ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Δημήτρης Ιωαννίδης. Τμήμα Οικονομικών Επιστημών.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Δημήτρης Ιωαννίδης. Τμήμα Οικονομικών Επιστημών."

Transcript

1 Μεθοδολογία Έρευνας: Μάθημα 3 ο ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Δημήτρης Ιωαννίδης Τμήμα Οικονομικών Επιστημών Εμπιστευτικό Σελίδα 1

2 Μάθημα 5 ο Ελέγχοντας την Θεωρία ΙΙ: Στατιστικοί Έλεγχοι για τον μέσο ενός πληθυσμού την σύγκριση των μέσων δυο πληθυσμών αλλά και περισσοτέρων. Εμπιστευτικό Σελίδα 2

3 Περίληψη μαθήματος έλεγχου της ανεξαρτησίας Στο προηγούμενο μάθημα εξετάσαμε τον έλεγχο της ανεξαρτησίας. Πότε δυο μεγέθη είναι ανεξάρτητα; Έτσι: στο 3ο Παράδειγμα (της Πολυδιάστατης Ανάλυσης): Μια έρευνα που έγινε για την ανεργία και το φύλλο των ανέργων έδειξε ότι για τον έλεγχο της υπόθεσης H: Ανεξαρτησία φύλου και ανεργία έναντι της Α: όχι Ανεξαρτησία, απορρίπτουμε την Η σε ε.σ. 0,05 ή και ακόμη 0,001 ή και μικρότερο, επειδή η p-τιμή 0 είναι μικρότερη της 0,05 αλλά και όλων των υπολοίπων. στο 4ο Παράδειγμα: ο βαθμός εξάρτησης μεταξύ κερδών και εξόδων της είναι στατιστικά σημαντικός σε ε.σ. 0,05 επειδή για τον έλεγχο της H: συσχέτιση έναντι της Α: όχι συσχέτιση, ΔΕΧΟΜΑΣΤΕ ΤΗΝ ΕΝΑΛΛΑΚΤΙΚΗ Α. Διατύπωση Υποθέσεων Μια από τις πιο σημαντικές φράσεις που πρέπει να χρησιμοποιείται σε έρευνες αγορών είναι αυτή της Στατιστικής Σημαντικότητας. ΠΑΡΑΔΕΙΓΜΑΤΑ Για παράδειγμα, ο κατασκευαστής κάποιων προϊόντων θέλει να γνωρίζει αν τα μέτρα βελτίωσης που έλαβε για την παραγωγή τους ελάττωσαν σημαντικά το μέσο ποσοστό των ελαττωματικών προϊόντων. Το διευθύνων στέλεχος υγείας αν είναι σε θέση να εξηγήσει ότι ο μέσος χρόνος αναμονής των ασθενών για εγχείρηση έχει στατιστικά σημαντικά Εμπιστευτικό Σελίδα 3

4 μειωθεί. Από τα ιστορικά στοιχεία που διαθέτει μπορεί να υποθέσει ότι είναι άνω των 35 ημερών, ή κάτω ή απλά διάφορο του 35. Αν μ συμβολίζει τον μέσο χρόνο, τότε μπορούμε και γράφουμε μ>35 ή μ<35 ή μ 35, αντίστοιχα. Επίσης, αν είναι στατιστικά σημαντικά μεγαλύτερη η μέση κατανάλωση για ένα απορρυπαντικό από κάποιο άλλο κτλ. Αν με μ1, μ2, συμβολίσουμε τις μέσες καταναλώσεις, αντίστοιχα μπορούμε να υποθέσουμε μ1= μ2 ή μ1> μ2ή μ1< μ2 ή μ1 μ2 Το δείγμα που έχουμε σε κάθε έρευνα αποτελεί τη βάση στο να υποστηριχθεί ή όχι η Θεωρία μας, δηλ. η υπόθεση. Όταν λαμβάνουμε μετρήσεις από τον πληθυσμό μας δημιουργούμε δείγματα από τα οποία υπολογίζαμε, αριθμητικό μέσο, διάμεσο κτλ, με μια λέξη στατιστικές. Μας ενδιαφέρει κύρια ο Αριθμητικός Μέσος Αν μπορούσαμε να πάρουμε μετρήσεις σε όλο τον πληθυσμό μας τότε θα λέγαμε ότι έχουμε παραμέτρους. Το τελευταίο σχεδόν δεν γίνεται ποτέ, αλλά οι στατιστικές λέμε ότι μπορούν να αντικαταστήσουν τις παραμέτρους, καθιστώντας αυτές γνωστές. (πρόβλεψη ψήφων-αποτελέσματα εκλογών). Από έναν πληθυσμό (μεγάλο) μπορούμε να πάρουμε «άπειρα» δείγματα τα οποία διαφέρουν μεταξύ τους, και θα δίνουν υπολογιστικά διαφορετικές τιμές Αριθμητικών Μέσων, η οποία διαφορετικότατα δίνεται από το Στατιστικό σφάλμα (Standard Error-SE). Αν με μ συμβολίσουμε τον μέσο του πληθυσμού μας ή του χαρακτηριστικού μας, τότε είναι σημαντικό να γνωρίζουμε αν ο Εμπιστευτικό Σελίδα 4

5 Αριθμητικός Μέσος ή ο Δειγματικός μέσος ( X ) παίρνει τιμές κοντά στο μ, αριστερά του ή δεξιά του. Λέμε ότι οι τιμές του ( X ) αποκλίνουν σ με ένα τυπικό σφάλμα n από το μ, όπου σ η τυπική απόκλιση στον πληθυσμό και n το μέγεθος του δείγματος. Συνήθως, το σ είναι άγνωστο οπότε αντικαθίσταται από την εμπειρική διακύμανση (S), που είναι η τετραγωνική ρίζα της δειγματικής διακύμανσης. Ι. ΕΛΕΓΧΟΣ ΤΟΥ ΜΕΣΟΥ ΣΕ ΕΝΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ Ο συνηθισμένος τρόπος για να ελέγξουμε αν ο πληθυσμιακός μέσος, μ, δεν διαφέρει στατιστικά σημαντικά από μια ενδεχομένη μ 0 τιμή. Άρα πρέπει να μετρήσουμε την διάφορα του δειγματοληπτικού μέσου από την τιμή του μ που συζητάμε. Καταρχήν, δημιουργούμε την: Εμπιστευτικό Σελίδα 5

6 Μηδενική υπόθεση, που συμβολίζεται με H ή Η 0, και εκφράζει την υπάρχουσα κατάσταση δηλ. ότι μ=μ 0, κάθε τι το διαφορετικό και εκφράζεται μέσω της εναλλακτικής, και συμβολίζεται με Α ή Η 1. Κανόνας απόφασης Αν Τ ή Ζ = (ΜΕΣΟΣ ΕΜΠΕΙΡΙΑΣ - ΘΕΩΡΗΤΙΚΟ ΜΕΣΟ όταν ισχύει η μηδενική υπόθεση) / Στατιστικό σφάλμα = nx ( μο) σ, λαμβάνει μικρή τιμή για το δείγμα μας και το μ 0 τότε αποδεχόμαστε την Η, αν μεγάλη αποδεχόμαστε την Α. ΠΩΣ καθορίζεται το μικρό ή το μεγάλο? Ι. Από τον τύπο της κατανομής της παραπάνω ποσότητας, που είναι τύπου Κανονικής. Αν έχω μικρό δείγμα προϋπόθεση ο πληθυσμός μου να είναι κανονικός, κάτι που το διαπιστώνουμε με έλεγχο Κανονικότητας και ενδεδειγμένος συμβολισμός είναι το Τ. Αν έχω μεγάλο δείγμα η προϋπόθεση ο πληθυσμός μου να είναι κανονικός, δεν είναι απαραίτητος και ενδεδειγμένος συμβολισμός είναι το Ζ. Εμπιστευτικό Σελίδα 6

7 Συνήθως, συγκρίνουμε την παραπάνω ποσότητα με 2 αν θέλουμε να έχουμε σφάλμα τύπου ίσον με 0,05. Τι είναι το 2? Οι τιμές της Ζ ή της Τ μεταβλητής μου συγκεντρώνονται με τον επόμενο τρόπο: Εικόνα 1: Σύγκριση των τιμών της Ζ ή της Τ μεταβλητής (δύο εναλλακτικές) Την σταθερά c1 στο επόμενο σχήμα ονομάζουμε κρίσιμη σταθερά. Εμπιστευτικό Σελίδα 7

8 Εικόνα 2: Η σταθερά c1 (κρίσιμη σταθερά) Στην περίπτωση με το Case Study 1, αν θεωρήσουμε το χαρακτηριστικό «Πώληση» (SALE) και θέλουμε να ελέγξουμε αν η μέση του τιμή είναι το 60, δηλ. H: μ=60 έναντι της Α : μ 60 σε επίπεδο σημαντικότητας 0,05, τότε έχουμε ότι: One-Sample Statistics N Mean Std. Std. Error Deviation Mean Amount of last 70 sale 55, , ,42313 Εμπιστευτικό Σελίδα 8

9 H : μ=60 % Πώληση(Sale) 55, ,55 Τ ή Z 0 55,45-60 Z= -0, / 69 Σφ.Τυπ. Ι, 2Χ0,3575 =0,71 Z = x - μ s / n Z= 0,363 Εικόνα 3: Case study 1 έλεγχος αν η μέση τιμή είναι 60 Αν Z ή Τ κατά απόλυτη τιμή μεγαλύτερο του 2 θα πηγαίνω στην εναλλακτική. Εικόνα 4: Αν Ζ ή Τ μεγαλύτερο του 2 εναλλακτική λύση ΟΛΑ ΤΑ ΠΑΡΑΠΑΝΩ ΕΙΝΑΙ ΑΡΚΕΤΑ ΔΥΣΚΟΛΑ για αυτό προχωράμε με άλλο τρόπο. Αναλυτικά όλοι οι έλεγχοι τους δίνουν στο αρχείο Στατιστικοί Έλεγχου (pdf). Γενικά κατά την διαδικασία του ελέγχου υποθέσεων έχουμε τα εξής σφάλματα: Εμπιστευτικό Σελίδα 9

10 Πίνακας 1: Σφάλματα κατά την διαδικασία ελέγχου υποθέσεων Αληθής H Αληθής Α Αποφασίζω για H σωστά Σφάλμα τύπου II (Beta) Αποφασίζω για Α Σφάλμα τύπου I, (alfa) σωστά Εμπιστευτικό Σελίδα 10

11 Εικόνα 5: Σφάλματα κατά την διαδικασία ελέγχου υποθέσεων Η πιθανότητα να συμβεί το σφάλμα τύπου I είναι το επίπεδο σημαντικότητας (a) που θέλουμε να είναι πολύ μικρή 0,05 ή 0,01 ή 0,1 κτλ., ενώ το II όσο γίνεται με μικρότερη πιθανότητα. p-τιμή = το μικρότερο παρατηρούμενο επίπεδο σημαντικότητας. Εμπιστευτικό Σελίδα 11

12 Αποδέχομαι την H αν p-τιμή > a. Απορρίπτουμε την H αν p-τιμή < a. ΤΙ ΑΠΟΦΑΣΙΖΟΥΜΕ ΜΕ ΒΑΣΕΙ ΤΑ ΠΑΡΑΠΑΝΩ και το ερώτημα μας στο αρχείο Contact? Από το SPSS έχουμε ότι significance =0,715, άρα κρατώ την Η. Εμπιστευτικό Σελίδα 12

13 Εμπιστευτικό Σελίδα 13

14 ΠΟΤΕ και κάτω από ποιες συνθήκες αποδεχόμαστε την Η; Βασική προϋπόθεση θα είναι ότι οι μετρήσεις μας είναι από Κανονικό πληθυσμό αν το δείγμα μικρό. Πρακτικά σημαίνει ότι όλες οι μετρήσεις σχηματίζουν συμμετρικό Ιστόγραμμα. Αν δεν συμβαίνει το τελευταίο τότε απαιτούμε να έχουμε μεγάλα δείγματα. Για την διατήρηση της H.(αποδοχή της) ή την απόρριψη της στηριζόμαστε στην εξής Στατιστική ελέγχου t = (δειγματοληπτικός μέσος-θεωρητικός μέσος) / τυπικό σφάλμα Αν η τιμή αυτή είναι μεγαλύτερη από κάποια t-τιμή (κρίσιμη τιμή) τότε αυτό μας οδηγεί στην αποδοχή της εναλλακτικής. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1.1: Σ ένα εργοστάσιο εμφιάλωσης ποτών όπου παρατηρήθηκε ότι η ποσότητα X του ποτού σε κάθε φιάλη ακολουθεί την κανονική κατανομή N(500, 1,5 2 ) λαμβάνεται ένα δείγμα μεγέθους n=25 με X = 499,28 (cm 3 ). Να ελεγχθεί η υπόθεση H: μ = 500 cm 3 έναντι α) της A1 : μ 500 cm 3, για την οποία υπόθεση θα ενδιαφέρονται περισσότερο ελεγκτές από το κράτος. β) της A2 : μ>500 cm 3, για την οποία υπόθεση θα ενδιαφέρονται περισσότερο οι ιδιοκτήτες του εργοστασίου. γ) της A3 : μ<500 cm 3, για την οποία υπόθεση Εμπιστευτικό Σελίδα 14

15 Λύση: θα ενδιαφέρονται περισσότερο οι καταναλωτές. 1. Σαν επίπεδο σημαντικότητας επιλέγουμε α = 0,01 2. ( 8 500) ,2 z = = 2,4 1,5 3. α) H κρίσιμη περιοχή σύμφωνα με το βήμα τρία είναι (, 2,576) ( 2,576, + ) c = και απεικονίζεται με το γραμμοσκιασμένο μέρος στο επόμενο σχήμα (α). β) H κρίσιμη περιοχή σύμφωνα με το βήμα τρία της δεύτερης περίπτωσης είναι η ( c = 2,326, ) και απεικονίζεται με το γραμμοσκιασμένο μέρος στο επόμενο σχήμα (β). Εμπιστευτικό Σελίδα 15

16 (α) 0,60 (β) 0,60 0,45 0,45 0,30 0,30 0,15 0,15 0,00 3,50 1,75 0,00 1,75 2,576 2,576 3,50 0,00 3,50 1,75 0,00 1,75 2,326 3,50 Εικόνα 6: Παράδειγμα 1.1 βήμα 3 ο δεύτερης περίπτωσης κρίσιμη περιοχή γ) H κρίσιμη περιοχή σύμφωνα με το βήμα τρία της τρίτης περίπτωσης είναι η (c =, 2,326) και απεικονίζεται με το γραμμοσκιασμένο μέρος. Εμπιστευτικό Σελίδα 16

17 (γ) 0,60 0,45 0,30 0,15 0,00 3,50 1,75 2,326 0,00 1,75 3,50 Εικόνα 7: Παράδειγμα 1.1 βήμα 3 ο τρίτης περίπτωσης κρίσιμη περιοχή 4. α) Επειδή z = 2,4 δεν ανήκει στο C, δεν απορρίπτουμε την H. β) Επειδή z = 2,4 δεν ανήκει στο C, οι ιδιοκτήτες δεν απορρίπτουν την H. γ) Επειδή z = 2,4 ανήκει στο C, οι καταναλωτές απορρίπτουν την H. 2. Κανονικός πληθυσμός Παράδειγμα 1.2: Μία οινοβιομηχανία διατηρεί το κρασί της σε βαρέλια των 500 lt. Η ποσότητα του κρασιού που περιέχεται στα βαρέλια ακολουθεί την Κανονική Εμπιστευτικό Σελίδα 17

18 κατανομή με μέσο 470 lt και τυπική απόκλιση 10 lt. Οι υπεύθυνοι της οινοβιομηχανίας υποπτεύονται ότι αφαιρούνται ποσότητες κρασιού από τα βαρέλια. Για να ελέγξουν την άποψή τους (τη θεωρία τους) μετρούν την ποσότητα κρασιού σε πέντε τυχαία επιλεγμένα βαρέλια α) Διατυπώσατε τη μηδενική και την εναλλακτική υπόθεση. β) Η μέση ποσότητα κρασιού στα 5 βαρέλια βρέθηκε να είναι 464 lt. Υπολογίσατε την p-τιμή. γ) Σε ποια από τα παρακάτω επίπεδα σημαντικότητας ισχύει η θεωρία των υπευθύνων της εταιρείας: 10%, 8%, 5%, 2%, 1%. Λύση: α) Η μέση ποσότητα του κρασιού σ όλα τα βαρέλια είναι μ = 470 lt. Σαν μηδενική υπόθεση έχουμε την Η : μ = 470 ( 470) ενώ σαν εναλλακτική την υποψία των υπευθύνων Α: μ < 48. β) Η στατιστική ελέγχου Ζ για τα δεδομένα του προβλήματος γίνεται x μ Ζ= = = 1,36. σ / n 10/ 5 Με τη βοήθεια πινάκων έχουμε ότι PZ ( 1,36) = 1 PZ ( 1,36) = 0,09 και επειδή PZ ( 1,36) = PZ ( 1,36) = 0,09 το 1,36 αντιστοιχεί στην 0,09 τιμή της Ζ μεταβλητής. γ) Η p-τιμή είναι 0,09 ή 9% που είναι μικρότερη μόνο του 10%. Άρα μόνο σε επίπεδο σημαντικότητας 10% είναι σωστή η θεωρία των υπευθύνων. Εμπιστευτικό Σελίδα 18

19 Παράδειγμα 1.3: Μια μηχανή γεμίζει κεσεδάκια με βούτυρο. Κάτω από κανονικές συνθήκες το ποσό του βουτύρου που περιέχουν τα κεσεδάκια ακολουθεί την Κανονική κατανομή με μέσο 110 gr και τυπική απόκλιση 1,5 gr. Μερικές φορές η μηχανή δε λειτουργεί σωστά με αποτέλεσμα τα κεσεδάκια να είναι υπέρβαρα ή ελλιπή. Για να ελεγχθούν τα παραπάνω γίνεται κάθε μέρα έλεγχος του βάρους των παραγομένων αντικειμένων επιλέγονται τυχαία 10 κεσεδάκια από την παραγωγή της μέρας και ζυγίζονται. α) Διατυπώσατε τη μηδενική υπόθεση και την εναλλακτική υπόθεση. β) Ελέγξατε σε ε.σ. α = 0,05, θεωρώντας ότι η τυπική απόκλιση παραμένει ίδια. γ) Μια μέρα ο έλεγχος έδωσε x =118 gr. Ποιο είναι το συμπέρασμά σας. Λύση: α) Εδώ είναι H: μ = 110 και Α: μ 110. β) Για τον έλεγχο της Η έναντι της Α σε ε.σ. α = 0,05, η στατιστική μας ελέγχου είναι x 110 Ζ=. 1,5 / 10 Από την Ενότητα 11.2 του βιβλίου έχουμε ότι αποδεχόμαστε την Α σε ε.σ. 0,05 αν Z z 0,025 = 1,96 ή Z z =. Το τελευταίο ισοδυναμεί ότι αποδεχόμαστε την Α σε ε.σ. 0,05 αν 0,025 1,96 1,5 x , ή 10 1,9 x 110 1, γ) Φυσικά x =113 μεγαλύτερο του 111 οπότε αποδεχόμαστε την Α. Εμπιστευτικό Σελίδα 19

20 Ποιοτικός Έλεγχος Πολύ συχνά όταν έχουμε ένα τυχαίο δείγμα από έναν κανονικό πληθυσμό οι έλεγχοι για τη μέση τιμή αυτού είναι χρήσιμοι για ποιοτικούς ελέγχους βιομηχανικών μεθόδων. Το επόμενο παράδειγμα θα μας διαφωτίσει περισσότερο. Πίνακας 2: Μέση τιμή τυχαίου δείγματος από κανονικό πληθυσμό ,03 15,99 16,01 16,01 15,97 16,10 15,98 16,05 16,00 15,88 15,85 15, Στην 11 περίπτωση βρισκόμαστε κάτω από το Κάτω Προειδοποιητικό Όριο, και στη 12 περίπτωση κάτω από το Κάτω Όριο Ελέγχου, οπότε σταματάμε τη βιομηχανική μέθοδο, και διορθώνουμε τις μηχανές. Παράδειγμα 1.4: Σε μια μέθοδο παραγωγής, π.χ. κάποιων αντικειμένων όπου μας ενδιαφέρει το γνώρισμα X, που μπορεί να είναι μήκος, βάρος κ.λπ., θεωρούμε ότι αυτό ακολουθεί τη N(μ, σ 2 ), με σ 2 γνωστό. Κατά τη διάρκεια της παραγωγής, σε τακτά χρονικά διαστήματα δημιουργούμε δείγματα μεγέθους n, με n συνήθως μεταξύ 5 και 10. Με τη βοήθεια αυτών των δειγματοληψιών ελέγχουμε την H: μ = μ 0 έναντι της A: μ μ 0 σε ε.σ. α = 0,01 και α = 0,05. Τότε Αν H απορρίπτεται σε ε.σ. 0,01 σταματάμε την παραγωγή, και διορθώνουμε τις μηχανές. Αν H δεν απορρίπτεται σε ε.σ. 0,01, αλλά απορρίπτεται σε ε.σ. α=0,05, Εμπιστευτικό Σελίδα 20

21 τότε παίρνουμε ένα νέο δείγμα, που αν δεν απορριφθεί η H σε ε.σ. 0,05, τότε συνεχίζουμε την παραγωγή. Μία γραφική παράσταση της μεθόδου αυτής παρουσιάζεται με τη λεγόμενη κάρτα ελέγχου. H περίοδος αποδοχής της H γίνεται για εκείνα τα x 1,, x n, ώστε. Για α = 0,01 έχουμε τα όρια σ 0 2,58 n σ, μ και μ 0 + 2,58 n που ονομάζονται όρια ελέγχου, ενώ για α = 0,05 έχουμε τα αντίστοιχα σ 0 1,96 n σ, μ και μ 0 + 1,96 n που ονομάζονται προειδοποιητικά όρια ελέγχου. Εμπιστευτικό Σελίδα 21

22 x δειγματικός μέσος 16,172 Άνω όριο Ελέγχου 16,131 Άνω όριο Προειδοποιητικού Ελέγχου μ 0 =16 15,869 15,828 Kάτω όριο Προειδοποιητικού Ελέγχου Kάτω όριο Ελέγχου Αριθμός δειγμάτων Εικόνα 8: Προειδοποιητικά όρια ελέγχου Έτσι αν μας ενδιέφερε σαν γνώρισμα των αντικειμένων το μήκος, που πρέπει να είναι ίσο με 16 cm, δηλ. μ=16, και με γνωστή διακύμανση σ 2 = 0,04, ας δημιουργήσουμε 12 δειγματοληψίες μεγέθους 9 από τις οποίες έχουμε τους εξής δειγματικούς μέσους. ΙΙ. Τ- ΕΛΕΓΧΟΣ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΤΗΣ ΔΙΑΦΟΡΑΣ ΔΥΟ ΜΕΣΩΝ με ανεξάρτητα δείγματα. Εμπιστευτικό Σελίδα 22

23 Μια από τις πιο συχνές και σημαντικές ερωτήσεις σε έρευνες αγοράς είναι αν οι διαφορές μέσων από δύο ομάδες(πληθυσμούς) είναι στατιστικά σημαντικές ή όχι. Οι βασικές προϋποθέσεις που έχουμε είναι : 1. Δυο πληθυσμούς κανονικούς 2. Οι δυο πληθυσμοί έχουν μέσους και διακυμάνσεις. Οι διακυμάνσεις μεταξύ 3. των δυο πληθυσμών μπορεί να είναι ίσες ή άνισες. Ελέγχουμε την H: οι μέσοι 4. είναι ίδιοι έναντι της Α: οι μέσοι είναι διάφοροι. Η βασική ποσότητα που 5. χρησιμοποιείται για τον έλεγχο είναι: t = (διαφορά μεταξύ των μέσων των δυο δειγμάτων) / τυπικό σφάλμα της διαφοράς των μετρήσεων των δυο πληθυσμών. Οι συλλογισμοί για την αποδοχή ή απόρριψη της H είναι ανάλογη όπως στην προηγούμενη περίπτωση. Εμπιστευτικό Σελίδα 23

24 Εικόνα 9: Καμπύλες μεταβλητότητας Παράδειγμα 2.1: Σε μια μεγάλη επιχείρηση οι νέοι υπάλληλοι συμμετέχουν σε κάποια ταχύρρυθμη εκπαίδευση. Τα έξοδα της επιχείρησης δεν είναι μόνο αυτά που απαιτούνται για την εκπαίδευση, όπως διάθεση κονδυλίων για εκπαιδευτές κ.τ.λ. αλλά και το ότι οι νέοι υπάλληλοι δεν συνεισφέρουν άμεσα σ αυτήν εργασία. Έτσι, ο οργανισμός ενδιαφέρεται για τέτοια προγράμματα εκμάθησης ώστε οι νέοι υπάλληλοι να έχουν το μέγιστο της απόδοσής τους στο συντομότερο χρόνο. Προτείνεται μια νέα μέθοδος εκμάθησης και θέλουμε να τη συγκρίνουμε με την πάγια μέθοδο. Δύο ομάδες από τους εννέα υπαλλήλους εκπαιδεύτηκαν για ένα μήνα, η μια με τη νέα μέθοδο ενώ η άλλη με την παλιά. Στο τέλος, οι επιδόσεις των υπαλλήλων μετρήθηκαν ανάλογα με το χρόνο (σε λεπτά) Εμπιστευτικό Σελίδα 24

25 που χρειάζονται για τη διεκπεραίωση της δουλειάς τους. Πίνακας 3: Χρόνος διεκπεραίωσης εργασίας Παλιά μέθοδος Νέα μέθοδος Συνηγορούν οι παραπάνω βαθμολογίες είναι διαφορετικές ; Λύση: Βήμα 1 ο : Ελέγχουμε την H: μ 1 =μ 2 έναντι της A: μ 1 >μ 2 (τρίτη περίπτωση) και επιλέγουμε σαν α=0,05. Εμπιστευτικό Σελίδα 25

26 Οι δειγματικοί μέσοι και διακυμάνσεις είναι: 2 1 x = 35,22 και s 1 = 195,56. 8 y = 31,56 και Βήμα 2 ο : Άρα για το Βήμα 2ο έχουμε: 35,22 31,56 t = = 1, , , και επειδή. 1, 76 xα = t n t 1+ n 2 2; α = 16;0,05 = Βήμα 3 ο : Στο Βήμα 3ο έχουμε: μηδενική υπόθεση. 2 1 s 2 = 160,22. 8 t = 1, 64 < t = 1, 76 16; 0,05 ΛΥΣΗ ΜΕ SPSS ΒΑΖΩ ΤΑ ΔΕΔΟΜΕΝΑ ΜΟΥ ΣΕ ΔΥΟ ΣΤΗΛΕΣ του SPSS 32,00 1,00 37,00 1,00 35,00 1,00 28,00 1,00 41,00 1,00 44,00 1,00 35,00 1,00, δηλ. απορρίπτουμε τη Εμπιστευτικό Σελίδα 26

27 31,00 1,00 34,00 1,00 35,00 2,00 31,00 2,00 29,00 2,00 25,00 2,00 34,00 2,00 40,00 2,00 27,00 2,00 32,00 2,00 31,00 2,00 Εμπιστευτικό Σελίδα 27

28 Εμπιστευτικό Σελίδα 28

29 2.1 Έλεγχοι Σύγκρισης των Διακυμάνσεων Δύο Πληθυσμών Παράδειγμα 2.1.1: Το κλείσιμο τιμών δύο κοινών μετοχών σημειώθηκε για 15 ημέρες. Οι δειγματικοί μέσοι και διακυμάνσεις ήταν: x = 37,58 y = 38,24 2 s 1 = 1,54 2 s 2 = 2,96 Παρέχουν τα παραπάνω δεδομένα ένδειξη ότι η μεταβλητότητα είναι μεγαλύτερη στην πρώτη μετοχή; (α = 0,05) Λύση: Ενδιαφερόμαστε για τον έλεγχο της H: σ = σ έναντι της A: σ σ 1 σε επίπεδο σημαντικότητας α = 0,05. Έτσι, για το 2ο βήμα της (γ) περίπτωσης έχουμε, Επίσης, F = F =. n1 1; n2 1;0,05 14,14;0,05 2,46 Οπότε για το 3ο βήμα έχουμε: s 1,54 f = = = 0,52 s 2, f = 0, 52 < F 2,46 n1 1; n2 1;0,05 =. 2, >, 1 2 και δεν απορρίπτουμε τη μηδενική υπόθεση. H κρίσιμη περιοχή ή η περιοχή απόρριψης της H είναι η c = [2,46, ) και απεικονίζεται με το γραμμοσκιασμένο μέρος του επόμενου σχήματος. Εμπιστευτικό Σελίδα 29

30 1,500 1,125 0,750 0,375 0, ,46 4 Εικόνα 10: Κρίσιμη περιοχή Η ΙΙI. Τ- ΕΛΕΓΧΟΣ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΤΗΣ ΔΙΑΦΟΡΑΣ ΔΥΟ ΜΕΣΩΝ με εξαρτημένα δείγματα (ζευγαρωτές παρατηρήσεις). Στα προηγούμενα θεωρήσαμε ότι έχουμε δύο ανεξάρτητα δείγματα από δύο πληθυσμούς. Σε πολλά όμως στατιστικά προβλήματα δημιουργούμε πριν και μετά μετρήσεις για τις ίδιες στατιστικές μονάδες. Για παράδειγμα, θέλοντας να εξετάσουμε την καταναλωτική συμπεριφορά κάποιων ατόμων γι ένα ορισμένο προϊόν, μετρούμε την κατανάλωση των Εμπιστευτικό Σελίδα 30

31 ατόμων πριν γίνει μια διαφήμιση και μετά. Έτσι εδώ μας ενδιαφέρει η τυχόν αλλαγή που έγινε στον καταναλωτή πριν τη διαφήμιση και μετά απ αυτήν. Αν με X i, i=1,, n μετρούμε την κατανάλωση το i-καταναλωτή πριν τη διαφήμιση και με Y i, i=1,, n μετρούμε την κατανάλωση μετά τη διαφήμιση, τότε οι Di = Xi Y i, i= 1,, n μας δείχνουν τη διαφορά κατανάλωσης στον ίδιο καταναλωτή. (ΑΝΑΛΟΓΟ παράδειγμα με το case study 1) Γενικά για τις ζευγαρωτές παρατηρήσεις επιλέγουμε ένα δείγμα από τον πληθυσμό που θέλουμε να μελετήσουμε. Σε κάθε στατιστική μονάδα του πληθυσμού μας δημιουργούμε δύο μετρήσεις πριν από κάποιο συμβάν και μετά. Έτσι δημιουργούμε σαν δεδομένα τις διαφορές των μετρήσεών μας. Σε ορισμένες περιπτώσεις είναι δυνατόν να έχουμε ζευγαρωτές παρατηρήσεις αν και οι μετρήσεις γίνονται σε διαφορετικές μονάδες, π.χ. περιπτώσεις διδύμων. Έτσι αν θέλουμε να εξετάσουμε την αποτελεσματικότητα δύο μεθόδων διδασκαλίας A και B, και εφαρμόζουμε την A σε μια τάξη μαθητών, ενώ εφαρμόζουμε την B σε μια άλλη τάξη μαθητών όπου κάθε μαθητής σ αυτήν έχει την ίδια ικανότητα προς έναν αντίστοιχο της άλλης τάξης, έχουμε μετρήσεις σε διαφορετικές μονάδες. Εδώ ενδείκνυται η χρήση ζευγαρωτών παρατηρήσεων. Παράδειγμα : Θέλουμε να διαπιστώσουμε κατά πόσο οι άνδρες και οι γυναίκες με την ίδια εκπαίδευση ξεκινούν με τους ίδιους μισθούς στην αγορά εργασίας. Ζευγάρια δημιουργούνται επιλέγοντας έναν άνδρα και μία γυναίκα με την ίδια κατεύθυνση. Λαμβάνουμε ένα δείγμα μεγέθους n=10 και σημειώνουμε τους μισθούς κάθε εργαζομένου. Έτσι είχαμε Ζευγάρι Άνδρας Γυναίκα Διαφορά Εμπιστευτικό Σελίδα 31

32 (X) (Y) (Άνδρας - Γυναίκα) Να γίνει ο έλεγχος. Εμπιστευτικό Σελίδα 32

33 Λύση: Εμπιστευτικό Σελίδα 33

34 Εμπιστευτικό Σελίδα 34

35 Εμπιστευτικό Σελίδα 35

36 Απ όπου συμπεραίνουμε ότι οι μισθοί των ανδρών ξεπερνούν τους μισθούς των γυναικών σε επιπεδο σημαντικότητας 0,05(0,017<0,05). ΙV. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Όταν η εξαγωγή συμπερασμάτων αφορά δυο ομάδες, τότε χρησιμοποιούμε τους t-ελέγχους. Στην περίπτωσή που έχουμε πέραν των δυο ομάδων χρησιμοποιούμε την Ανάλυση Διακύμανσης. 3.1 Μονοπαραγοντική Ανάλυση Διακύμανσης H τεχνική που χρησιμοποιείται για τη σύγκριση των μέσων πολλών πληθυσμών ονομάζεται ανάλυση διακύμανσης, και βασίζεται στη σύγκριση της μεταβλητότητας μεταξύ των πληθυσμών και της μεταβλητότητας στο εσωτερικό των πληθυσμών. Έτσι αν δεχθούμε ότι δεν υπάρχει μεταβλητότητα μεταξύ των πληθυσμών μας αυτό δεν θα συνεπάγεται ότι όλες οι μετρήσεις θα είναι ίδιες, αλλά ενδέχεται να είναι διάφορες λόγω της τυχαίας φύσης των μετρήσεών μας. Το τελευταίο μας οδηγεί στο γεγονός ότι θα υπάρχει μεταβλητότητα στο εσωτερικό του κάθε πληθυσμού μας που μπορεί να εκτιμηθεί. Ανάλογη εκτίμηση μπορούμε να έχουμε για τη μεταβλητότητα ή τη διακύμανση μεταξύ των πληθυσμών μας. Αν οι μεταβλητότητες μεταξύ των πληθυσμών μας και του εσωτερικού τους είναι του αυτού μεγέθους, Εμπιστευτικό Σελίδα 36

37 τότε συμπεραίνουμε ότι δεν υπάρχει διαφορά μεταξύ των μέσων των πληθυσμών μας. Αν η μεταβλητότητα μεταξύ των πληθυσμών μας είναι μεγαλύτερη από τη μεταβλητότητα στο εσωτερικό των πληθυσμών μας, τότε θα δεχόμαστε ότι οι μέσοι των πληθυσμών μας είναι διάφοροι μεταξύ τους. Στην ανάλυση διακύμανσης θεωρούμε k πληθυσμούς ή ομάδες με άγνωστους μέσους μ1,, μk, που από τον καθένα λαμβάνουμε ανεξάρτητα ένα τυχαίο δείγμα. μ 1 = = μ k H μηδενική υπόθεση είναι H : A: τουλάχιστον μία από τις ισότητες δεν ισχύει., ενώ η εναλλακτική ΠΑΡΑΔΕΙΓΜΑ Παράδειγμα 3.1.1: Τέσσερις ομάδες μαθητών υποβάλλονται σε διαφορετικές μεθόδους διδασκαλίας. Μετά το πέρας της εκπαίδευσης τους υποβλήθηκαν σε εξετάσεις και είχαμε τα εξής αποτελέσματα: Πίνακας 4: Δεδομένα παραδείγματος Ομάδες (πληθυσμοί) Εμπιστευτικό Σελίδα 37

38 90 O κύριος παράγοντας που επηρεάζει τις επιδόσεις θεωρείται ότι είναι η μέθοδος διδασκαλίας. Καλούμαστε να εξετάσουμε αν οι μέθοδοι διδασκαλίας είναι ισοδύναμες μεταξύ τους, προϋποθέτοντας ότι οι μετρήσεις μας προέρχονται από Κανονικούς πληθυσμούς με μέσους μ 1, μ 2, μ 3 και μ 4 θεωρώντας τις διακυμάνσεις τους άγνωστες και ίσες. 3.2 Διπαραγοντική Ανάλυση Διακύμανσης με μια παρατήρηση ανά γραμμή και στήλη H ανάλυση διακύμανσης μπορεί να χρησιμοποιηθεί και σε περιπτώσεις που ενδιαφερόμαστε να μελετήσουμε τις επιδράσεις δύο ή και περισσοτέρων παραγόντων σε μία μεταβλητή. Για παράδειγμα, στην περίπτωση που ενδιαφερόμαστε για τα αποτελέσματα διαφορετικών πόρων διαφήμισης ανάλογα με τα επίπεδα των εξόδων στις πωλήσεις ενός προϊόντος. Επίσης, να μελετήσουμε τα αποτελέσματα διαφορετικών μεθόδων σε διαφορετικές ημέρες της εβδομάδας. H ανάλυση διακύμανσης που εμπεριέχει δύο παράγοντες, ονομάζεται διπαραγοντική ανάλυση διακύμανσης, και στα προβλήματα που εφαρμόζεται μετρά τις επιδράσεις διαφόρων επιπέδων ενός παράγοντα (ή μεταβλητής) στα επίπεδα ενός άλλου παράγοντα (ή μεταβλητής). Ειδικότερα, αφού επιλέξουμε τα επίπεδα των παραγόντων, μπορούμε να μελετήσουμε τις επιδράσεις κάθε παράγοντα χωριστά, αλλά και των δύο Εμπιστευτικό Σελίδα 38

39 όταν ενεργούν συγχρόνως. Σ αυτήν την παράγραφο θα θεωρήσουμε πειράματα με δύο παράγοντες, που απλά θα τους κατατάσσουμε σε στήλες (ή ομάδες) και γραμμές (ή μπλόκς ή επίπεδα). Θα υποθέσουμε ότι δεν υπάρχουν αλληλοεπιδράσεις μεταξύ γραμμών και στηλών, δηλ. οι επιδράσεις των γραμμών θα είναι ίδιες για κάθε στήλη και αντίστροφα. Επιπλέον θεωρούμε ότι έχουμε μια παρατήρηση ανά ομάδα και μπλοκ ή ανά στήλη και γραμμή. Ένα παράδειγμα διπαραγοντικής ανάλυσης είναι το επόμενο. ΠΑΡΑΔΕΙΓΜΑ Παράδειγμα 3.2.1: Μία εταιρεία ενδιαφέρεται να μελετήσει τις ικανότητες των πωλητών της A, B, Γ και Δ σε 3 διαφορετικές περιοχές Π 1, Π 2 και Π 3. Οι εβδομαδιαίες πωλήσεις τους ήταν οι εξής: Πίνακας 5: Δεδομένα παραδείγματος Πωλητές Περιοχή A B Γ Δ Π Π Εμπιστευτικό Σελίδα 39

40 Π Θέμα: Αρχείο Bakery. Ο σχεδιαστής παραγωγής άρτου πιστεύει ότι το ψωμί του πρώτου τύπου σημειώνει περισσότερες πωλήσεις. Συμμερίζεστε την άποψη του; Λύση: Ας υποθέσουμε ότι ο υπεύθυνος για την παραγωγή άρτων θέλει να γνωρίζει κατά πόσο και οι επτά τύποι ψωμιών πωλούνται εξ ίσου. Στην περίπτωση αυτή η μηδενική είναι H : Οι πωλήσεις είναι εξ ίσου ίσες ενώ η εναλλακτική Α: Οι πωλήσεις δεν είναι εξ ίσου ίσες. Ενδιαφερόμαστε να διαπιστώσουμε αν οι διαφορές στις πωλήσεις οφείλονται στην τύχη ή ο τύπος του ψωμιού κάνει τις πωλήσεις. Τα αποτελέσματα του Excel στο αρχείο Bakery_Anova. 3.3 Συζήτηση για την κατανομή του κανόνα απόφασης μας: γιατί κανονικότητα Κάθε τιμή ενός μέσου θα αποτελεί μια εκτίμηση του θεωρητικού μέσου του πληθυσμού μας, ενώ κάθε τιμή της διακύμανσης μια εκτίμηση της θεωρητικής διακύμανσης του πληθυσμού κτλ. Οι τιμές των δειγματοληπτικών μέσων, που προκύπτουν λόγω των διαφορετικών δειγμάτων, αποτελούν εκτιμήσεις του θεωρητικών μέσου. Ποια από όλες τις τιμές πλησιάζει ή πετυχαίνει ακριβώς τον μέσο; Εμπιστευτικό Σελίδα 40

41 Μπορούμε να πούμε ότι καμία δεν πετυχαίνει ακριβώς τον μέσο. Η διαφορά της τιμής ενός δειγματοληπτικού μέσου από τον αληθινό μέσο ονομάζεται σφάλμα εκτίμησης. Υπολογίζεται μόνο όταν είναι γνωστός ο μέσος του πληθυσμού. Το μόνο σταθερό σημείο αναφοράς είναι ότι η κατανομή των μέσων είναι κανονική με μέσο, τον μέσο του πληθυσμού και διακύμανση όσο του πληθυσμού αλλά διαιρεμένη με την τετραγωνική ρίζα του μεγέθους του δείγματος μας. Οι κατανομές τους είναι κανονικές, όταν το δείγμα μας είναι πολύ μεγάλο ή όταν οι μετρήσεις προέρχονται από κανονικό πληθυσμό. Κατανομή αρχικού πληθυσμού: Τα διαγράμματα της πρώτης στήλης αφορούν σε κανονικός πληθυσμός, όμοια τα διαγράμματα της δεύτερης στήλης αφορούν ομοιόμορφο πληθυσμό, ενώ η τρίτη στήλη αφορά πληθυσμό που είναι λοξός προς τα δεξιά πληθυσμός. ) Εικόνα 11: Κατανομή μέσου μίας μέτρησης ( X 2 n = 1 Εικόνα 12: Κατανομή μέσου δύο μετρήσεων ( ) X 2 Εμπιστευτικό Σελίδα 41

42 n = 2 Εικόνα 13: Κατανομή μέσου τριών δύο μετρήσεων ( ) X 3 n = 3 Εικόνα 14: Κατανομή μέσου τεσσάρων μετρήσεων ( ) X 4 n = 4 Εικόνα 15: Κατανομή μέσου δώδεκα μετρήσεων ( ) X 12 n = 12 Εικόνα 16: Γραφική παράσταση μέσου είκοσι ένα μετρήσεων ( ) X 21 n = 21 X n H κατανομή της από τρεις διαφορετικούς πληθυσμούς, όταν το δειγματικό μέγεθος n μεταβάλλεται. Εμπιστευτικό Σελίδα 42

43 Οι μετρήσεις μας στο δείγμα μπορούν να θεωρηθούν ότι είναι οι τιμές μιας τυχαίας μεταβλητής που περιγράφει ένα τυχαίο πείραμα. Έτσι, ένα απλό τυχαίο δείγμα με n μετρήσεις θεωρείται ότι είναι το αποτέλεσμα από n ανεξάρτητες επαναλήψεις του τυχαίου μας πειράματος με την κατανομή της τυχαίας μεταβλητής να παραμένει ίδια από πείραμα σε πείραμα. Για παράδειγμα, αν Χ η τυχαία μεταβλητή που παριστάνει τον βαθμό ικανοποίησης ενός καταναλωτή για ένα προϊόν από 1 έως 5 της κλίμακα Lickert, τότε η τιμή της Χ εξαρτάται από ποιο άτομο ρωτήσαμε. Η απάντηση της ερώτησης έχει τον ρόλο πλέον του τυχαίου πειράματος και οι απαντήσεις από τα n διαφορετικά άτομα X1, X2,, Xn στην ουσία σημαίνει n επαναλήψεις του πειράματος, με βαθμολογίες, του 1ου, 2ου, και toy n ου X, X,, Xn 1 2 ερωτώμενου ατόμου. Η αθροιστική συμπεριφορά των X παίζουν σπουδαίο ρόλο στην στατιστική. i= 1, n X i αλλά και του δειγματικού(αριθμητικού) μέσου Αν με μ συμβολίσουμε τον μέσο του πληθυσμού μας, τότε είναι σημαντικό να γνωρίζουμε αν ο X παίρνει τιμές κοντά στο μ, αριστερά του ή δεξιά του. Λέμε ότι ότι οι τιμές του X αποκλίνουν με ένα τυπικό σφάλμα n από το μ, όπου σ η τυπική απόκλιση στον πληθυσμό και n το μέγεθος του δείγματος. Αν σ άγνωστο τότε αντικαθίσταται από την S, που είναι η τετραγωνική ρίζα της δειγματικής διακύμανσης. Για παράδειγμα, αν σε μια έρευνα μας, επισκεφτούμε ένα εμπορικό κέντρο και αποφασίσουμε να ρωτήσουμε τυχαία X1, X2,, X12 12 καταναλωτές, τότε αν είναι οι απαντήσεις από τους 12 καταναλωτές, και ενδεχομένως μετά την πραγματοποίηση των 12 πειραμάτων να παίρνανε τις τιμές, 4, 5, 4, 4, 4, 3, 3, 1, 4, 3, 5, και 5 αντίστοιχα. Στο παρακάτω σχήμα φαίνεται ότι το πρώτο άτομο βαθμολογεί με 4. Μετά την ολοκλήρωση των απαντήσεων από τα 12 άτομα έχουμε ότι το άθροισμα των βαθμολογιών από τα 12 άτομα είναι το 45, ενώ η τιμή του δειγματικού μέσου είναι το 3,75. Επίσης στο σχήμα θεωρείται ότι ο μέσος του πληθυσμού είναι το 3,72, δηλ. αν ο διαθέσιμος πληθυσμός την ώρα που κάναμε την δειγματοληψία ήταν 100 καταναλωτές και τους ρωτούσαμε όλους θα έπρεπε να έχουμε άθροισμα βαθμολογιών από τους καταναλωτές ίσο με 372. Επί πλέον το τυπικό σφάλμα S 0,138 0,328 υπολογίζεται ότι είναι n = 12 = και η εκτίμηση μας 3,75 είναι μέσα στο εύρος ενός τυπικού σφάλματος ( 3,75 3,72 = 0,03 < 0,328). σ Εμπιστευτικό Σελίδα 43

44 Μεταβλητή απάντηση Στατιστική Εκτίμηση Μέσος όρος = 3,75 δείγμα Παράμετρος Μέσος όρος = 3,72 πληθυσμός Εικόνα 17: Βαθμολογία πρώτου ατόμου Ο αριθμός των δειγμάτων μας μεγέθους 12 είναι, , κάτι βέβαια που θα σήμαινε ότι πρέπει να υπολογίσουμε και τους αντίστοιχους δειγματικούς μέσους. Το τελευταίο όμως είναι κάτι πολύ επίπονο επειδή θα χρειαζόταν ενδεχομένως να υπολογίσουμε μέσους, αλλά όχι όμως και απαραίτητο, επειδή μπορούμε να έχουμε την κατανομή του X, δηλ. τον τρόπο συγκέντρωσης των τιμών της X για διάφορα δείγματα. Η κατανομή του X είναι η Κανονική. Η κατανομή ενός μεγάλου αριθμού δειγμάτων του ίδιου μεγέθους από τον πληθυσμό μας ονομάζεται δειγματοληπτική κατανομή. Στο παρακάτω σχήμα στην πρώτη γραμμή δείχνεται η κατανομή (ιστόγραμμα) του αρχικού μας πληθυσμού με τις ενδεχόμενες θέσεις των μέσων των τριών δειγμάτων, ενώ στην επόμενη γραμμή δείχνεται η κατανομή των δειγματικών μέσων. Εμπιστευτικό Σελίδα 44

45 Εικόνα 18: Κατανομή ενός μεγαλύτερου δείγματος Κανονικές Κατανομές Εικόνα 19: Κανονικές Κατανομές Αν έχω πληθυσμούς (με γνωστές διακυμάνσεις), όπως παραπάνω τότε X μ X μ = σ σ X Οι τιμές της (ΕΜΠΕΙΡΙΑΣ- ΘΕΩΡΗΤΙΚΟ ΜΕΣΟ) / Τυπικό σφάλμα = N ακολουθούν κατανομή της επόμενης μορφής, δηλαδή Κανονικής με μέσο 0 και απόκλιση 1. Εμπιστευτικό Σελίδα 45

46 Εικόνα 20: Κανονική κατανομή Site: Εμπιστευτικό Σελίδα 46

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2 Έλεγχοι Υποθέσεων 7-2 7 Έλεγχοι Υποθέσεων Χρήση της Στατιστικής Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-3 7 Μαθησιακοί Στόχοι Όταν θα έχετε ολοκληρώσει την μελέτη του κεφαλαίου θα πρέπει να

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

Κεφάλαιο 9 Κατανομές Δειγματοληψίας Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17 ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Ένα Ερευνητικό Παράδειγμα Σκοπός της έρευνας ήταν να διαπιστωθεί εάν ο τρόπος αντίδρασης μιας γυναίκας απέναντι σε φαινόμενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Για κάθε πρόβλημα που ακολουθεί, εκτός των ερωτημάτων που διατυπώνονται, να γίνουν (με τη βοήθεια κάποιου στατιστικού πακέτου)

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Πολλαπλές συγκρίσεις Στην ανάλυση διακύμανσης ελέγχουμε την ισότητα

Διαβάστε περισσότερα

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος Το σύμβολο μ απεικονίζει 92.4% το μέσο όρο του πληθυσμού 121 92.4% το μέσο όρο του δείγματος 8 6.1% το μέσο όρο της κατανομής t 0 0% το μέσο όρο της κανονικής κατανομής 2 1.5% Το σύμβολο X απεικονίζει

Διαβάστε περισσότερα

3.4.1 Ο Συντελεστής ρ του Spearman

3.4.1 Ο Συντελεστής ρ του Spearman 3.4. Ο Συντελεστής ρ του Spearma Έστω (, ), (, ),..., (, ) ένα δείγμα παρατηρήσεων πάνω στο τυχαίο διάνυσμα (, ). Έστω ( ) ο βαθμός ή η τάξη μεγέθους της μεταβλητής όταν αυτή συγκρίνεται με τις άλλες Χ

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ ΜΥΛΩΝΑ ΔΙΟΝΥΣΙΑ ΕΠΟΠΤΕΥΩΝ ΚΑΘΗΓΗΤΗΣ: ΔΡ. ΒΑΣΙΛΙΚΗ ΚΑΡΙΩΤΗ ΕΙΣΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό; Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Επανάληψη ελέγχων υποθέσεων

Επανάληψη ελέγχων υποθέσεων Επανάληψη ελέγχων υποθέσεων Ποιό το πρόβλημα; Περιγραφή ενός πληθυσμού Σύγκριση δύο πληθυσμών Είδος δεδομένων; Είδος δεδομένων Ποσοτικά Ποιοτικά Ποσοτικά Ποιοτικά Ποιά παράμετρος; Z tet & δ.ε. του p Ποιά

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΕΚΤΟ

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Στατιστική. Βασικές έννοιες

Στατιστική. Βασικές έννοιες Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

Δειγματοληψία στην Ερευνα. Ετος

Δειγματοληψία στην Ερευνα. Ετος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή 4.3.3 Ο Έλεγχος των Shapro-Wlk για την Κανονική Κατανομή Ένας άλλος πολύ γνωστός έλεγχος καλής προσαρμογής για την κανονική κατανομή, ο οποίος μπορεί να χρησιμοποιηθεί στην θέση του ελέγχου Lllefors, είναι

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Εξαμηνιαία Εργασία Β. Κανονική Κατανομή - Επαγωγική Στατιστική

Εξαμηνιαία Εργασία Β. Κανονική Κατανομή - Επαγωγική Στατιστική 1 ΕΞΑΜΗΝΙΑΙΑ Β ΤΟ ΦΩΤΟΒΟΛΤΑΙΚΟ ΠΑΡΚΟ ΑΣΠΑΙΤΕ Τμήμα Εκπαιδευτικών Ηλεκτρολογίας Εργαστήριο Συλλογής και Επεξεργασίας Δεδομένων Διδάσκοντες: Σπύρος Αδάμ, Λουκάς Μιχάλης, Παναγιώτης Καράμπελας Εξαμηνιαία

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f = ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 16 (version 9-6-16) 1. A Να δώσετε τον ορισμό της παραγώγου μιας συνάρτησης σε ένα σημείο x του πεδίο ορισμού της. Απάντηση: Παράγωγος μιας συνάρτησης σε ένα σημείο x του πεδίο

Διαβάστε περισσότερα