Senzori broja obrtaja motora

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Senzori broja obrtaja motora"

Transcript

1 Senzori broja obrtaja motora Primena Senzori broja obrtaja (nadalje brzine) motora se koriste u sistemu za upravljanje motorom za Merenje brzine motora i Određivanje pozicije radilice (pozicije klipova) Brzina motora se izračunava iz periode signala sa senzora brzine. Induktivni senzori brzine Kontrukcija i princip rada Senzor je postavljen nasuprot feromagnetskom nazubljenom vencu (sl.1, 7) uz mali vazdušni procep između njih. Sadrži jezgro od mekog gvožđa (klin pola, 4), koje je usađeno u namotaj (5). Jezgro je prislonjeno na stalan magnet (1) tako da se magnetsko polje koncentriše kroz jezgro prema nazubljenom vencu. Intenzitet magnetskog fluksa kroz namotaj zavisi od položaja senzora u odnosu na venac tj da li je nasuprot zubu ili međuzublju. Dok je isticanje magnetskog fluksa iz magneta prema vencu koncentrisano kada je senzor nasuprot zubu, a samim tim je i fluks kroz namotaj povećan, u slučaju kada je senzor nasuprot međuzublju fluks kroz namotaj se smanjuje. Kada venac rotira ove promene u magnetskom fluksu indukuju. sinusoidni napon na krajevima namotaja, koji je proporcionalan promeni fluksa, a samim tim i brzini motora (sl.2). Amplituda naizmeničnog napona se znatno povećava sa povećanjem brzine nazubljenog venca (od nekoliko mv do preko 100V). Potrebno je najmanje 30 opm za generisanje potrebne amplitude napona. Broj zuba nazubljenog venca zavisi od primene. Kod Motrinic sistema, koristi se 60-pulsni venac, s tim da su dva zuba izostavljena (sl.1, 7), pa prema tome venac ima 60-2=58 zuba. Položaj zuba koji nedostaju odgovara predodređenoj pozciji radilice i služi kao referentna tačka za kontrolnu jedinicu. Oblici zuba na vencu i klina na polu moraju biti usklađeni. Kolo za odmeravanje u kontrolnoj jedinici pretvara sinusoidni napon, koji karakterišu velike amplitudne promene, u digitalni signal tj povorku pravouglih impulsa koja se prosleđuje mikrokontroleru radi dalje obrade. Aktivni senzori brzine Aktivni senzori brzine rade na magnetostatičkom principu. Amplituda izlaznog signala ne zavisi od broja obrtaja. Ovo omogućava detekciju veoma malih brzina rotacije (kvazistatička detekcija brzine). Sl.1 1 Stalni magnet; 2 Kućište senzora 3 Kućište radilice; 4 Klin pola 5 Namotaj; 6 Vazdušni procep 7 Nazubljeni venac sa ref. Tačkom Sl.2 1 Zub 2 Međuzublje 3 Referentna tačka

2 Diferencijalni Holov senzor Napon U H proporcionalan magnetskom polju (Holov napon) se može uzeti sa ploče koja provodi struju i koju po vertikali probijaju linije magnetske indukcije B i to u horizontalnom pravcu u odnosu na tok struje. U diferencijalnom Holovom senzoru, magnetsko polje generiše stalni magnet (sl.3, 1). Dva Holova elementa (2 i 3) su postavljena između magneta i nazubljenog venca (4). Magnetski fluks koji protiče kroz magnet i venac zavisi od toga da li je senzor nasuprot zubu ili međuzublju. Određivanjem razmaka između signala sa dva Holova elementa smanjuje se uticaj upliva magnetskih smetnji i postiže bolji odnos signal-šum. Signal sa senzora je impulsni i može se direktno bez digitalizacije obrađivati u kontrolnoj jedinici. Višepolni venci se koriste umesto feromagnetskih. U tom slučaju se plastika podložna magnetisanju postavlja na nemagnetski metalni nosač, a namagnetisana je naizmenično, kao severni i južni polovi. Ovi severni i južni polovi uzimaju ulogu koju su kod nazubljenog venca igrali zubi. AMR senzor Električna otpornost magnetnootpornog materijala (AMR, Anizotropan Magnetno Otporan) je anizotropan tj zavisi od pravca magnetskog polja kome je izložen. Ovo svojstvo se koristi kod AMR senzora. Senzor je smešten između magneta i nazubljenog venca. Linije polja menjaju smer kada venac rotira (sl.4). Ova pojava generiše sinusoidni napon, koji se pojačava u kolu za odmeravanje u senzoru i pretvara u pravougaonu impulsnu povorku. GMR senzor Upotreba GMR tehnologije (Veoma veliki Magnetno Otporan) nastala daljim razvojem aktivnih senzora brzine. Zbog više osetljivosti AMR senzora, moguće je ostaviti veći vazdušni procep, što omogućava primenu u lošim uslovima. Veća osetljivost takođe rezultuje manjim pozadinskim šumom uzrokovanim ivicom signala. Svi priključci sa jednim pristupom (dva provodnika) koji se koriste na Holovim senzorima brzine mogu se koristiti i na GMR senzorima. Sl.3 a Raspored; b Signal sa Holovog senzora - visoka amplituda sa malim vazdušnim procepom - niska amplituda sa velikim vazdušnim procepom c Izlazni signal 1 Nazubljeni venac; 2 Holov element; 3 Magnet Sl.4 a Raspored u različitim vremenskim trenucima b Signal sa AMR senzora c Izlazni signal 1 Nazubljeni venac 2 Senzorski element 3 Magnet

3 Holov senzor faze Primena Bregasta osovina rotira dvostruko manjom brzinom od brzine rotacije radilice. Posmatrajući određeni klip na putu ka SMT, pozicija bregaste osovine se koristi kao pokazatelj za takt u kome se klip. nalazi tj da li je na kompresiji ili izduvavanju. Senzor faze na bregastoj osovini daje ovu informaciju kontrolnoj jedinici. Za primer, to je potrebno kod sistema paljenja sa jednovarničnim indukcionim kalemima, kao i za sisteme sekvencijalnog ubrizgavanja goriva (SEFI) Konstrukcija i princip rada Cevasti Holov senzor Cevasti Holov senzor (sl.1a) koristi Holov efekat: rotor od feromagnetskog materijala (7, nazubljeni venas sa zubima, segmentom ili pločom sa otvorom) rotira sa bregastom osovinom. Holovo integrisano kolo (6) postavljeno je između venca i stalnog magneta (5), koji generiše magnetsko polje upravno na Holov element. Ako jedan od zuba na vencu (Z) u datom momentu prolazi pored senzorskog elementa kroz koji teče struja, on menja snagu polja upravnog na Holov element. To stvara naponski signal (Holov napon) koji je zavisan od relativne brzine senzora u odnosu na venac. Elektronika za odmeravanje ugrađena u integrisano kolo Holovog senzora menja signal i daje ga na izlaz kao povorku pravouglih impulsa (sl.1b)

4 Senzori brzine za kontrolu prenosa (u menjaču) Primena Senzori brzine na prenosu određuju brzinu osovina u AT (automatski), ASG (robotizovan), DKG (sa dve spojnice) i CVT (kontinualno promenljiv) menjačima. To su brzine turbinskih i izlaznih osovina u automatskim menjačima sa hidrodinamičkim pretvaračem momenta, brzine primarnih i sekundarnih kaišnika u CVT menjačima i brzine dveju ulaznih osovina i pogonjene osovine menjača sa dve spojnice. Brzina elementa za prihvat (prenos) snage se takođe detektuje pri velikim dinamičkim zahtevima u kontroli prihvata snage. Detekcija smera rotacije se takođe može odrediti ukoliko je to neophodno na najsavremenijim menjačima, kako bi se poboljšalo upravljanje spojnicom i izbeglo kretanje unazad kada je menjač u Drive položaju. U upotrebi su i zasebni i senzori ugrađeni u elektronske module i oni koji se montiraju van menjača i oni koji se montiraju u menjaču. Zbog veoma kompaktnog dizajna menjača, interfejs tj priključak potrošača (u ovom slučaju senzora), ne može biti u skladu sa standardizovanim rešenjima. To znači da su neophodni različiti senzori za svaki tip menjača. Modularni senzori se razlikuju po pitanju dužine umetanja, smera detekcije i naglavka za montažu (sl.1). Razlike kod zasebnih senzora postoje zbog različitog položaja ležišta za montažu, kaoi i zbog različitog oblika konektora. Holova ASIC (namenska integrisana kola) kola različite složenosti algoritama za odmeravanje koriste se za pokrivanje kompletnog spektra upotrebnih zahteva (sl.2) Ako je feromagnetski okidni točak ili okidna površina (nazubljen, utisnut ili ispupčen) prisutan na rotirajućim delovima menjača, magnetsko polje potrebno za rad Holovog senzora generiše se pomoću prenaponom magnećenih magneta. Zahtevi Senzori brzine u menjačima izloženi su veoma velikom radnom opterećenju zbog Ekstremne temperature okoline između -40 i +150 C Agresivne radne sredine koju izaziva transmisiono ulje, još poznato kao ATF (sadrži specijalne aditive za prenos i ima nizak nivo kondenzacije) Visokog mehaničkog opterećenja sa vibracionim ubrzanjima do 30g Istrošenih metalnih delova i gomilanja čestica u menjaču Zbog ovako velikog opterećenja visoki su zahtevi za kvalitetom kućišta u koje je spakovana elektronika. Servisni interval od više od 15 godina u ATF ulju postignut je korišćenjem odgovarajućih kućišta otpornih na prodor ulja.

5 Magnet se ppostavlja u senzor, neposredno iza ASIC kola. Kompaktni menjači sve više zahtevaju merenje brzine na velikom odstojanju (veliki vazdušni procep) i to se postiže sa rotirajućim nemagnetskim komponentama ili kroz zid kućišta. Višepolni venci (magnetisani prsteni) koriste se za ovu primenu, pa se izostavlja magnet u senzoru. Konstrukcija Holova ASIC kola koja se koriste u menjačima postavljaju se na držač koji ima ili nema magnet - zavisno od magnetskog interfejsa - sa električnim priključkom ostvarenim zavarivanjem, a potom se ubacuju u kućište, zalivaju epoksidnom smolom ili - u slučaju tipa koji se montira van menjača - poseduju uljootpornu oblogu koja se nanese mlazom na kućište (sl.3). Senzor ima dvožični priključak, koji kombinuje optimalne dijagnostičke mogućnosti i minimalan broj električnih veza. Oba voda i napajaju Holovo integrisano kolo i prenose signal. Princip rada Senzori brzine u menjaču služe se diferencijalnim Holovim efektom. Određuje se razlika između Holovih napona sa dve Holove pločice na ASIC kolima. Na ovaj način kompenzuje se glavnina smetnji. Diferencijalni signal se najpre pojačava u ASIC kolima, pa se zatim konvertuje u digitalni signal putem okidačkih algoritama različite složenosti. Ovako se obrazuje kontrolna promenljiva za modulaciju izlazne struje preko izvora snage. Dobija se digitalni signal sa dva strujna nivoa (tipično 7mA za niski nivo i 14mA za visoki nivo), sa frekvencijom modulacije koja odgovara frekvenciji kretanja zuba na vencu i tako predstavlja brzinu rotacije.

6 Signal sa senzora se odmerava u elektronskoj kontrolnoj jedinici, preko Šantovog otpornika R M na kome se struja I S pretvara u napon U RM. U principu za rad diferencijalnih Holovih ASIC kola nije bitno da li je senzor pobđen čeličnim okidnim ili višepolnim vencem (sl.4a i 4b). Neke kontrole prenosa uključuju funkcije koje zahtevaju detekciju zaustavljanja. Za ovu primenu, senzor mora da ima što je veću moguću neosetljivost na promene vazdušnog procepa izazvane vibracijama motora kao i na torzione vibracije okidnog venca. Ovo svojstvo senzora, poznato kao otpornost na vibracije, može se ostvariti samo do određenog stepena kod Holovih senzora sa samo dve Holove pločice, korišćenjem prilagodljivih pragova okidanja. Dva fazno pomerena diferencijalna signala postaju dostupna uvođenje treće Holove pločice. Ovo omogućava i određivanje smera rotacije (sl.4c do 4f) i korišćenje dodatnih algoritama zarad povećanja otpornosti na vibracije. Kvalitetni i obični senzori razlikuju se po rasponu vazdušnog procepa koji se može ostvariti, rasponu frekvencija signala i ugrađenim dodatnim funkcijama (tabela 1) Složenost menjača, ograničenja u prostoru za montažu uključujući i sporedne uslove za konstruisanje i zahtevi po pitanju funkcionisanja vode ka rešenjima precizno određenim prema mestu primene u većini slučajeva. Te specifičnosti su sledeće: kombinacija ASIC kola, konstrukcija kućišta i otpornost na mehaničke i magnetske smetnje i podešavaju se tako da odgovaraju zahtevima sistema na kom se senzor primenjuje.

7 Senzori brzine na točkovima Primena Senzori brzine na točkovima koriste se za merenje brzine rotacije točkova na vozilu (brzine točkova). Signali koji predstavljaju tu brzinu prenose se vodovima do kontrolnih jedinica za ABS, TCS ili ESP koje kontrolišu silu kočenja posebno za svaki točak. Ovo kontrolno kolo sa povratnom spregom sprečava blokiranje točkova (ABS) ili klizanje točkova (TCS ili ESP) u cilju održavanja stabilnosti i upravljivosti vozila. Sistemi za navigaciju takođe koriste brzinu točkova za izračunavanje pređene razdaljine (u slučajevima kada se prolazi kroz tunel ili nema komunikacije sa satelitom iz nekog drugog razloga). Konstrukcija i princip rada Signali sa senzora za brzinu točkova generišu se preko čeličnog generatora impulsa na glavčini točka (kod pasivnih senzora) ili preko višepolnog generatora magnetskih impulsa (kod aktivnih senzora). Ovaj generator impulsa ima istu ugaonu brzinu kao i točak i rotira pored osetljivog područja na glavi senzora, bez fizičkog kontakta. Senzor očitava bez kontakta kroz vazdušni procep raspona do 2mm (sl.2) Vazdušni procep (sa tačno određenom tolerancijom) osigurava akviziciju signala bez upliva smetni. Smetnje mogu izazvati oscilacije koje izazivaju kočnice, vibracije, temeperatura, vlaga, stanje priključnog mesta na točku i sve se na prethodno opisan način eliminišu. Pasivni (induktivni) senzor brzine točka Pasivni (induktivni) senzor se sastoji od stalnog magneta (sl.2, 1) sa jezgrom od mekog gvožđa (3) povezanim sa magnetom, pri čemu je jezgro usađeno u namotaj (2) od nekoliko hiljada zavojaka. Ovakva konstrukcija generiše stalno magnetsko polje. Jezgro je postavljeno neposredno iznad okidnog točka (4) tj nazubljenog venca pričvršćenog na glavčinu točka. Kako se okidni točak okreće, stalno promenljiva sekvenca zuba i međuzublja indukuje oscilacije stalnog magnetskog polja. To menja magnetski fluks kroz jezgro i samim tim i kroz namotaj. Te promene fluksa indukuju naizmenični napon koji se prati na krajevima namotaja. Frekvencija i amplituda ovog naizmeničnog napona proporcionalne su brzini točka (sl.3), a kada se točak ne kreće, indukovani napon je jednak nuli. Oblik zuba, vazdušni procep, stopa rasta napona i ulazna osetljivost kontrolne jedinice određuju najmanju merljivu brzinu vozila, a za ABS, maksimalnu odzivnu osetljivost i brzinu okidanja. Nakon sa razvojem nove tehnologije počelo je, gotovo bez izuzetka, korišćenje aktivnih senzora brzine točkova umesto pasivnih (induktivnih) senzora.

8 Postoje razne konfiguracije jezgra i mogućnosti ugradnje, kako bi se sistem prilagodio različitim uslovima na različitim vozilima. Najčešći tipovi su sa dletastim jezgrom (sl.1a, takođe se zove i pljosnato jezgro) i romboidnim jezgrom (sl.1b, takođe se zove bombonasto jezgro). Oba tipa jezgra prilikom ugradnje zahtevaju precizno poravnavanje sa okidnim vencem. Aktivni senzori brzine točka Elementi senzora Aktivni senzori brzine točka se koriste gotovo bez izuzetka u današnjim sistemima za kočenje (sl.4). Ovi senzor se uglavnom sastoje od hermetički zatvorenog tj zalivenog u plastiku integrisanog kola, postavljenog na glavi senzora. Uz magnetootporna integrisana kola (električna otpornost se menja sa promenom magnetskog polja) Bosch danas koristi Holove elemente. Senzori reaguju na najmanje promene u magnetskom polju i time dozvoljavaju veće vazdušne procepe u poređenju sa pasivnim senzorima.

9 Okidni (nazubljeni) venac Na aktivnim senzorima brzine točka kao okidni venac koristi se višepolni prsten. Višepolni prsten se sastoji od naizmenično namagnetisanih plastičnih elemenata u vidu severnih i južnih polova, raspoređenih na kružni nemagnetski metalni prstenasti nosač (sl.6 i sl.7). Ovi polovi uzimaju ulogu koju su imali zubi na nazubljenom vencu. Integrisana kola senzora su izložena stalnoj promeni magnetskog polja koju generišu polovi. Magnetski fluks kroz integrisano kolo se prema tome menja, kako višepolni prsten rotira. Može se koristiti i čelični nazubljeni venac umesto višepolnog prstena. U ovom slučaju je magnet montiran na Holovo integrisano kolo i on generiše stalno magnetsko polje (sl.7b). Kako nazubljeni venac rotira, sekvenca zub-međuzublje svojim prolazom pored senzora indukuje odgovarajuće promene stalnog magnetskog polja koje stvara magnet. Osim toga, princip merenja, obrada signala i integrisano kolo isti su kao i kod senzora bez unutrašnjeg magneta. Osobine Tipično svojstvo aktivnog senzora brzine točka jeste integrisanje Holovog mernog elementa, pojačavača signala i kola za obradu signala u jedno integrisano kolo (sl.8). Brzina točka se kao informacija prenosi u obliku pravougaone povorke impulsa struje (sl.9). Frekvencija impulsa proporcionalna je brzini točka, a brzina se može odrediti gotovo do samog zaustavljanja točka (0.1km/h). Napon napajanja se kreće između 4.5 i 20V. Logički nivoi pravougaone povorke su 7mA (niski nivo) i 14mA (visoki nivo).

10 Ovaj tip prenosa podataka korišćenjem digitalnog signala manje je podložan uticaju smetnji nego što je to slučaj sa pasivnim senzorima induktivnog tipa. Senzor je sa kontrolnom jedinicom povezan putem dvožičnog voda. Male dimenzije u kombinaciji sa malom masom omogućavaju ugradnju aktivnih senzora brzine točka u sam sklop ležaja točka (sl.10). Postoje razni standardizovani oblici glave senzora za ovu vrstu primene. Pretvaranje signala u digitalni oblik daje mogućnost prenosa dodatnih informacija korišćenjem širinski modulisanog izlaznog signala (sl.11): Smer okretanja točka: Ovo je posebno značajno za kontrolu stajanja u mestu na usponu, koja se zasniva na selektivnom kočenju kako bi se sprečilo naglo kretanje unazad prilikom kretanja na uzbrdici. Ovaj podatak se još koristi i u sistemima za navigaciju. Prepoznavanje zaustavljanja: Ova informacija se može procenjivati za kontrolu stajanja u mestu na usponu uz informaciju o smeru okretanja točka. Takođe, koristi se kao informacija za samodijagnozu. Kvalitet signala sa senzora: Ova vrsta informacije se može prenositi zajedno sa signalom, što omogućava obaveštavanje vozača u slučaju kvara na senzoru i upozoravanja da je neophodan odlazak u servis.

11 Mikromehanički senzo rotacionog zanošenja (ugaone brzine ili ubrzanja oko vertikalne ose) Primena Na automobilima koji poseduju elektronsku kontrolu stabilnosti (ESP), putem mikromehaničkih senzora rotacionog zanošenja (brzine rotacije oko centralne ose), koji su poznati kao žiroskopi, detektuje se rotacija vozila oko centralne vertikalne ose i primenjuje za kontrolu kretanja i stabilnosti vozila. Ovo se, na primer, odigrava tokom normalnog skretanja, ali i kada vozilo počne da proklizava ili se zanese. Ovi senzori su izuzetno kompaktni, a ujedno i dosta isplativi. Oni su istisnuli klasične visoko precizne mehaničke senzore. Sledeća oblast primene je detektovanje prevrtanja u kontrolnim jedinicama vazdušnih jastuka za aktivne - okidačke sisteme zaštite (bočni/prozorski vazdušni jastuci, rolbar) u situacijama prevrtanja vozila. MM2 senzori rotacionog zanošenja su specijalno razvijeni za ovu vrstu primene. Oni su posebno pogodni za detektovanje rotacionog kretanja oko uzdužne ose, zbog optimizovanog detektovanja smera zanošenja. Dozvoljavaju veoma kompaktnu konstrukciju i štednju prostora pri ugradnji duž uzdužne ose vozila u kontrolnim jedinicama vaz. jastuka. Upakivanje senzora i potrebne elektronike zajedno u standarda kućišta za integrisana kola doprinosi smanjenju troškova proizvodnje. MM1 mikromehanički senzor zanošenja Primenjuje se kombinovana tehnologija u cilju postizanja visoke preciznosti potrebne za sisteme za kontrolu kretanja. Preciznije, dva dosta zbijena oscilatorna elementa (pločice), izrađena od vafera u mikromehaničkom proizvodnom procesu, osciluju u kontra-fazi na rezonantnoj frekvenciji koja je definisana njihovom masom i krutoćom opruge koja ih vezuje (>2KHz). Na oba oscilujuća elementa postavljen je minijaturni SMD mikromehanički kapacitivni senzor ubrzanja. Kada čip rotira oko vertikalne

12 ose, ugaonom brzinom Ω, detektuje se Koriolisovo ubrzanje u ravni vafera vertikalnoj na pravac oscilacija (sl. 1 i 2). Ova ubrzanja su proporcionalna proizvodu ugaone brzine zanošenja i brzine oscilacija, koja se elektronskim putem održava na konstantnoj vrednosti. Za napajanje senzora dovoljna je jednostavna provodna traka na oba oscilujuća elementa. U stalnom magnetskom polju indukcije B vertikalnom na površinu čipa, ovaj oscilujući element izložen je Lorencovoj sili. Korišćenjem štampanog provodnika (koji stvara uštedu u površini čipa), isto magnetsko polje se upotrebljava za posredno merenje brzine oscilacija preko indukcije. Različita konstrukcija sistema za napajanje i senzorskog sistema služi za izbegavanje neželjenog spajanja elemenata. U cilju eliminacije neželjenih efekata spoljašnjeg (prinudnog) ubrzanja (zajedničke komponente signala - CM), signali sa elemenata se oduzimaju. Efekti spoljašnjeg ubrzanja mogu se odmeravati sabiranjem signala. Visoko precizna mikromehanička konstrukcija pomaže potiskivanju visokofrefventnih oscilatornih ubrzanja koja su za delioce broja 10 veća od Koriolisovog ubrzanja (ukrštena osetljivost dosta ispod 40 db). Ovde su napojni i merni sistem striktno razdvojeni. MM2 mikromehanički senzor zanošenja Ukoliko se silikonski senzor brzine zanošenja u potpunosti izradi u površinskoj mikromehanici (SMM) i u isto vreme magnetska pobuda i kontrolni sistem zamene elektrostatičkim, razdeljivanje napojnog i mernog sistema ne mora da bude toliko temeljno. Češljaste strukture (sl.3 i 4) elektrostatički primoravaju na oscilovanje centralno postavljen rotacioni oscilator. Amplituda ovih oscilacija se održava konstantnom putem približno iste kapacitivnosti. Sl.3 1 Češljasta struktura 2 Rotirajući oscilator Sl.4 1 Češljasta struktura 2 Rotirajući oscilator 3 Osa u kojoj se vrši merenje C Drv Napojne elektrode C Det Merenje kapaciteta F C Koriolisova sila v Brzina oscilacija Ω =ΔC Det merena brzina rotacionog zanošenja

13 Koriolisova sila rezultuje kao naginjanje izvan ravni, sa amplitudom proporcionalnom ugaonoj brzini zanošenja Ω, a koja se očitava preko kapacitivnosti na elektrodama ispod oscilatora. Kako bi se izbeglo preveliko prigušenje ovog nagibnog kretanja, senzor mora da radi u vakuumu. Iako mala veličina čipa i jednostavan proizvodni proces smanjuju cenu proizvodnje, ova minijaturizacija izvedena je na uštrb efikasnosti merenja, koja međutim i nije preterano izražena ni u drugim načinima proizvodnje, pa je moguće postići adekvatnu efikasnost tj preciznost merenja. Ovo takođe postavlja veće zahteve za elektroniku. Visoka otpornost sistema na uvijanje i montaža u osi gravitacije služe potiskivanju efekata spoljašnjeg prinudnog ubrzanja. DRS MM3x skup senzora Nova generacija mikromehaničkih senzora koristi se u DRS MM3x skupu senzora. Oni mogu da izmere i digitalno obrađuju ugaone brzine i ubrzanja. Sačinjavaju modularni koncept za hardver i softver baziran na tehnologiji štampanih ploča sa novim sigurnosnim mogućnostima koje vode ka raznovrsnim pouzdanim rešenjima pogodnim za razne primene na vozilu. Primena ESP sistem, povezivanje sa budućim sistemima komfora i razvoj naprednih sistema stabilnosti zahtevaju da signali koji nose informaciju o inerciji vozila budu ceoma čisti, otporni na smetnje, pouzdani i da nose dodatne informacije za ostale ose rotacije. Zato je Bosche razvio treću generaciju raznovrsnih, ali jeftinih DRS MM3.x skupova senzora, kako bi se zadovoljili zahtevi funkcija kao što su sprečavanje kretanj u nazad na uzbrdici (HHC), automatska parking kočnica (APB), Navigacija (Travel Pilot), adaptivna kontrola brzine (ACC), ublažavanje prevrtanja (ROM), aktivno elektronsko upravljanje vozilom (EAS), aktivno ogibljenje (ASC), električni servo upravljača. DRS MM3.7k je osnovna varijanta MM3 generacije za primenu u ESP sistemima. Sastoji se od senzora ugaone brzine (ubrzanja) rotacionog zanošenja i integrisanog modula za merenje poprečnog tj bočnog ubrzanja (linearno zanošenje). Princip rada Novi mikromehanički merni elementi za merenje rotacione brzine zanošenja pripadaju grupi vibrirajućih žiroskopa koji rade u skladu sa Koriolisovim principom (CVG = Koriolisov vibrirajući žiroskop). Sastoji se od inverzne zvučne viljuške i dva linearna vibrirajuća dela normalna jedan na drugi, napojnog i mernog kola. Napajanje i merenje odvijaju se elektrostatički u češljastoj strukturi. Koriolisovo ubrzanje meri se elektrostatički korišćenjem elektroda koje se protežu jedna do druge. Merni element se sastoji od dve mase povezane oprugom (sistem dve mase - opruga sa jednim stepenom slobode). Rezonantna frekvencija je ista za oba vibrirajuća dela. Uglavnom je oko 15 KHz i prema tome izvan opsega uobičajenih smetnji osobenih vozilu tj signal je posebno otporan na spoljne ometajuće vibracije. Kolo za merenje (ASIC) i mikromehanički merni element ugrađeni su u kućište sa 20 priključaka (Premold 20). Modul za merenje linearnog bočnog ubrzanja je sličan po konstrukciji senzoru rotacionog bočnog zanošenja i sačinjavaju ga elektronsko merno kolo i kućište sa 12 priključaka (Premold12). Struktura tipa masa - opruga pravi otklon u osi u kojoj vrši merenje pod uticajem spoljašnjeg ubrzanja i meri se preko razlike kapacitivnosti češljaste strukture.

14 Piezoelektrični viljuškasti senzor brzine rotacionog zanošenja Primena Kao što koristi podatke sa digitalne karte na CD za računanje pređenog puta, računar u sistemu za navigaciju traži informaciju o kretanju vozila (kompozitna navigacija - kada nema signala sa satelita koriste se senzori na vozilu kako bi se odredila pozicija na karti). Kada vozilo skreće, senzor brzine rotacionog zanošenja beleži rotaciju vozila oko vertikalne ose i tako omogućava određivanje pravca kretanja vozila. Pozicija vozila se može bliže izračunati korišćenjem podatka o pređenom putu sa tahometra ili senzora brzine točkova putem kompozitnog pozicioniranja. U početku se pravac kretanja vozila određivao uz pomoć kompas - senzora. Međutim, ovakav senzor je bio osetljiv na magnetske smetnje u vozilu. Oscilujući žiroskop se zasniva na merenju inercijalnih sila, koje su neosetljive na magnetske smetnje. Konstrukcija Piezoelektrični viljuškasti senzor brzine rotacionog zanošenja sastoji se od čeličnog elementa u obliku zvučne viljuške. Element sadrži četiri piezo pelementa (dva odozgo, dva odozdo sl.1) i merne elektronike. Zvučna viljuška je duga oko 15mm. Princip rada Kada se priključi na napon, donji piezo element počne da osciluje i pobuđuje gornji deo zvučne viljuške zajedno sa gornjim piezo elementima, koji zaosciluju u kontra - fazi, Frekvencija je približno 2 KHz. Vožnja pravolinijskom putanjom Kada se vozilo kreće pravolinijski, nema Koriolisove sile koja bi delovala na viljušku, a pošto gornji piezo elementi osciluju u kontra - fazi i osetljivi su samo u pravcu normalnom na pravac pobudnih oscilacija, oni ne generišu napon. Vožnja krivolinijskom putanjom Rotaciono kretanje oko vertikalne ose vozila prilikom kretanja u krivini uzrokuje zakretanje gornjeg dela viljuške iz oscilatorne ravni tako da se na gornjim piezo elementima generiše naizmenični napon, koji se dalje prosleđuje računaru navigacije preko elektronskog kola u kućištu senzora. Amplituda generisanog napona je funkcija brzine rotacionog zanošenja i brzine oscilacija. Znak zavisi od smera krivine (levi ili desni). Sl.1 A Merni deo oscilatornog elementa B Pobudni deo oscilatornog elementa 1 Oscilatorni element 2 Senzor ubrzanja 3 Aktuator (piezoelektrični element za stvaranje oscilacija) 4 Regulator frekvencije oscilacija 5 Pojačavač izlaza 6 Demodulacija 7 Filtar propusnik niskog opsega 8 Vibraciona pobuda U A Izlazni napon (proporcionalan rot. brzini) Ω Rotaciona brzina

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

Alarmni sustavi 07/08 predavanja 12. i 13. Detekcija metala, izvori napajanja u sustavima TZ

Alarmni sustavi 07/08 predavanja 12. i 13. Detekcija metala, izvori napajanja u sustavima TZ Alarmni sustavi 07/08 predavanja 12. i 13. Detekcija metala, izvori napajanja u sustavima TZ pred.mr.sc Ivica Kuric Detekcija metala instrument koji detektira promjene u magnetskom polju generirane prisutnošću

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

FIZIČKO-TEHNIČKA MERENJA: MERENJE BRZINE I UBRZANJA

FIZIČKO-TEHNIČKA MERENJA: MERENJE BRZINE I UBRZANJA : MERENJE BRZINE I UBRZANJA UVOD Iako brzina predstavlja prvi, a ubrzanje drugi izvod, ne preporučuje se njihovo određivanje preko izvoda, jer usled šuma greška može biti velika. Može se koristi sledeća

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

ELEKTRIČNE MAŠINE Sinhrone mašine

ELEKTRIČNE MAŠINE Sinhrone mašine ELEKTRIČNE MAŠINE Sinhrone mašine Uvod Sinhrone mašine predstavljaju mašine naizmenične struje. Koriste se uglavnom kao generatori električne energije naizmenične struje, te stoga predstavljaju jedan od

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem.

θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem. 4. Magnetski fluks i Faradejev zakon magnetske indukcije a) Magnetski fluks Ako je magnetsko polje kroz neku konturu površine θ homogeno (kao na lici 5), tada je fluks kroz tu konturu jednak Φ = = cosθ

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf zvučna zaštita Knauf ploče Knauf sistemi Knauf detalji izvođenja Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf ploče Gipsana Gipskartonska Gipsano jezgro obostrano ojačano

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Funkcija prenosa. Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k.

Funkcija prenosa. Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k. OT3OS1 7.11.217. Definicije Funkcija prenosa Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k Y z X z k Z y n Z h n Z x n Y z H z X z H z H z n h

Διαβάστε περισσότερα

Elektromagnetizam. Elektromagnetizam. Elektromagnetizam. Elektromagnetizam

Elektromagnetizam. Elektromagnetizam. Elektromagnetizam. Elektromagnetizam (AP301-302) Magnetno polje dva pravolinijska provodnika (AP312-314) Magnetna indukcija (AP329-331) i samoindukcija (AP331-337) Prvi zapisi o magentizmu se nalaze još u starom veku: pronalazak rude gvožđa

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

Točkovi su deo voznog postroja koji služe za kretanje vozila po podlozi (funkcija pokretnih oslonaca) i elastično oslanjanje.

Točkovi su deo voznog postroja koji služe za kretanje vozila po podlozi (funkcija pokretnih oslonaca) i elastično oslanjanje. Točak Točkovi su deo voznog postroja koji služe za kretanje vozila po podlozi (funkcija pokretnih oslonaca) i elastično oslanjanje. Sile koje deluju na točak: - vertikalne sile - težinu vozila i dinamičke

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na

Διαβάστε περισσότερα

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

HEMIJSKA VEZA TEORIJA VALENTNE VEZE TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA.   Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα