Εισαγωγή στην Τεχνολογία Αυτοματισμού

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στην Τεχνολογία Αυτοματισμού"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 10: Λύση εξισώσεων κατάστασης Δ. Δημογιαννόπουλος, Επ. Καθηγητής Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Σ. Βασιλειάδου, Καθηγήτρια Εφαρμογών Τμήματος Μηχανικών Αυτοματισμού Τ.Ε.

2 Περιεχόμενα ενότητας Λύση εξισώσεων κατάστασης με χρήση μετασχηματισμού Laplace Ελεύθερη & εξαναγκασμένη απόκριση Τροχιές κατάστασης 2

3 Εξισώσεις στο χώρο κατάστασης Η εσωτερική δομή (inner structure) ενός συστήματος n-οστής τάξης περιγράφεται μαθηματικά από n γραμμικές διαφορικές εξισώσεις πρώτης τάξης, που ονομάζονται εξισώσεις εσωτερικής κατάστασης: x t = Ax t + Bu t x 0 y t = Cx t + Du t

4 Εξισώσεις στο χώρο κατάστασης Οι πίνακες A, B, C, D είναι οι πίνακες του συστήματος: A (n n) χαρακτηριστικός πίνακας συστήματος, καθορίζει την ελεύθερη συμπεριφορά του B (n 1) πίνακας εισόδου, εκφράζει τη σχέση της εισόδου προς το σύστημα C (1 n) πίνακας εξόδου, εκφράζει τη σχέση του συστήματος προς την έξοδο D (1 1) συντελεστής εισόδου-εξόδου, εκφράζει την άμεση σχέση της εισόδου προς την έξοδο

5 Λύση εξισώσεων κατάστασης Η ολική λύση των εξισώσεων κατάστασης προκύπτει από άθροισμα δύο επί μέρους λύσεων: Η πρώτη οφείλεται μόνο στην αρχική συνθήκη x 0, αποτελεί την ομογενή λύση του συστήματος με είσοδο u t = 0 και ονομάζεται ελεύθερη απόκριση του συστήματος. Η δεύτερη οφείλεται μόνο στην είσοδο u t, αποτελεί τη μη ομογενή λύση του συστήματος όταν η αρχική συνθήκη x 0 = 0 και ονομάζεται εξαναγκασμένη απόκριση του συστήματος.

6 Ελεύθερη απόκριση Λύση της ομογενούς εξίσωσης κατάστασης Ένα σύστημα με είσοδο u t = 0 χαρακτηρίζεται από την ομογενή διαφορική εξίσωση με μορφή πινάκων: x t = Ax t x 0 Η λύση της εξίσωσης αυτής είναι η ελεύθερη απόκριση των μεταβλητών κατάστασης του συστήματος.

7 Ελεύθερη απόκριση Λύση της ομογενούς εξίσωσης κατάστασης Στο πεδίο s, μετασχηματίζοντας κατά Laplace: x t = Ax t x 0 sx s x 0 = AX s si A X s = x 0 X s = si A 1 x 0 ή X s = Φ s x 0 όπου Φ s = (si A) 1 Στο πεδίο t: x t = Φ t x 0 Ελεύθερη απόκριση όπου Φ t = { si A 1 } ο πίνακας μετάβασης που χαρακτηρίζει τη μετάβαση του διανύσματος εσωτερικής κατάστασης από την αρχική τιμή x 0 στην τρέχουσα τιμή x t

8 Ελεύθερη απόκριση Παράδειγμα 1 Ομογενές σύστημα με πραγματικούς πόλους Έστω σύστημα με εξισώσεις κατάστασης: x = 1 4 x, x = 3 Α 9 Πεδίο s: X ελ. s = Φ s x 0 Πίνακας μετάβασης: Φ s = (si A) 1 = s s = 1 Δ s s 1 όπου: Δ = s 1 s = s 2 + 7s + 12 = (s + 3)(s + 4) Φ s = s + 8 (s + 3)(s + 4) 5 (s + 3)(s + 4) 4 (s + 3)(s + 4) s 1 (s + 3)(s + 4)

9 Ελεύθερη απόκριση Παράδειγμα 1 Ομογενές σύστημα με πραγματικούς πόλους Αναλύοντας σε κλάσματα: s (s + 3)(s + 4) (s + 3)(s + 4) Φ s = 5 s 1 (s + 3)(s + 4) (s + 3)(s + 4) = Α 11 s Α 12 s + 4 Α 31 s Α 32 s + 4 Α 21 s Α 22 s + 4 Α 41 s Α 42 s + 4 Με τη μέθοδο των υπολοίπων: Φ 11 = Φ 12 = Φ 21 = Φ 22 = s + 8 (s + 3)(s + 4), Α 11 = s + 8 s + 4 s= 3 = 5 και Α 12 = s + 8 s + 3 s= 4 = 4 4 (s + 3)(s + 4), Α 21 = 4 s + 4 s= 3 = 4 και Α 22 = 4 s + 3 s= 4 = 4 5 (s + 3)(s + 4), Α 31 = 5 = 5 και Α s = 5 = 5 s= 3 s + 3 s= 4 s 1 (s + 3)(s + 4), Α 41 = s 1 s + 4 s= 3 = 4 και Α 42 = s 1 s + 3 s= 4 = 5

10 Παράδειγμα 1 Ομογενές σύστημα με πραγματικούς πόλους Άρα Φ s = 5 s s s s + 4 Ελεύθερη απόκριση 4 s s s s + 4 Με αντίστροφο μετασχηματισμό Laplace: Φ t = 5e 3t 4e 4t 4e 3t + 4e 4t 5e 3t 5e 4t 4e 3t + 5e 4t Η ελεύθερη απόκριση του συστήματος είναι: x ελ. t = 5e 3t 4e 4t 4e 3t + 4e 4t 5e 3t 5e 4t 4e 3t + 5e 4t 3 9 = 21e 3t + 24e 4t 21e 3t + 30e 4t Φ t x 0

11 Ελεύθερη απόκριση Παράδειγμα 1 Ομογενές σύστημα με πραγματικούς πόλους Χρονικές αποκρίσεις Τροχιά κατάστασης x 1ελ. t = 21e 3t + 24e 4t x 2ελ. t = 21e t + 30e 4t

12 Εξαναγκασμένη απόκριση Λύση της μη ομογενούς εξίσωσης κατάστασης Ένα σύστημα με είσοδο u t 0 και αρχική συνθήκη x 0 = 0 χαρακτηρίζεται από τη μη ομογενή εξίσωση με μορφή πινάκων: x t = Ax t + Bu t x 0 = 0 Η λύση της εξίσωσης αυτής είναι η εξαναγκασμένη απόκριση των μεταβλητών κατάστασης του συστήματος.

13 Εξαναγκασμένη απόκριση Λύση της μη ομογενούς εξίσωσης κατάστασης Στο πεδίο s, μετασχηματίζοντας κατά Laplace: x t = Ax t + Bu t si A X s = BU s X s = si A 1 BU s ή X s = Φ s BU s t Στο πεδίο t: x t = Φ t τ Bu τ dτ 0 Εξαναγκασμένη απόκριση

14 Εξαναγκασμένη απόκριση Παράδειγμα 2 Μη ομογενές σύστημα με πραγματικούς πόλους Έστω σύστημα με εξισώσεις κατάστασης: x = 1 4 x + 6 u, x 5 8 Α 3 0 = 0 και μοναδιαία βηματική είσοδο Β Πεδίο s: X εξαν. s = Φ s BU s Οπότε X εξαν. s = Φ s BU s = s + 8 (s + 3)(s + 4) 5 (s + 3)(s + 4) 4 (s + 3)(s + 4) s 1 (s + 3)(s + 4) s = 6s + 36 s(s + 3)(s + 4) 3s + 27 s(s + 3)(s + 4) Φ s B U(s)

15 Εξαναγκασμένη απόκριση Παράδειγμα 2 Μη ομογενές σύστημα με πραγματικούς πόλους Εξαναγκασμένες αποκρίσεις: Χ 1εξαν. s = Χ 2εξαν. s = 6s + 36 s(s + 3)(s + 4) = Α 11 s + Α 12 s Α 13 s + 4 3s + 27 s(s + 3)(s + 4) = A 21 s + Α 21 s Α 23 s + 4 με τη μέθοδο υπολοίπων: A 11 = 3, A 12 = 6, A 13 = 3 A 21 = 2.25, A 22 = 6, A 23 = 3.75 Με αντίστροφο μετασχηματισμό Laplace: x 1εξαν. t = 3 6e 3t + 3e 4t x 1εξαν. 0 = 0, x 1εξαν. = 3 x 2εξαν. t = e 3t e 4t x 2εξαν. 0 = 0, x 2εξαν. = 2.25

16 Εξαναγκασμένη απόκριση Παράδειγμα 2 Μη ομογενές σύστημα με πραγματικούς πόλους Χρονικές αποκρίσεις Τροχιά κατάστασης x 1εξαν. t = 3 6e 3t + 3e 4t x 2εξαν. t = e 3t e 4t

17 Λύση εξισώσεων κατάστασης Η ολική λύση των εξισώσεων κατάστασης προκύπτει από το άθροισμα της ελεύθερης και της εξαναγκασμένης απόκρισης: Στο πεδίο s όπου Φ s X s = (si A) 1 = Φ s x 0 + Φ s BU(s) Στο πεδίο t t x t = Φ t x 0 + Φ t τ Bu τ dτ 0 όπου Φ(t) ο πίνακας μετάβασης

18 Ολική απόκριση Παράδειγμα 3 Πλήρες σύστημα με πραγματικούς πόλους Έστω σύστημα με εξισώσεις κατάστασης: x = 1 4 x + 6 u, x 5 8 Α 3 0 = 3 Β 9 και μοναδιαία βηματική είσοδο Ολικές χρονικές αποκρίσεις: x t = x ελ. t + x εξαν. t x 1ολ. t = 21e 3t + 24e 4t + 3 6e 3t + 3e 4t = 3 27e 3t + 27e 4t X 1ελ. (s) X 1εξαν. (s) x 1 0 = 3 x 1 = 3 x 2ολ. t = 21e 3t + 30e 4t e 3t e 4t = e 3t e 4t X 2ελ. (s) X 2εξαν. (s) x 2 0 = 9 x 2 = 2.25

19 Ολική απόκριση Παράδειγμα 3 Πλήρες σύστημα με πραγματικούς πόλους Χρονικές αποκρίσεις Τροχιά κατάστασης x 1ολ. t = 3 27e 3t + 27e 4t x 2ολ. t = e 3t e 4t

20 Τέλος Ενότητας

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ T.E. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμογών: Σ. ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Μετασχηματισμοί Laplace

Μετασχηματισμοί Laplace Μετασχηματισμοί Laplace Ιδιότητες μετασχηματισμών Laplace Βασικά ζεύγη μετασχηματισμών Laplace f(t) F(s) δ(t) 1 u(t) 1 / s t 1 / s 2 t n n! / s n1 e αt, α>0 1 / (s α) te αt, α>0 1 / (s α) 2 ημωt ω / (s

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητς: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ: Σ. ΒΑΣΙΛΕΙΑΔΟΥ

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1

Συστήματα Αυτομάτου Ελέγχου 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου Ενότητα # 3: Ανάλογα Συστήματα-Αναλογικά Διαγράμματα Δ. Δημογιαννόπουλος, imogian@eipir.gr Επ. Καθηγητής Τμήματος

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) Γράφημα της συνάρτησης f( x), αν p x< 0 F( x) = f( x), αν 0 x p και F( x+ 2 p) = F( x), x R (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται στους

Διαβάστε περισσότερα

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016 ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 016 Θέμα 1. α) (Μον.1.5) Αποδείξτε ότι αν το σύστημα στο χώρο

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014)

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014) Λύσεις θεμάτων Α εξεταστικς περιόδου χειμερινού εξαμνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (2,0 μονάδες) Να σχεδιαστεί το δομικό (λειτουργικό) διάγραμμα του για τον ηλεκτρικό θερμοσίφωνα του σχματος. Είσοδος

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1

Συστήματα Αυτομάτου Ελέγχου 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 2: Μοντελοποίηση φυσικών συστημάτων στο πεδίο του χρόνου Διαφορικές Εξισώσεις Δ. Δημογιαννόπουλος, dimogian@teipir.gr

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014) Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #2: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου - Μόνιμα Σφάλματα Δημήτριος Δημογιαννόπουλος

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου. ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #6: Σχεδιασμός ελεγκτών με χρήση αναλυτικής μεθόδου υπολογισμού παραμέτρων 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr

Διαβάστε περισσότερα

Εξαναγκασμένη Ταλάντωση. Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel)

Εξαναγκασμένη Ταλάντωση. Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel) Εξαναγκασμένη Ταλάντωση Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel) Εξαναγκασμένη Ταλάντωση: Τυχαία Φόρτιση: Απόκριση σε Τυχαία Φόρτιση: Βασική Ιδέα Δ10-2 Το πρόβλημα της κίνησης μονοβάθμιου συστήματος σε τυχαία

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑ RC ΜΕ ΚΡΟΥΣΤΙΚΗ ΔΙΕΓΕΡΣΗ

ΚΥΚΛΩΜΑ RC ΜΕ ΚΡΟΥΣΤΙΚΗ ΔΙΕΓΕΡΣΗ ΚΥΚΛΩΜΑ ΜΕ ΚΡΟΥΣΤΙΚΗ ΙΕΓΕΡΣΗ Εννοούμε την απόκριση ενός γραμμικού, χρονικά αμετάβλητου κυκλώματος σε μια μοναδιαία κρουστική συνάρτηση δ() εφαρμοζόμενη στον χρόνο = 0 (απόκριση μηδενικής κατάστασης). Η

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ

TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ. ΕΙΣΑΓΩΓΗ Ας θεωρήσουμε το σύστημα ανοικτού βρόχου που περιγράφεται από τις εξισώσεις κατάστασης (.) και (.2): x Ax+ Bu (.)

Διαβάστε περισσότερα

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών. Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και

Διαβάστε περισσότερα

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση Εξαναγκασμένη Ταλάντωση Αρμονική Φόρτιση Αρμονική Ταλάντωση Εξαναγκασμένη Ταλάντωση: Αρμονική Φόρτιση: Δ8- Η αρμονική διέγερση αποτελεί θεμελιώδη μορφή διέγερσης στη Δυναμική των Κατασκευών λόγω της μαθηματικής

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές

Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές Διδακτικές Σημειώσεις Τμήματος Πληροφορικής και Επικοινωνιών Τομέας Αρχιτεκτονικής Υπολογιστικών και Βιομηχανικών εφαρμογών Δρ. Βολογιαννίδης Σταύρος email:

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής.

Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής. ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής. Α) Σκοπός: Σκοπός της παρούσας άσκησης είναι να επιδειχθεί ο έλεγχος των στροφών

Διαβάστε περισσότερα

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια)

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος: Επιρροή Μόνιμου Φορτίου Βαρύτητας Δ03-2 Μέχρι τώρα στη διατύπωση της εξίσωσης κίνησης δεν έχει ληφθεί υπόψη το

Διαβάστε περισσότερα

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου Σεµινάριο Αυτοµάτου Ελέγχου Μάθηµα 5 Εξισώσεις εσωτερικής κατάστασης Ελεγξιµότητα και Παρατηρησιµότητα Καλλιγερόπουλος 5 Εξισώσεις εσωτερικής κατάστασης Η εξωτερική συµπεριφορά ενός συστήµατος ορίζεται

Διαβάστε περισσότερα

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση

Διαβάστε περισσότερα

Συστήματα αυτομάτου ελέγχου (ΙΙ) Modern Control Theory

Συστήματα αυτομάτου ελέγχου (ΙΙ) Modern Control Theory Σ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Συστήματα αυτομάτου ελέγχου (ΙΙ Modern Conrol Theory (η Ενότητα: Συστήματα Συνεχούς Χρόνου Διδάσκων : Αναπληρωτής Καθηγητής Δ.Π.Θ. Δομή και βασικές κατηγορίες

Διαβάστε περισσότερα

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης Δυναμική Μηχανών I 9 1 Σύνοψη Εξεταστέας Ύλης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Ύλη Δυναμικής Μηχανών

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 22 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ .0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,

Διαβάστε περισσότερα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Να κατατάξετε τις διαφορικές εξισώσεις, δηλ να δώσετε την τάξη της, να πείτε αν είναι γραμμική ή όχι, να δώσετε την ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί. O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Περιγραφή και Ανάλυση Συστημάτων Ελέγχου στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3)

Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3) Η Επιτάχυνση η τα- Έστω r ( t ) ( t ) i ( t ) j z ( t ) k το διάνυσμα θέσης του κινητού Μ και ( t ) χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει r ( t ) r ( t ) ή πιο απλά (1) t t Άρα

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + + Μετασχηματισμός aplace ορίζεται ως εξής : t X() [x( t)] xte () dt = = Ο αντίστροφος μετασχηματισμός aplace ορίζεται από το μιγαδικό ολοκλήρωμα : t x(t) = [ X()] = X() e dt π j c C είναι μία καμπύλη που

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

Νόμοι της κίνησης ΙΙΙ

Νόμοι της κίνησης ΙΙΙ Νόμοι της κίνησης ΙΙΙ Φυσικές κλίμακες και αδιαστατοποίηση Ασυμπτωτικές λύσεις και ποιοτική ανάλυση Ακριβείς λύσεις και οι ιδιότητές τους Παράδειγμα 1 Κατακόρυφη πτώση σώματος στο πεδίο βαρύτητας με αντίσταση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 009 Θέμα (0 μονάδες) Έστω U = (, y, z, w) = z, y = w υποσύνολο του και V ο υπόχωρος

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουλίου Θέμα ( μονάδες) 4 Θεωρούμε τον Ευκλείδειο χώρο και τον υποχώρο του V που παράγεται

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Περιγραφή συστημάτων στο πεδίο της συχνότητας Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ανάλυση και υπολογισμός του βρόχου φάσης (PLL). Β μέρος του Αθανάσιου Νασιόπουλου Τμήμα Ηλεκτρονικής ΤΕΙ Αθήνας

Ανάλυση και υπολογισμός του βρόχου φάσης (PLL). Β μέρος του Αθανάσιου Νασιόπουλου Τμήμα Ηλεκτρονικής ΤΕΙ Αθήνας Ανάλυση και υπολογισμός του βρόχου φάσης (PLL). Β μέρος του Αθανάσιου Νασιόπουλου Τμήμα Ηλεκτρονικής ΤΕΙ Αθήνας 1. Εισαγωγή Στο προηγούμενο μάθημα - εισήγηση αναλύθηκε ποιοτικά η λειτουργία του βρόχου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Προβλήματα Διαταραχών Λογισμού Μεταβολών Άσκηση 3.10, σελίδα 35 από το βιβλίο

Διαβάστε περισσότερα

Σχεδίαση Συστημάτων Αυτομάτου Ελέγχου με χρήση Αλγεβρικών Τεχνικών

Σχεδίαση Συστημάτων Αυτομάτου Ελέγχου με χρήση Αλγεβρικών Τεχνικών ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Σχεδίαση Συστημάτων Αυτομάτου Ελέγχου με χρήση Αλγεβρικών Τεχνικών (Συνοπτικές σημειώσεις με παραδείγματα) ( Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE Δρ Γιώργος Μαϊστρος, Χημικός Μηχανικός

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 1: ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ

Διαβάστε περισσότερα

Διαφορικές εξισώσεις

Διαφορικές εξισώσεις Διαφορικές εξισώσεις Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικές εξισώσεις τεχνικές 73 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyos.gr 3 / 0 / 0 6 εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. 4.1 Η ροή μιας διαφορικής εξίσωσης. Θεωρούμε πάλι το πρόβλημα αρχικών τιμών. x (0) = x 0, (4.1.

Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. 4.1 Η ροή μιας διαφορικής εξίσωσης. Θεωρούμε πάλι το πρόβλημα αρχικών τιμών. x (0) = x 0, (4.1. Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4.1 Η ροή μιας διαφορικής εξίσωσης Θεωρούμε πάλι το πρόβλημα αρχικών τιμών ẋ = f (x), x (0) = x 0, (4.1.1) όπου το διανυσματικό πεδίο f είναι κλάσεως C 1 σε ένα

Διαβάστε περισσότερα

(είσοδος) (έξοδος) καθώς το τείνει στο.

(είσοδος) (έξοδος) καθώς το τείνει στο. Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Συναρτήσεις Μεταφοράς, Δομικά Διαγράμματα, Διαγράμματα Ροής Σημάτων Aναστασία Βελώνη Τμήμα

Διαβάστε περισσότερα

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής: ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)

Διαβάστε περισσότερα

Εισαγωγή στις Ελλειπτικές Καµπύλες

Εισαγωγή στις Ελλειπτικές Καµπύλες Εισαγωγή στις Ελλειπτικές Καµπύλες Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 4 Νοεµβρίου 2014, 1/19 Το ϑεώρηµα Riemann-Roch Θεωρούµε µια επιφάνεια Riemann M και το σώµα των F των

Διαβάστε περισσότερα

Άσκηση 1 η Να εξετάσετε αν τα ακόλουθα σήματα είναι περιοδικά. Στην περίπτωση περιοδικού σήματος, ποια είναι η θεμελιώδης περίοδος; 1 )

Άσκηση 1 η Να εξετάσετε αν τα ακόλουθα σήματα είναι περιοδικά. Στην περίπτωση περιοδικού σήματος, ποια είναι η θεμελιώδης περίοδος; 1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα ΠΛΗ 44: Σήματα και Επεξεργασία Εικόνας Ακαδημαϊκό Έτος 007 00 Ημερομηνία Εξέτασης 4.0.00

Διαβάστε περισσότερα

Κυκλώματα με Ημιτονοειδή Διέγερση

Κυκλώματα με Ημιτονοειδή Διέγερση Ανάλυση Κυκλωμάτων Κυκλώματα με Ημιτονοειδή Διέγερση Φώτης Πλέσσας fplessas@e-ce.uth.gr Εισαγωγή Πολλά πραγματικά συστήματα, όπως οι μονάδες παραγωγής και τα δίκτυα μεταφοράς ηλεκτρικής ενέργειας, οι τηλεπικοινωνίες

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) 1 Πόλος στην αρχή των αξόνων: 2 Πόλος στον αρνητικό πραγματικό ημιάξονα: 3 Πόλος στον θετικό πραγματικό ημιάξονα: 4 Συζυγείς πόλοι πάνω

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ

Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΣΥΣΤΗΜΑ 2Χ2 ΜΕ ΠΙΝΑΚΕΣ Έστω το σύστημα εξισώσεων 2Χ2 (2 εξισώσεις

Διαβάστε περισσότερα

Δυναμική Ηλεκτρικών Μηχανών

Δυναμική Ηλεκτρικών Μηχανών Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε

Διαβάστε περισσότερα

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014 Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 204 ΘΕΜΑ Ο (2,0 μονάδες) Η διαδικασία διεύθυνσης ενός αυτοκινήτου κατά την οδήγησή του μπορεί να περιγραφεί με ένα σύστημα αυτομάτου ελέγχου κλειστού βρόχου.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Συστήματα Διακριτού Χρόνου (Discrete-Time Systems) Κυριακίδης Ιωάννης 2011

Συστήματα Διακριτού Χρόνου (Discrete-Time Systems) Κυριακίδης Ιωάννης 2011 Συστήματα Διακριτού Χρόνου (Discrete-Time Systems) Κυριακίδης Ιωάννης 2011 Τελευταία ενημέρωση: 11/11/2011 Πράξεις διακριτών σημάτων (υπενθύμιση) Πρόσθεση x(n) + y(n) Αφαίρεση x(n) y(n) Πολλαπλασιασμός

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 7 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Επανάληψη 1 ου μέρους μαθήματος: Μοντελοποίηση & Κατάστρωση Δυναμικών Εξισώσεων Εισαγωγή 2 ου μέρους μαθήματος:

Διαβάστε περισσότερα

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται 6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου, Θεωρία και Εφαρμογές. Δρ. Βολογιαννίδης Σταύρος,

Συστήματα Αυτομάτου Ελέγχου, Θεωρία και Εφαρμογές. Δρ. Βολογιαννίδης Σταύρος, Συστήματα Αυτομάτου Ελέγχου, Θεωρία και Εφαρμογές Δρ. Βολογιαννίδης Σταύρος, (svol@teicm.gr) 9 Νοεμβρίου 204 Περιεχόμενα Βασικές έννοιες. Σήματα και συστήματα.........................2 Σήματα συνεχούς

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων

Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων Ιωάννης Χαρ. Κατσαβουνίδης Τμήμα Μηχ. Η/Υ, Τηλε. Δικτύων Πανειστήμιο Θεσσαλίας ΦΘινοωρινό Εξάμηνο 00/ Άσκηση Να βρείτε αν τα αρακάτω συστήματα είναι γραμμικά,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ

ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ 5. ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΛΟΓΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Στα προηγούμενα κεφάλαια παρουσιάσαμε την έννοια της συνάρτησης συστήματος για αναλογικά

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 7 η : ΕΛΕΓΚΤΕΣ PID Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα