3, m ν = E[X ν ] = (x 1 ) ν ρ 1 + (x 2 ) ν ρ = x ν ρ(x)dd ΣΧΟΛΙΑ 1) m 1 = m = E[X], η πρωτη ροπη είναι η Μεση Τιμη 2) m 2 = E[X 2 ] η «Ισχυς» ή «Ροπη Αδρανειας» ή Μεση Τιμη Τετραγωνου (mean square) της Μεταβλητης X 3) Aν γνωριζουμε τις ροπες, γνωριζουμε την κατανομη, υπο προυποθεσεις (moment problem). Συνηθως στην πραξη αρκουν οι 4 πρωτες ροπες για προσεγγιση της κατανομης

11 Παραδειγμα: X = Το Αθροισμα των ενδειξεων 2 Ζαριων E[X ] = E[X 2 ] = E[X 2 ] = E[X 2 ] = η Ισχυς της Χ

12 Ροπες Εκτιμηση από το Δειγμα m ν = x 1 ν ρ x n ν ρ n Η Εμπειρικες Ροπες είναι Αμεροληπτες Εκτιμητριες

13 Κορυφες η Επικρατουσες Τιμες (Μοdes) Οι τιμες x=ξ mode στις οποιες η Κατανομη ρ(x) εχει (τοπικα) μεγιστα Μονοκορυφες κατανομες (Unimodal) εχουν 1 μεγιστο Δικορυφες κατανομες (Βimodal) εχουν 2 μεγιστα

14 Διάμεσος (Median) H τιμη x=ξ 1/2 : P[x< x 1/2 ] 1 2 P[x x 1/2] Παραδειγμα: X = Το Αθροισμα των ενδειξεων 2 Ζαριων Διαμεσος ξ 1/2 = 7 = m = ξ mode Χρησιμοποιηθηκε από τον G. Fechner Fechner Law 1860: Perception of Stimulus B = k ln B B 0 B 0 = the threshold of stimulus below which no stimulus is perceived B B 0 Keynes, J.M. (1921) A Treatise on Probability, Pt II Ch XVII 5 (p 201)

15 Σχεση Μεσης Τιμης, Διαμεσου, Κορυφης Θεωρημα Για συμμετρικες κατανομες: Μεση Τιμη = Διαμεσος = Κορυφη Για λιγο ασυμμετρες κατανομες: Μεση Τιμη Κορυφη 3(Μεση Τιμη Διαμεσος) Για ασυμμετρες κατανομες προς τα αριστερα: α 3 > 0 Μεση Τιμη > Διαμεσος > Κορυφη Για ασυμμετρες κατανομες προς τα δεξια: α 3 < 0 Μεση Τιμη < Διαμεσος < Κορυφη

16 α Ποσοστημοριο, 0<α<1 α Quantile Η τιμη της μεταβλητης x = x α, 0<α<1 με πιθανοτητα το πολύ α: P[X < x α ] α P[x x α ] Αν F συνεχης και γνησιως αυξουσα, τοτε το α Ποσοστημοριο είναι η λυση της Εξισωσης: F x = α x α = F 1 α

17 x 1/4 = x 0.25 το πρωτο τεταρτημοριο x 1/2 = x 0.50 το δευτερο τεταρτημοριο (η διαμεσος) x 3/4 = x 0.75 το τριτο τεταρτημοριο Παραδειγμα: X = Το Αθροισμα των ενδειξεων 2 Ζαριων x 1/4 = x 0.25 = 4 x 1/2 = x 0.50 = 7 x 3/4 = x 0.75 = 9

18 x 0.1, x 0.2,, x 0.9 τα 9 Δεκατημορια (Deciles) Παραδειγμα: τα 9 Δεκατημορια της Κανονικης Κατανομης:

19 Θεση Κατανομης (Location Parameters) Eξαπλωση- Εκταση Κατανομης (Spread or Dispersion) Σχημα Κατανομης (Shape Parameters) Εξαρτηση Μεταβλητων Μέση Τιμή (mean) Ροπες (Moments) Kορυφες (modes) Διάμεσος (median). Ποσοστημορια (Quantiles, Percentiles) Εύρος (range). Διασπορα (variance) Τυπική Απόκλιση (standard deviation) Σχετικο Σφαλμα (relative error) = Mεταβλητοτης (CV) Αποστασεις Ποσοστημοριων Eντροπια (και για κατηγορικες μεταβλητες) Λοξότητα (skewness). Κύρτωση (kurtosis). Συντελεστης Συνδιασπορας Pearson Αμοιβαια Πληροφορια (Mutual Information)

20 Εύρος H εκταση του φασματος: x max x min Παραδειγμα: X = Το Αθροισμα των ενδειξεων 2 Ζαριων Eυρος x max x min = 12 2 = 10 Εύρος Δειγματος: x n x 1

21 Διακυμανση (Fluctuation) H τιμη (Χ m) = (Χ E[X]) ΣΧΟΛΙΟ Η Διακυμανση δειχνει ποσο απεχει η μετρηση από την Μεση Τιμη Συνεπως η Μεση Διακυμανση είναι εκτιμηση της Μεταβλητοτητος της Χ Θεωρημα H μεση Διακυμανση μηδενιζεται: Ε[(Χ E[X])]=0 Αποδειξη Ε[(Χ E[X])]= Ε[Χ] E[Ε[X] = Ε[Χ] Ε[X] = 0 ΣΧΟΛΙΟ Ειμαστε υποχρεωμενοι να ορισουμε άλλες παραμετρους για την Μεταβλητοτητα

22 Κεντρικη Poπη ν-ταξεως, ν= 1,2,3, c ν = E[(Χ m) ν ] = (x 1 m) ν p 1 + (x 2 m) ν p ΣΧΟΛΙΑ 1) c 1 = Ε[(Χ E[X])] = 0 = (x m) ν ρ(x)dd 2) Η c 2 = Ε[(Χ E[X]) 2 ] (η ροπη 2ας ταξεως της Μεταβλητης (Χ m) ) είναι η Μεση Τιμη του Τετραγωνου (mean square) της Διακυμανσης Η απλουστερη εκτιμηση της Μεταβλητοτητας Θεωρημα Oι Κεντρικες Ροπες αρτιας Ταξεως Συμμετρικων ως προς τον Μεσο Κατανομων, μηδενιζονται

23 Διασπορα (Variance) var(x) = Ε[(X m) 2 ] = (x 1 m) 2 p 1 + (x 2 m) 2 p = (x m) 2 ρ(x)dd Θεωρημα. Ιδιοτητες της Διασπορας var[χ] 0 var [X+c] = var[x] Η τυπική απόκλιση δεν μεταβάλλεται άν στις τιμές της μεταβλητής Χ προστεθεί μια σταθερά var [cx]= c 2 var [X], c πραγματικος αριθμος var [X 1 +X 2 ] = var [X 1 ] + var [X 2 ] var [X] = E[X 2 ] (E[X]) 2 = E[X 2 ] m 2 Aποδειξη Από τον ορισμο με Αλγεβρικες Πραξεις

24 Παραδειγμα: X = Το Αθροισμα των ενδειξεων 2 Ζαριων E[(X 7) 2 ] = (2 7) (8 7) E[(X 7) 2 ] = (3 7)2 + (4 7)2 + (5 7)2 + ( )2 5 + (7 33 7) (9 7)2 + (11 7)2 + (11 7)2 + ( ) E[(X 7) 2 ] = E[(X 7) 2 ] =

25 Θεωρημα. Ανισοτητα Chebychev P[ X m α ] = var X α 2, α>0 var X α 2, α>0 είναι το ποσοστο τιμων της Μεταβλητης Χ με αποσταση από τη μεση τιμη τουλαχιστον α Παραδειγμα: X = Το Αθροισμα των ενδειξεων 2 Ζαριων P[ X 7 5 ] = =

26 Τυπικη Αποκλιση Standard Deviation = the root mean square fluctuation = rms fluctuation σ = var[x] σ 2 = var[x] Η Τυπικη Αποκλιση είναι η συνηθης εκτιμηση των σφαλματων (θεωρουνται ως αποκλισεις από την μεση τιμη) Παραδειγμα: X = Το Αθροισμα των ενδειξεων 2 Ζαριων E[(X 7) 2 ] = σ= vvv[x] = = ΣΧΟΛΙΟ Πως συγκρινουμε τα σφαλματα διαφορετικων Μεταβλητων?

27 Σχετικο η Ποσοστιαιο Σφαλμα (από την Μεση Τιμη) ή Συντελεστης Μεταβλητοτητος (από την Μεση Τιμη) Relative Deviation σ m = vaa[x] Ε[Χ] ΣΧΟΛΙΟ σ μικρο οι τιμες της X είναι πλησιον της μεσης τιμης m με μεγαλη πιθανοτητα m σ m μεγαλο οι τιμες της X είναι μακραν της μεσης τιμης m με μεγαλη πιθανοτητα Ο Συντελεστής Μεταβλητοτητος εκφράζεται επί τοις εκατό και είναι ανεξάρτητος από τις μονάδες μέτρησης. Εκφράζει ένα μέτρο σχετικής διασποράς των τιμών της μεταβλητής. Ένα δείγμα τιμών μιας μεταβλητής θεωρείται ομοιογενές όταν ο Συντελεστής Μεταβλητοτητος είναι μικρότερος ή ίσος του 10%. Παραδειγμα: X = Το Αθροισμα των ενδειξεων 2 Ζαριων σ m = vvv[x] Ε[Χ] = = 0.319

28 Ασκηση {Βαθμος 0.3} Υπολογιστε το σχετικο σφαλμα της Μεταβλητης Α = "Αθροισμα των ενδειξεων 2 Ζαριων" Στις εξης περιπτωσεις: 1) Για 2 oμοια ζαρια με p 1 = 1 3, p 2 = p 3 = p(4) = p(5) = p(6) = ) Για 2 oμοια ζαρια με p 1 = 1 3, p 2 = 1 6, p 3 = p(4) = p(5) = p(6) = 1 8 3) Ένα Ζαρι με p 1 = p 2 = p 3 = p(4) = p(5) = p(6) = 1 6 και Ένα Ζαρι με p 1 = 1 3, p 2 = p 3 = p(4) = p(5) = p(6) = ) Ένα Ζαρι με p 1 = p 2 = p 3 = p(4) = p(5) = p(6) = 1 6 και Ένα Ζαρι με p 1 = 1 3, p 2 = 1 6, p 3 = p(4) = p(5) = p(6) = 1 8 Συγκρινατε τα Αποτελεσματα των 5 περιπτωσεων

29 Κεντρικες Ροπες Εκτιμηση από το Δειγμα Εμπειρικες Κεντρικες Ροπες: c ν = x 1 m ν ρ x n m ν ρ n Εμπειρικη Διασπορα: σ 2 = (χ 1 m ) 2 + +(χ Μ m ) 2 Μ = (χ 1 m ) 2 ρ (χ n m ) 2 ρ n Εμπειρικη Τυπικη Αποκλιση: σ = (χ 1 m ) 2 + +(χ Μ m ) 2 Μ = (χ 1 m ) 2 ρ (χ n m ) 2 ρ n Η Εμπειρικες Κεντρικες Ροπες δεν είναι Αμεροληπτες Εκτιμητριες

30 Αμεροληπτη Τυπικη Αποκλιση: s = (χ 1 m ) 2 + +(χ Μ m ) 2 Μ 1 m = η Εμπειρικη Μεση Τιμη Η διoρθωση (Μ 1 αντι Μ) Bessel 1830 lim Μ s(m) σ = 0

31 Oρισμος Σχετικό Σφάλμα Δειγματος σ m Oρισμος Αμεροληπτο Σχετικό Σφάλμα (relative error) Δειγματος s m Oρισμος Τυπικό Σφάλμα Μεσης Τιμης Δειγματος (Standard Error of the Mean) SE= s N = (χ 1 m ) 2 + +(χ Μ m ) 2 Μ(Μ 1)

32 Αποστασεις Ποσοστημοριων =Ενδοποσοστημοριακό Ευρος (interquantile range). x α x 1 α Η απόσταση των συμπληρωματικών α-ποσοστημορίων x α και x 1 α Το Ενδοποσοστημοριακό Ευρος αποτελει εκτιμηση της εξαπλωσης-εκτασης των τιμών της μεταβλητης Χ. x 0.75 x 0.25 το ενδοτεταρτημοριακό ευρος (interquartile range). x 0.90 x 0.10 το ενδοδεκατημοριακό ευρος (interdecile range).

33 Εντροπια (Shannon) n S = S[ρ] = S SΗΗΗΗΗΗ [ρ] = ρ i lll 2 ρ i i=1 ρ = ρ i = ρ(x i ), i=1,2,,n η Κατανομη Πιθανοτητος της Διακριτης Μεταβλητης Χ (Αριθμητικης ή Κατηγορικης) με φασμα τιμων x 1, x 2,, x n Τις τιμες της Μεταβλητης (Αριθμητικης ή Κατηγορικης) Παρατηρω στο Πειραμα ή Υποθετω στο πλαισιο καποιου Μοντελου lll 2 ξ = llξ lll, ξ > 0, ln2= Εντροπια Συνεχους Κατανομης S = dd p x lnp x

34 Εντροπια (Shannon) Θεωρημα Φασμα Τιμων Εντροπιας 0 S Χ lll 2 n Ελαχιστη Τιμη Εντροπιας: S Χ = 0 Η Μεταβλητη Χ λαμβανει μια και μονο μια από τις Τιμες x 1, x 2,, x n, εστω την x k, με βεβαιοτητα οι Τιμες x 1, x 2,, x n ακολουθουν Καθορισμενη κατανομη: 1, i = k ρ i = ρ x i = 0, i k, i=1,2,,n Μεγιστη Τιμη Εντροπιας: S Χ = lll 2 n Η Μεταβλητη Χ λαμβανει ολες τις Τιμες x 1, x 2,, x n με την αυτή Πιθανοτητα οι Τιμες x 1, x 2,, x n ακολουθουν Ομοιομορφη κατανομη: ρ i = ρ x i = 1 n, i=1,2,,n

35 H Eντροπια είναι εκτιμητρια: της Αταξιας-Τυχαιοτητος της κατανομης της Ποικιλοτητος της κατανομης της Πολυπλοκοτητος της κατανομης της Αβεβαιοτητας- Ρισκου Προβλεψης με βαση την κατανομη της Πληροφοριας (πληθος bits) που χρειαζομαι για να περιγραψω-κωδικοποιησω το προβλημα

36 (Δυαδικη) Πληροφορια Moναδες Μετρησης 1Byte=1B=2 3 bits=8bits 1KB=2 10 B=1024B=8142 bits 1MB=2 10 KB=1024KB= B= bits 1GB=2 10 MB=1024MB 8.8 x10 9 bits 1TB=2 10 GB=1024GB 8.8 x10 12 bits 1PB=2 10 TB=1024TB 8.8 x10 15 bits

37 Information Amounts 1 Text Character 1 Byte = 8 bits TV Image 1.4 x 10 6 bits (576 lines 720 columns) = px,10 luminosity scales 1 chromosome bits = 2 x 10 5 bits DΝΑ as 4 Symbol Message Information in Bacteria GB Memory Cells, E. Coli, 2011 Cells in the Human Body > Brain Neurons ~10 11 Brain Synaptic Links ~10 15 Brain Memory 2.5 PetaBytes = GB 8.8 x bits ~ 300 years of TV and Audio recording! Cyberspace 2007: 281 billion GB=281x10 9 GB 2.5x10 21 bits Cyberspace 2016: ~10 23 bits Cyberspace Indexed Google 0.004% bits x bits 2012 Atoms in 12gr C 6,022 x Universe bits Chess bits GO bits? Eternity II bits Borges Βabel Library 2.6 x Bytes

38 Genetic Alphabet Eors Szathmary 1992 What is the Optimum Size for the Genetic Alphabet? Proc. Natl. Acad. Sci. USA 89,

39 DNA Digital Storage Church G. Gao Y., Kosuri S. 2012, Next-Generation Digital Information Storage in DNA Science DOI: /science DNA is among the most dense and stable information media known. The development of new technologies in both DNA synthesis and sequencing make DNA an increasingly feasible digital storage medium. We develop a strategy to encode arbitrary digital information in DNA, write a 5.27-megabit book (HTML draft) using DNA microchips, and read the book using nextgeneration DNA sequencing. A,C 0 G,T 1 DNA Advantages over traditional digital storage media. 1) DNA can be easily copied, and is often still readable after thousands of years in non-ideal conditions. 2) the Techniques required to read and write DNA information are as old as life on Earth, unlike ever-changing electronic storage formats such as magnetic tape and DVDs.

40 Εντροπια Βιβλιογραφια Shannon C., Weaver W. 1949, The Mathematical Theory of Communication, University of Illinois, Urbana, Illinois. Kempton R. and Wedderburn R. 1978, A Comparison of Three Measures of Species Diversity, Biometrics 34, Kuppers B.-O. 1990, Information and the Origin of Life, MIT Press, Cambridge, Massachusetts Traub J., Werschulz A. 1998, Complexity and Ιnformation, Cambridge University Press, Cambridge. McDonald G. 2003, Biogeography: Space, Time and Life, Wiley, New York Yockey H. 2005, Information theory, Εvolution and the origin of Life, Cambridge University Press, Cambridge.

41 Παραδειγμα: Ριψη 2 Ζαριων Δειγματοχωρος Y= 1,1, 1,2, 1,3, 1,4, 1,5, 1,6 (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) Tυχαιες Mεταβλητες: Ζ(y) = το Αποτελεσμα της ριψης των 2 ζαριων Α(y) = το Αθροισμα των Ενδειξεων των 2 Ζαριων Δ(y) = η απολυτη τιμη της Διαφορας των ενδειξεων των 2 Ζαριων (Α(y),Δ(y)) = η Κοινη Παρατηρηση των Μεταβλητων (Α,Δ)

42 36 S Ζ = 1 36 lll ν=1 = lll S Α = lll lll lll lll lll lll = = S Δ = lll lll lll lll lll = 2.43

43 S Α,Β = lll lll = 1 8 lll lll 2 16 = 1 8 5, , = = lll 2 x = lll lll = lll lll 2 32 = lll 2 16 = ll = = 5, ll = = 4, lll 2 16 = lll = lll 2 32 lll 2 2 = lll

44 Συνοψη S Ζ = 5.17 S Α = S Δ = 2.43 S Α,Δ = S ΑΠΟΤΕΛΕΣΜΑ > S ΑΘΡΟΙΣΜΑ,ΔΙΑΦΟΡΑ > S ΑΘΡΟΙΣΜΑ > S ΔΙΑΦΟΡΑ

45 Ποια η Αβεβαιοτητα «Πειραγμενου» Ζαριου? Εντροπια Ισοπιθανου Ζαριου Εντροπια «Πειραγμενου» Ζαριου S MMM = lll = lll 26 = Ψηφιο Ζαρι Α Ζαρι Β Συχνοτης Συχνοτης S Α = log 2 S Β = log log = 1 2 log log 2 = = log = 1 4 log log 3 = = S Β < S Α < S MMM

46 Εντροπια Συνεχων Κατανομων Kατανομη Τυπος Εντροπια Gauss ρ x = 1 2π e 1 2 x , m = 0, σ = 1 Laplace ρ x = 2 2 e x 2, m = 0, σ =

47 Εντροπια και Διασπορα

48

49 Εντροπια Εκτιμηση από το Δειγμα Εμπειρικη Εντροπια: n S = ρ i lοg 2 ρ i i=1 Η Εμπειρικη Εντροπια δεν είναι Αμεροληπτη Εκτιμητρια Miller G. 1955, Note on the bias of information estimates, In Information Theory in Psychology: Problems and Methods, pp Πολλες Εκτιμητριες εχουν προταθει. Korbinian Schürmann T. 2015, A Note on Entropy Estimation, Neural Comput Oct;27(10): doi: /NECO_a_ Epub 2015 Aug 27

50 Εντροπια. Εκτιμηση από το Δειγμα Εντροπια Συρρικνωσης Shrinkage: (η βελτιστη προς το παρον) S = n ν=1 ρ i lοg 2 ρ i ρ i = ρ x i = ζ 1 n + (1 ζ)ρ i ζ = mmm n 1 ρ 2 i (M 1) i=1 n i=1 1 n ρ i 2, 1, The Shrinkage Intensity Hausser J., Strimmer K. 2009, Entropy Inference and the James-Stein Estimator, with Application to Nonlinear Gene Association Networks, Journal of Machine Learning Research 10, Πούρικα Α. 2016, Εκτίμηση Εντροπίας και Συνεκτικοτης Εγκεφάλου, Διπλωματικη Εργασια, Μεταπτυχιακο Προγραμμα Σπουδων Στατιστικης και Μοντελοποιησης, Τμημα Μαθηματικων

51 Σφαλμα (Error) είναι κάθε διαφορα-αποκλιση της Εκτιμησης-Προβλεψης-Γνωμης μας από την Παρατηρηση της Πραγματικοτητος Tα Σφαλματα μπορει να ωφειλονται και σε Υλικες Δυσλειτουργιες (Hardware Malfunctions), όπως Brain Deficits (Ανοια, Μωρια, Μαλακυνσις, Χημικες Παρεμβασεις-Αλλοιωσεις). Λαθος είναι το Σφαλμα που Λανθανει της Προσοχης και για το οποιο δεν εχουμε Επιγνωση

52

53 Θεση Κατανομης (Location Parameters) Eξαπλωση- Εκταση Κατανομης (Spread or Dispersion) Σχημα Κατανομης (Shape Parameters) Εξαρτηση Μεταβλητων Μέση Τιμή (mean) Ροπες (Moments) Kορυφες (modes) Διάμεσος (median). Ποσοστημορια (Quantiles, Percentiles) Εύρος (range). Διασπορα (variance) Τυπική Απόκλιση (standard deviation) Σχετικο Σφαλμα (relative error) = Mεταβλητοτης (CV) Αποστασεις Ποσοστημοριων Eντροπια (και για κατηγορικες μεταβλητες) Λοξότητα (skewness). Κύρτωση (kurtosis). Συντελεστης Συνδιασπορας Pearson Αμοιβαια Πληροφορια (Mutual Information)

54 Λοξότητα (skewness) α 3 = c 3 σ 3 c 3 = E[(Χ m) ν ] η Κεντρικη Poπη 3ης -ταξεως,

55 Κύρτωση (Kurtosis) α 4 = c 4 σ 4 c 4 σ4 > 3 Λεπτοκυρτη κατανομη c 4 σ4 = 3 Μεσοκυρτη κατανομη, προσεγγιζεται από την κανονικη Κατανομη c 4 σ4 < 3 Πλατυκυρτη κατανομη c 4 σ4 3 = Εxcess Kurtosis

56 Ασκηση {Βαθμος 0.2= } Επιλεξατε μια συμμετρικη και μια ασυμμετρη Διακριτη κατανομη πιθανοτητος (από τον Καταλογο) Υπολογιστε τις 8 Παραμετρους {0.1} Μέση Τιμή (Μean) Kορυφες (Μodes) Διάμεσος (Μedian) Τυπική Απόκλιση (Standard Deviation) Σχετικο Σφαλμα (Relative Error) Λοξότητα (Skewness) Κύρτωση (Kurtosis) Εντροπια (Entropy) Εξεταστε τις Σχεσεις Μεσης Τιμης, Διαμεσου, Κορυφης {0.1}

57 Θεση Κατανομης (Location Parameters) Eξαπλωση- Εκταση Κατανομης (Spread or Dispersion) Σχημα Κατανομης (Shape Parameters) Εξαρτηση Μεταβλητων Μέση Τιμή (mean) Ροπες (Moments) Kορυφες (modes) Διάμεσος (median). Ποσοστημορια (Quantiles, Percentiles) Εύρος (range). Διασπορα (variance) Τυπική Απόκλιση (standard deviation) Σχετικο Σφαλμα (relative error) = Mεταβλητοτης (CV) Αποστασεις Ποσοστημοριων Eντροπια (και για κατηγορικες μεταβλητες) Λοξότητα (skewness). Κύρτωση (kurtosis). Συντελεστης Συνδιασπορας Pearson Αμοιβαια Πληροφορια (Mutual Information)

58 Oρισμος Συντελεστης Συνδιασπορας Pearson των Mεταβλητων X,Y Οπου: r ΧΥ = ccc X, Y vvv X vvv Y = σ ΧΧ σ Χ σ Υ σ XX = cov(x,y)= Ε[(X-Ε[X])(Y-Ε[Y])]= Ε[(X m X )(Y m Y )] = Ε[XY] m X m Y Η Συνδιασπορα των Mεταβλητων X,Y (Covariance) E[XY]= cor(x,y) = <X,Y> Η Συσχετιση των Mεταβλητων X,Y (Correlation) σ XX = σ 2 = var(x) η Διασπορα της Μεταβλητης X cor(xx) = E[X 2 ] = <X,X> = X 2 η Ισχυς της Μεταβλητης X

59 Θεωρημα 1) Ο Συντελεστης Pearson λαμβανει τιμες στο διαστημα [-1,1]: 1 r ΧΧ 1 2) r ΧΧ = +1 Οι Μεταβλητες Χ,Υ συνδεονται με την σχεση: Υ = α + βχ, β>0 α πραγματικος αριθμος Y = m Y σ Y σ Χ m X + σ Y σ Χ X 3) r ΧΧ = 1 Οι Μεταβλητες Χ,Υ συνδεονται με την σχεση: Υ = α βχ, β>0 α πραγματικος αριθμος Y = m Y σ Y σ Χ m X σ Y σ Χ X 4) r ΧΧ = 0 για Ανεξαρτητες Μεταβλητες (ρ x, y = ρ X (x) ρ Υ (y), για κάθε τιμες x,y) αλλα το αντιστροφο δεν ισχυει. Δηλαδη υπαρχουν Μεταβλητες με r ΧΧ = 0 που δεν είναι Ανεξαρτητες

60 Αποδειξη 1),2),3) Από την Ανισοτητα Cauchy Schwarz 4) Ε XX = ρ x, y xx x,y = x,y ρ X (x) ρ Υ (y)xx = x ρ X (x)x ( y ρ Υ (y) y) = E[X]E[Y] Παραδειγμα: οι Μεταβλητες Χ με E[X]=0 και Υ=Χ 2 δεν είναι Ανεξαρτητες αλλα: r ΧΧ = 0 Feller 1970, An Introduction to Probability Theory and its Applications, Volume I, 3rd ed.th. 3, p. 222 Oρισμος Οι Χ, Υ είναι Ασυσχετιστες Μεταβλητες (Uncorrelated Variables) r ΧΧ = 0 ccc X, Y =0 E[XY] = m X m Y Δηλαδη οι Μεταβλητες Χ, Υ δεν σχετιζονται "γραμμικα" ΣΧΟΛΙΟ Από το Θεωρημα συναγεται ότι: Οι Ανεξαρτητες Μεταβλητες είναι Ασυσχετιστες ('Γραμμικα"), αλλα οι Ασυσχετιστες ('Γραμμικα") Μεταβλητες δεν είναι κατ'αναγκην Ανεξαρτητες

61 Συντελεστης Pearson Galton 1888 (Kληρονομικοτης Υψους), εξαδελφος του C. Darwin Pearson 1895 συνεργατης και συνεχιστης του εργου του Galton Pearson K. 1920, Notes on the History of Correlation, Biometrika 13, Rodgers J. L., Nicewander W. A. 1988, Thirteen ways to look at the correlation coefficient, The American Statistician, 42(1), Stigler S. M. 1989, Francis Galton's Account of the Invention of Correlation, Statistical Science 4 (2): 73 79

62 Παραδειγμα Ποσο σχετιζονται οι Μεταβλητες Α, Β στην Ριψη 2 ζαριων? Α: το Αθροισμα των Ενδειξεων 2 Ζαριων Β: η Διαφορα των Ενδειξεων 2 Ζαριων Ασκηση {0.2}

63 Συντελεστης Pearson Εκτιμηση από Δειγμα Data Matrix Μ 2 M Observations of the Variables X,Y Variable X Y Observation 1 χ 1 ψ 1 Observation 2 χ 2 ψ 2 Observation Μ χ Μ ψ Μ Εμπειρικος Συντελεστης Pearson r XX = M ν=1 χ ν m Χ ψ ν m Υ M ν=1 (χ ν m Χ ) 2 M ν=1(ψ ν m Υ ) 2

64 Αμεροληπτος Συντελεστης Pearson Προταση Ο Εμπειρικος Συντελεστης Pearson ταυτιζεται με τον Αμεροληπτο Συντελεστη Pearson r XX = σ XX σ Χ σ Υ = s ΧY s Χ s Υ = M ν=1 χ ν m Χ ψ ν m Υ M ν=1 (χ ν m Χ ) 2 M ν=1(ψ ν m Υ ) 2

65 Αποδειξη r XX = σ XX σ Χ σ Υ = = M ν=1 χ ν m Χ ψ ν m Υ M M ν=1(χ ν m Χ ) 2 M ν=1(ψ ν m Υ ) 2 M M M ν=1 χ ν m Χ ψ ν m Υ M ν=1 (χ ν m Χ ) 2 M ν=1(ψ ν m Υ ) 2 s ΧΧ s Χ s Υ = M ν=1 χ ν m Χ ψ ν m Υ M 1 = M ν=1(χ ν m Χ ) 2 M ν=1(ψ ν m Υ ) 2 M 1 M 1 = M ν=1 χ ν m Χ ψ ν m Υ M ν=1 (χ ν m Χ ) 2 M ν=1(ψ ν m Υ ) 2

66 Συντελεστης Pearson Προβληματα 1) Ο Συντελεστης Pearson δεν εφαρμοζεται σε Κατηγορικες Μεταβλητες 2) Η συνθηκη r ΧΧ = 0, είναι ικανη αλλα οχι αναγκαια για να ειναι οι Μεταβλητες Χ,Υ Ανεξαρτητες 3) Η τιμη του Συντελεστη Pearson 2 Μεταβλητων, δειχνει ποσο ισχυρη είναι η "γραμμικη συσχετιση" τους, αλλα δεν χαρακτηριζει γενικωτερα την σχεση τους Damghani Β., Welch D., O'Malley C. Knights S. 2012, The Misleading Value of Measured Correlation, Wilmott 1, doi: /wilm Παραδειγμα: Τα 4 συνολα Δεδομενων του Anscombe Anscombe F. 1973, Graphs in statistical analysis, The American Statistician 27, doi: /

67 Προβλημα: Οι Στατιστικοι Δεικτες δεν είναι παντοτε Ικανοποιητικοι Τα 4 Συνολα Δεδομενων του Anscombe

68 Δεικτης Τιμες στα 4 Συνολα Δεδομενων Μεση Τιμη της Χ m X = 9 Διασπορα της Χ σ X = 3,32 Μεση Τιμη της Υ m Υ =7,50 Διασπορα της Υ 2,030 σ X 2,031 Συντελεστης Pearson r XX = Ηθικον Διδαγμα: Πρωτα Παρατηρουμε την γραφικη Παρασταση των Δεδομενων και Κατοπιν Προχωρουμε στην Μαθηματικη Αναλυση Anscombe F. 1973, Graphs in statistical analysis, The American Statistician 27, Chatterjee S., Firat A. 2007, Generating Data with Identical Statistics but Dissimilar Graphics: A Follow up to the Anscombe Dataset, American Statistician 61,

69 Tυποποιημενη Αμοιβαια Πληροφορια των Mεταβλητων X,Y οπου: I XY = I X;Y = S X + S Y S X,Y mmm {S X, S Y } S X = ρ x log 2 ρ(x) x Η Εντροπια της Μεταβλητης X S Y = ρ y log 2 ρ(y) y Η Εντροπια της Μεταβλητης Y S X,Y = x,y ρ x, y log 2 ρ x, y Η Κοινη Εντροπια των Μεταβλητων X,Y

70 Θεωρημα Φασμα Τιμων Tυποποιημενης Αμοιβαιας Πληροφοριας 0 I XY 1 I XY = 0 X, Y Ανεξάρτητες Μεταβλητές I XY = 1 η Μεταβλητή μικρότερης Εντροπίας είναι συνάρτηση της άλλης Μεταβλητής μεγαλύτερης Εντροπίας (αιτιώδης - καθορισμένη εξάρτηση)

71 Συγκριση Tυποποιημενης Αμοιβαιας Πληροφοριας και Συντελεστη Pearson Συντελεστης Pearson -1 r XY 1 εφαρμοζεται μονο σε Αριθμητικες Μεταβλητες Η συνθηκη r ΧΧ = 0, ισχυει αν οι Μεταβλητες Χ,Υ είναι Ανεξαρτητες Αλλα δεν διασφαλιζει οτι οι Μεταβλητες Χ,Υ είναι Ανεξαρτητες Η τιμη του Συντελεστη Pearson δειχνει ποσο ισχυρη είναι η "γραμμικη συσχετιση" τους, αλλα δεν χαρακτηριζει γενικωτερα την σχεση τους Tυποποιημενη Αμοιβαια Πληροφορια 0 I XY 1 εφαρμοζεται σε οιαδηποτε Μεταβλητη Η συνθηκη Ι ΧΧ = 0, ισχυει αν οι Μεταβλητες Χ,Υ είναι Ανεξαρτητες Και διασφαλιζει οτι οι Μεταβλητες Χ,Υ είναι Ανεξαρτητες Η τιμη της Tυποποιημενης Αμοιβαιας Πληροφοριας, δειχνει ποσο ισχυρη είναι η αλληλεξαρτηση τους και χαρακτηριζει γενικωτερα την σχεση τους Ο Συντελεστης Pearson διακρινει μεταξυ θετικης Εξαρτησης και αρνητικης Εξαρτησης Η Tυποποιημενη Αμοιβαια Πληροφορια δεν διακρινει μεταξυ θετικης Εξαρτησης και αρνητικης Εξαρτησης

72 Παραδειγμα: Αν οι Μεταβλητες Χ,Υ ακολουθουν Κοινη Κανονικη Κατανομη ρ x, y = 1 2πσ Χ σ Y 1 r eee 1 2 2(1 r 2 ) x m X σ X 2 + z m Y σ Y 2 2r x m X σ X y m Y σ Y Τοτε η Tυποποιημενη Αμοιβαια Πληροφορια είναι: I = ll 1 r2 ll 2πe σ 2 Oπου: σ = min(σ Χ, σ Υ ) ΣΧΟΛΙΟ: r = 0 I = 0 Δηλαδη στις Κανονικες Κατανομες η συνθηκη r = 0 είναι ικανη και αναγκαια για να είναι αν οι Μεταβλητες Χ,Υ Ανεξαρτητες

73 Tυποποιημενη Αμοιβαια Πληροφορια Εκτιμηση από το Δειγμα Εμπειρικη Tυποποιημενη Αμοιβαια Πληροφορια: οπου: S X = x ρ x lll 2 ρ (x) Η Εμπειρικη Εντροπια της Μεταβλητης X I XY = Ĩ X;Y = S X + S Y S X,Y mmm {S X, S Y} S Y = ρ y lll 2 ρ y y Η Εμπειρικη Εντροπια της Μεταβλητης Υ S X,Y = ρ x, y log 2 ρ x, y x,y Η Κοινη Εμπειρικη Εντροπια των Μεταβλητων X,Y

74 Η Εμπειρικη Tυποποιημενη Αμοιβαια Πληροφορια δεν είναι Αμεροληπτη Εκτιμητρια Καθοτι η Εμπειρικη Εντροπια δεν είναι Αμεροληπτη Εκτιμητρια. Οριζουμε, με βαση την Εντροπια Συρρικνωσης, την Tυποποιημενη Αμοιβαια Πληροφορια Συρρικνωσης (Shrinkage): οπου: S X = ρ x lll 2 ρ (x) x Η Εντροπια Shrinkage της Μεταβλητης X I XY = Î X;Y = S X + S Y S X,Y mmm {S X, S Y} S Y = ρ y lll 2 ρ y y Η Εντροπια Shrinkage της Μεταβλητης Y S X,Y = ρ x, y log 2 ρ x, y x,y Η Κοινη Εντροπια Shrinkage των Μεταβλητων X,Y

75 Παραδειγμα Συσχετιση Χρωματος Οφθαλμων με το Χρωμα Μαλιων των Φοιτητων του Οι Υπολογισμοι εγιναν από τους κ. Ρ.-Ν. Τασακη και Ε. Καραπουλια Πρωτοετεις Φοιτητες Βιολογιας ΑΠΘ του Εστω Χ=Χρωμα Οφθαλμων Τιμες: Κ=Καφε, Γ=Γαλαζιο, ΚΠ=Καστανοπρασινο, Π=Πρασινο, ΓΠ=Γαλαζοπρασινο Υ=Χρωμα Μαλλιων Τιμες: μ=μαυρο, ξ=ξανθο, κ=καστανο, κξ=καστανοξανθο

76

77 Υπολογισμος Εμπειρικης Tυποποιημενης Αμοιβαιας Πληροφοριας S X = log log 2 S X,Y = 2 S Y = 8 52 log log 2 I XY = S X + S Y S X,Y mmm {S X, S Y} log log log log log log log log , log 2 mmm {S X, S Y} = S Y = 1, log , ,706 I XY = S X + S Y S X,Y mmm {S X, S Y } 1, , 444 2, 777 = 1, 444 = 0, 1111 Μικρη Αμοιβαια Εξαρτηση Με τον Συντελεστη Pearson δεν είναι εφικτη η εκτιμηση της Εξαρτησης Κατηγορικων Μεταβλητων

78 Ασκηση {Βαθμος 0.5} Υπολογιστε την Εμπειρικη Tυποποιημενη Αμοιβαια Πληροφορια για εκαστο Συνολο Δεδομενων Anscombe. Τι Συμπεραινετε?

5. Δεικτες Παραμετροι

5. Δεικτες Παραμετροι Θεωρια Πιθανοτητων Ι ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (3 ο ) Τμημα Μαθηματικων Αριστοτελειο Πανεπιστημιο Θεσσαλονικης Probability Theory Ι WINTER SEMESTER (3 st ) School of Mathematics Aristotle University of Thessaloniki

Διαβάστε περισσότερα

4 Περιγραφικη Στατιστικη

4 Περιγραφικη Στατιστικη ΜΑΘΗΜΑΤΙΚΑ και ΣΤΑΤΙΣΤΙΚΗ στη ΒΙΟΛΟΓΙΑ 4 Περιγραφικη Στατιστικη Ι. Αντωνιου Κ. Κρικωνης Τμημα Μαθηματικων Aριστοτελειο Πανεπιστημιο Θεσσαλονικης Χειμερινο Εξαμηνο Συλλογή Δεδομένων από τις Παρατηρήσεις

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 4 : Περιγραφική Στατιστική Ι. Αντωνίου, Χ. Μπράτσας Τμήμα Μαθηματικών Άδειες Χρήσης Το

Διαβάστε περισσότερα

7. Εκτιμήσεις Τιμων Δεικτων

7. Εκτιμήσεις Τιμων Δεικτων Μαθηματικά και Στατιστικη στην Βιολογια ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (1 ο ) Τμημα Βιολογιας Αριστοτελειο Πανεπιστημιο Θεσσαλονικης Mathematics and Statistics in Biology WINTER SEMESTER (1 st ) School of Biology Aristotle

Διαβάστε περισσότερα

4. Δειγματα. Μαθηματικά και Στατιστικη στην Βιολογια. Mathematics and Statistics in Biology

4. Δειγματα. Μαθηματικά και Στατιστικη στην Βιολογια. Mathematics and Statistics in Biology Μαθηματικά και Στατιστικη στην Βιολογια ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (1 ο ) Τμημα Βιολογιας Αριστοτελειο Πανεπιστημιο Θεσσαλονικης Mathematics and Statistics in Biology WINTER SEMESTER (1 st ) School of Biology Aristotle

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 3 : Κατανομές και Παράμετροι Ι. Αντωνίου, Χ. Μπράτσας Τμήμα Μαθηματικών Άδειες Χρήσης Το

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 5 : Εκτιμήσεις Ι. Αντωνίου, Χ. Μπράτσας Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Διοίκησης Επιχειρήσεων (Α.Ν.) Εισαγωγή στη Στατιστική ΜΕΡΟΣ ΙΙ-ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΑΠΟΚΛΙΣΗ ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ ΡΟΠΕΣ ΑΣΥΜΜΕΤΡΙΑ-ΚΥΡΤΩΣΗ II.1

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές ο Φυλλάδιο Ασκήσεων Εφαρμογές 2 ο Φυλλάδιο Ασκήσεων Εφαρμογή 1 ΣΥΓΚΡΙΣΗ ΤΗΣ ΗΛΙΚΙΑΣ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΣΕ ΔΥΟ ΕΠΙΧΕΙΡΗΣΕΙΣ Παρακάτω βλέπουμε τα ιστογράμματα και τα πολύγωνα των σχετικών (%) και σχετικών αθροιστικών

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

8. Ελεγχος Υποθεσεων. Μαθηματικά και Στατιστικη στην Βιολογια ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (1 ο ) Τμημα Βιολογιας Αριστοτελειο Πανεπιστημιο Θεσσαλονικης

8. Ελεγχος Υποθεσεων. Μαθηματικά και Στατιστικη στην Βιολογια ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (1 ο ) Τμημα Βιολογιας Αριστοτελειο Πανεπιστημιο Θεσσαλονικης Μαθηματικά και Στατιστικη στην Βιολογια ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (1 ο ) Τμημα Βιολογιας Αριστοτελειο Πανεπιστημιο Θεσσαλονικης Mathematics and Statistics in Biology WINTER SEMESTER (1 st ) School of Biology Aristotle

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Σ ΤΑΤ Ι Σ Τ Ι Κ Η Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Αριθμητικά Περιγραφικά Μέτρα Τα αριθμητικά περιγραφικά μέτρα (numerical descriptive measures) είναι αριθμοί που συμβάλουν

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)

Διαβάστε περισσότερα

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Στατιστική Ι Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Παρασκευή, 30 Νοεμβρίου 2012 Στατιστική Ι Έννοιες - Κλειδιά Μεταβλητότητα Εύρος (range) Εκατοστημόρια

Διαβάστε περισσότερα

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Μάθημα 3 ο a Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Στο μάθημα αυτό θα ορίσουμε την έννοια της τυχαίας μεταβλητής και θα αναφερθούμε σε σχετικές βασικές έννοιες και συμβολισμούς. Ross, σσ 135-151 Μπερτσεκάς-Τσιτσικλής,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα

Διαβάστε περισσότερα

Περιγραφική στατιστική μεθοδολογία.

Περιγραφική στατιστική μεθοδολογία. Περιγραφική στατιστική μεθοδολογία. Κυργίδης Αθανάσιος MD, DDS, BΟpt, PhD MSc Medical Research, Μετεκπαίδευση ΕΠΙ ΕΚΑΒ Γναθοπροσωπικός Χειρουργός Ass. Editor, Hippokratia 2 κεφάλαια: Περιγραφική Αναλυτική

Διαβάστε περισσότερα

Μέρος V. Στατιστική. Εισαγωγή: Βασικές έννοιες και ορισμοί. Περιγραφική Στατιστική (Descriptive Statistics)

Μέρος V. Στατιστική. Εισαγωγή: Βασικές έννοιες και ορισμοί. Περιγραφική Στατιστική (Descriptive Statistics) Μέρος V. Στατιστική Εισαγωγή: Βασικές έννοιες και ορισμοί Περιγραφική Στατιστική (Descriptive Statistics) Σημαντικές κατανομές δειγματοληψίας (Sampling distributions) Διαστήματα Εμπιστοσύνης (Confidence

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΣΤΑΤΙΣΤΙΚΗΣ Στα πλαίσια του προπτυχιακού μαθήματος Χρονικές σειρές Τμήμα μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα 1 Μονοδιάστατες τυχαίες μεταβλητές Τυχαία μεταβλητή είναι

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ Σκοπός Οι δειγματικοί χώροι, ανάλογα με τη φύση και τον τρόπο έκφρασης των ενδεχομένων τους κατατάσσονται σε ποσοτικούς και ποιοτικούς. Προφανώς ο υπολογισμός πιθανοτήτων

Διαβάστε περισσότερα

Κεφάλαιο 5. Οι δείκτες διασποράς

Κεφάλαιο 5. Οι δείκτες διασποράς Κεφάλαιο 5 Οι δείκτες διασποράς Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 6 : Έλεγχος Υποθέσεων Ι. Αντωνίου, Χ. Μπράτσας Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πιθανότητες Πληροφορία Μέτρο

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε µε τη χρήση µιας εικοσαβάθµιας κλίµακας) παρουσιάζεται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ & ΕΚΠΑΙΔΕΥΣΗ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ & ΕΚΠΑΙΔΕΥΣΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ & ΕΚΠΑΙΔΕΥΣΗ ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2008-2009 users.att.sch.gr/abouras Ορισμός Στατιστικής Ετυμολογία: στατίζω (ελληνική

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσεων"

Περιγραφική Στατιστική. Π.Μ.Σ. Μαθηματικά των Υπολογιστών και των Αποφάσεων Περιγραφική Στατιστική Παράδειγμα Γίνεται μια μελέτη για τους τραυματισμούς στο μάτι (σοβαροί ή όχι τόσο σοβαροί) κατά τη διάρκεια αγώνων τέννις, squash, badminton και ρακέτας. Σοβαρός Τραυματισμός Επιπόλαιος

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων ΑΓΡΙΝΙΟ ΣΤΑΤΙΣΤΙΚΗ Φραγκίσκος Κουτελιέρης Αναπληρωτής

Διαβάστε περισσότερα

Μοντέλα στην Επιστήμη Τροφίμων 532Ε

Μοντέλα στην Επιστήμη Τροφίμων 532Ε Μοντέλα στην Επιστήμη Τροφίμων 532Ε Ασκηση Περιγραφικής Στατιστικής Κουτσουμανής Κ. Τομέας Επιστήμης και Τεχνολογίας Τροφίμων Σχολή Γεωπονίας, Α.Π.Θ Μοντέλα στην Επιστήμη Τροφίμων 532Ε Στέλνουμε την άσκηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1. Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πληροφορία Μέτρο πληροφορίας Μέση πληροφορία ή Εντροπία Από κοινού εντροπία

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. π.χ. Βαθμολογία διαγωνίσματος σε τμήματα: Α : 7, 11,16, 16,,. Β : 11, 13, 16, 16, 17, 17. Παρατήρηση : Για τέτοιους λόγους χρειάζεται και η εξέταση κάποιων μέτρων διασποράς

Διαβάστε περισσότερα

Περιγραφική Στατιστική

Περιγραφική Στατιστική Περιγραφική Στατιστική Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Περιγραφική Στατιστική τεχνικές 3 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 0 / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η MBA I

Σ ΤΑΤ Ι Σ Τ Ι Κ Η MBA I Σ ΤΑΤ Ι Σ Τ Ι Κ Η MBA I Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες φορές, με την χρήση και

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις 01 Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 31 σχολικού βιβλίου Α. Θεωρία (ορισμός), σελίδα 18-19 σχολικού βιβλίου Α3. Θεωρία, (ορισμός), σελίδα 96 σχολικού βιβλίου Α. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε)

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφικοί παράµετροι ή περιγραφικά µέτρα Τα περιγραφικά µέτρα διακρίνονται σε: µέτρα θέσης των στατιστικών δεδο- µένων ή παράµετροι κεντρικής τάσης µέτρα διασποράς µέτρα ή συντελεστές

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών

Διαβάστε περισσότερα

Φασματικη Αναλυση Συνδιασπορας

Φασματικη Αναλυση Συνδιασπορας Μοντέλα Παλινδρόμησης και Επεξεργασία Γνώσης ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Τμημα Μαθηματικων Αριστοτελειο Πανεπιστημιο Θεσσαλονικης 544 Regression Models and Knowledge Processing WINTER SEMESTER School of Mathematics

Διαβάστε περισσότερα

3. Κατανομες. Μαθηματικά και Στατιστικη στην Βιολογια. Mathematics and Statistics in Biology

3. Κατανομες. Μαθηματικά και Στατιστικη στην Βιολογια. Mathematics and Statistics in Biology Μαθηματικά και Στατιστικη στην Βιολογια ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (1 ο ) Τμημα Βιολογιας Αριστοτελειο Πανεπιστημιο Θεσσαλονικης Mathematics and Statistics in Biology WINTER SEMESTER (1 st ) School of Biology Aristotle

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Δείκτες Κεντρικής Τάσης και Διασποράς Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που γεννιούνται κατά την σύγκριση

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον

Διαβάστε περισσότερα

Μάθηµα 3 ο. Περιγραφική Στατιστική

Μάθηµα 3 ο. Περιγραφική Στατιστική Μάθηµα 3 ο Περιγραφική Στατιστική ΗΣτατιστικήείναι Μια τυποποιηµένη σειρά αναλυτικών µεθόδων, οι οποίες χρησιµοποιούνται από τον εκάστοτε ερευνητή για την ανάλυση των διαθέσιµων δεδοµένων. Υπάρχουν δύο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 06 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 206-207 2. Διερευνητική Ανάλυση Μέτρα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

Ευφυή Πληροφορικά Συστήματα 1 η Εργαστηριακή Άσκηση (Χειμερινό εξάμηνο ΜΒΑ )

Ευφυή Πληροφορικά Συστήματα 1 η Εργαστηριακή Άσκηση (Χειμερινό εξάμηνο ΜΒΑ ) Ευφυή Πληροφορικά Συστήματα 1 η Εργαστηριακή Άσκηση (Χειμερινό εξάμηνο ΜΒΑ 16 17) Μας δίνονται τα εκτελέσιμα αρχεία δύο () πληθυσμιακών αλγορίθμων βελτιστοποίησης σμήνους. Θέλουμε να εξετάσουμε την απόδοσή

Διαβάστε περισσότερα

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής. Μέση Τιµή Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: E( ) µ xf ( x) E( ) µ xf ( x) dx Παραδείγµατα: = = x = = αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΑΘΛΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΜΕ ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΟ SPSS 6 η Έκδοση Γιώργος Βαγενάς Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών ΕΚ ΟΣΕΙΣ ΤΖΙΟΛΑ Αποκλειστικότητα για την ελληνική γλώσσα: ΕΚ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2 HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 17 ΚΕΦΑΛΑΙΟ 1 23

Περιεχόμενα. Πρόλογος 17 ΚΕΦΑΛΑΙΟ 1 23 Περιεχόμενα Πρόλογος 17 Μέρος A ΚΕΦΑΛΑΙΟ 1 23 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 23 1.1 Εισαγωγή 23 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 24 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or

Διαβάστε περισσότερα

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

Περιγραφική Ανάλυση ποσοτικών μεταβλητών Περιγραφική Ανάλυση ποσοτικών μεταβλητών Στο data file Worldsales.sav (αρχείο υποθετικών πωλήσεων ανά ήπειρο και προϊόν) Analyze Descriptive Statistics Frequencies Επιλογή μεταβλητής Revenue Πατάμε στο

Διαβάστε περισσότερα

F x h F x f x h f x g x h g x h h h. lim lim lim f x

F x h F x f x h f x g x h g x h h h. lim lim lim f x 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, ) ΘΕΜΑ Α 1 Έχουμε F h F f( h) g h f() g f( h)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα