Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής"

Transcript

1 Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των ηλεκτρονικών υπολογιστών Έρευνα στην εφαρμοσμένη Στατιστική «Δεκάλογος» σταδίων Διατύπωση προβλήματος Διαμόρφωση παραμέτρων Επιλογή μεταβλητών Διερεύνηση σχέσεων μεταβλητών Στατιστική ανάλυση δεδομένων Διατύπωση συμπερασμάτων ΈρευναστηΜαθηματικήΣτατιστική Πώς και από πού αντλούνται ερευνητικές ιδέες; Τι αποτελεί έρευνα στη στατιστική μεθοδολογία; Πώς ξεκινάει κάποιος την ερευνητική δραστηριότητα; Πότε θεωρείται ολοκληρωμένη μια έρευνα; Αντικείμενο της Μαθηματικής Στατιστικής Μελέτη και ανάπτυξη μεθόδων στατιστικής ανάλυσης. Χρησιμοποιεί μαθηματικά εργαλεία: θεωρία πιθανοτήτων, βελτιστοποίηση, λογισμό. Κοινό σημείο με την εφαρμοσμένη στατιστική: πρότυπα ή μοντέλα. Η έννοια του μοντέλου Αναπαράσταση μιας πραγματικής κατάστασης Διάφοροι τύποι μοντέλων: Φυσικά, Αφηρημένα, Υπολογιστικά, Μαθηματικά Μαθηματικό Μοντέλο: Αναπαράσταση μέσω μαθηματικών ποσοτήτων και σχέσεων μεταξύ τους. 1

2 Στάδια Μοντελοποίησης - Στάδια Μοντελοποίησης Μαθηματική Στατιστική Πραγματικό Πρόβλημα Στατιστικό Μοντέλο Ανάλυση Μοντέλου Ερμηνεία Συμπεράσματα Πραγματικό Πρόβλημα Στατιστικό Μοντέλο Ανάλυση Μοντέλου Ερμηνεία Συμπεράσματα Τροποποιήσεις Τροποποιήσεις Στατιστικά Μοντέλα Διευκολύνουν την εξαγωγή συμπερασμάτων από εμπειρικά δεδομένα Έλεγχοι Υποθέσεων Παλινδρόμηση Ανάλυση Επιβίωσης Παραγοντική Ανάλυση κλπ Στοχαστικά Πιθανοθεωρητικά Μοντέλα Γενικότερη κατηγορία μοντέλων. Μαθηματική περιγραφή φαινομένων υπό συνθήκες αβεβαιότητας. Εφαρμογές στη Βιοστατιστική: Κλινικές Δοκιμές Μοντέλα Εξέλιξης στη Βιολογία Μαθηματικά Εργαλεία Πιθανότητες Στοχαστικές Διαδικασίες Βελτιστοποίηση Προσομοίωση ΈρευναστηΜαθηματικήΣτατιστική Δημιουργία Νέων Μοντέλων Εμπνέονται από ανάγκες εφαρμογών Γενικού σκοπού Μπορεί να εφαρμόζονται σε διαφορετικές περιοχές προβλημάτων Μπορεί να προέρχονται από διαφορετικές περιοχές προβλημάτων ΈρευναστηΜαθηματικήΣτατιστική Ανάπτυξη μεθόδων για την ανάλυση στατιστικών μοντέλων Μαθηματική προσέγγιση Περιγραφή μεθόδου Απόδειξη ιδιοτήτων Προσομοίωση συμπεριφοράς 2

3 Πώς βρίσκονται ερευνητικές ιδέες Ιδέες για νέα μοντέλα Μελέτη βιβλιογραφίας Τίποτε δεν θεωρείται δεδομένο Σε όλες τις εργασίες υπάρχουν «κενά» ή «τρύπες» Η διαφορά του ερευνητή από τον αναγνώστη είναι ότι αναγνωρίζει τα κενά και επομένως τις ευκαιρίες για περαιτέρω έρευνα Ανάγκες εφαρμογών Η αιτιολόγηση της έρευνας προς κάποια κατεύθυνση βρίσκει σημαντική υποστήριξη από τη δυνατότητα παραγωγής εφαρμόσιμης γνώσης. Αυτό ισχύει στα εφαρμοσμένα μαθηματικά γενικότερα και όχι μόνο στη στατιστική. Απότηνεφαρμογήστηθεωρία Το μεγαλύτερο μέρος των μοντέλων μαθηματικής στατιστικής έχει προέλθει από πρακτικά ερωτήματα και προβλήματα. Κλασσικά παραδείγματα είναι η μέθοδος παλινδρόμησης και η ανάλυση κατά παράγοντες Απότηνεφαρμογήστηθεωρία Ένα ερώτημα/πρόβλημα από την πράξη μπορεί να οδηγήσει σε: Εφαρμογή ενός γνωστού μοντέλου που έχει ήδη προταθεί και αναλυθεί (εφαρμοσμένη στατιστική) Δημιουργία νέου μοντέλου για τις ανάγκες του συγκεκριμένου προβλήματος (μαθηματική στατιστική) Παράδειγμα 1: Μεικτά μοντέλα παλινδρόμησης για χρονικά δεδομένα Το στατιστικό μοντέλο παλινδρόμησης έχει σκοπό να περιγράψει συσχετίσεις ανάμεσα σε μια εξαρτημένη μεταβλητή (Υ) και μία ή περισσότερες ανεξάρτητες μεταβλητές (Χ) Παράδειγμα: Χ=δόση φαρμάκου, Υ=πίεση Κλασικό μοντέλο Σεέναδείγμαασθενώνδίνονται διαφορετικές δόσεις και μετράται η πίεση. Στο μοντέλο παλινδρόμησης γίνεται η υπόθεση ότι οι ασθενείς είναι στατιστικά ανεξάρτητοι μεταξύ τους. 3

4 Χρονικά δεδομένα Έστω ότι κάθε ασθενής παίρνει μια δόση τουφαρμάκουτρειςφορέςτημέρα(πρωί, μεσημέρι και βράδυ) και κάνει μέτρηση της πίεσης δύο φορές τη μέρα. Τώρα οι μετρήσεις δεν προέρχονται όλες από διαφορετικούς ασθενείς και επομένως η ανεξαρτησία δεν ισχύει. Ανεπάρκεια κλασικού μοντέλου Το κλασικό μοντέλο παλινδρόμησης δεν μπορεί να εφαρμοστεί σε τέτοιες περιπτώσεις. Γενικότερα μοντέλα (μεικτά γραμμικά μοντέλα) έχουν αναπτυχθεί από ερευνητές εφαρμοσμένης και μαθηματικής στατιστικής. Παράδειγμα 2: Από τη συνδυαστική βελτιστοποίηση στη βιολογική εξέλιξη To 1987 o μαθηματικός-βιολόγος Stuart Kauffman πρότεινε ένα μαθηματικό μοντέλο για την περιγραφή της εξέλιξης γονιδίων/οργανισμών/ομάδων. Βασίζεται στη θεωρία συνδυαστικής βελτιστοποίησης. Ένας οργανισμός αποτελείται από Ν τμήματα. Κάθε τμήμα μπορεί να βρίσκεται στην κατάσταση 0 ή 1. Η «απόδοση» του οργανισμού είναι το άθροισμα των επί μέρους αποδόσεων των τμημάτων του. Η απόδοση κάθε τμήματος εξαρτάται από την κατάσταση του τμήματος (0 ή 1) όπως επίσης και από τις αποδόσεις Κ-1 γειτονικών του τμημάτων (επιστατική αλληλεπίδραση). Ο οργανισμός εξελίσσεται αλλάζοντας κάθε φορά την κατάσταση ενός τμήματος αν η αλλαγή βελτιώνει τη συνολική απόδοση. Όταν καμμία αλλαγή δεν επιφέρει βελτίωση έχει φθάσει σε κατάσταση τοπικού βέλτιστου. Μετά από συνδυασμό θεωρητικής ανάλυσης και προσομοιώσεων για διάφορα σενάρια αποδόσεων, ο Kauffman κατέληξε στο συμπέρασμα ότι η απόδοση είναι καλύτερη για μέτριες τιμές του Κ (μέτρια αλληλεπίδραση) ενώ μειώνεται για μεγάλες τιμές (καταστροφή λόγω πολυπλοκότητας) 4

5 Αν δεχτούμε ότι το μοντέλο περιγράφει (προσεγγιστικά) αυτοεξελισσόμενους οργανισμούς, τότε συμπεραίνουμε ότι ενδιάμεσοι βαθμοί πολυπλοκότητας είναι προτιμότεροι στην εξέλιξη από ότι πολύ χαμηλοί ή πολύ υψηλοί βαθμοί. Ίσως αυτό εξηγεί κάποια φαινόμενα στην εξελικτική διαδικασία. Υπεραπλουστευτικές υποθέσεις: Μόνο δύο δυνατές καταστάσεις κάθε τμήματος Ίδια μορφή αλληλεπίδρασης για όλα τα τμήματα Τρόπος εξέλιξης με τοπικές βελτιώσεις Εφαρμογή σε άλλες περιοχές Οργανισμοί Ομάδες εργαζομένων Αλληλεπίδραση στην απόδοση της εργασίας Ο ρόλος του διευθυντή Πότε πρέπει να χωριστούν οι μεγάλες ομάδες Έρευνα για νέες μεθόδους Σημαντικό μέρος της έρευνας στη μαθηματική στατιστική αποτελεί η ανάπτυξη νέων ή βελτιωμένων μεθόδων για υπάρχοντα μοντέλα. Παραδείγματα Μέθοδοι επιλογής μεταβλητών σε μοντέλα παλινδρόμησης Μέθοδοι υπολογισμού παραγόντων σε μοντέλα παραγοντικής ανάλυσης Συνδυασμός μοντέλων-μεθόδων Πολλές φορές δεν υπάρχει ξεκάθαρη διάκριση αν το αποτέλεσμα της έρευνας είναι ένα νέο μοντέλο ή μια νέα μέθοδος Μπορεί να είναι συνδυασμός και των δύο Παράδειγμα: Ένα μοντέλο ανάλυσης επιβίωσης και η ανάλυση της μεθόδου Εισαγωγή του φοιτητή στην έρευνα Εξαρτάται από το υπόβαθρο, τις γνώσεις και τις ιδιαίτερες δεξιότητες του υποψήφιου ερευνητή Αν έχει εμπειρία σε εφαρμογές μπορεί να αρχίσει από εφαρμοσμένο πρόβλημα και σταδιακά να προχωρήσει στη μελέτη/ανάπτυξη νέας θεωρίας Αν έχει ισχυρό θεωρητικό υπόβαθρο μπορεί να ακολουθηθεί η αντίστροφη διαδικασία. 5

6 Ερευνητικά σεμινάρια Συγκεκριμένο ερευνητικό θέμα Μελετώνται εργασίες πάνω στο θέμα του σεμιναρίου Παρουσιάσεις από τους συμμετέχοντες. Συζητήσεις για κενά ή ατέλειες. Νέες ιδέες για έρευνα. Το σφάλμα τύπου ΙΙΙ Να μοντελοποιήσεις την λάθος υπόθεση Να μοντελοποιήσεις (και να λύσεις) το λάθος πρόβλημα. Ολοκλήρωση ερευνητικής εργασίας Πότε μπορείς να πείς «τελείωσε»; Μια ερευνητική εργασία δεν μπορεί να είναι ούτε πολύ σύντομη (τετριμμένη) ούτε υπερβολικά εκτεταμένη (βιβλίο). Δύσκολο να βρεθεί η χρυσή τομή. Ο ρόλος των ηλεκτρονικών υπολογιστών Ο υπολογιστής είναι ανεκτίμητο εργαλείο Ανάλυση δεδομένων εφαρμογή στατιστικών μοντέλων Συγγραφή εργασίας Ακόμα και έμπνευση νέων μεθόδων/μοντέλων από τα υπολογιστικά αποτελέσματα. Όμως ο υπολογιστής δεν μπορεί να υποκαταστήσει την αναλυτική σκέψη Το printout δεν είναι η απάντηση. 6

329 Στατιστικής Οικονομικού Παν. Αθήνας

329 Στατιστικής Οικονομικού Παν. Αθήνας 329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα

Διαβάστε περισσότερα

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου ΠΡΟΛΟΓΟΣ Η γραμμική παλινδρόμηση χρησιμοποιείται για την μελέτη των σχέσεων μεταξύ μετρήσιμων μεταβλητών. Γενικότερα, η γραμμική στατιστική συμπερασματολογία αποτελεί ένα ευρύ πεδίο της στατιστικής ανάλυσης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 1: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΕΘΟΔΟΥΣ ΕΡΕΥΝΑΣ - ΠΕΡΙΓΡΑΜΜΑ

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 1: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΕΘΟΔΟΥΣ ΕΡΕΥΝΑΣ - ΠΕΡΙΓΡΑΜΜΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 1: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΕΘΟΔΟΥΣ

Διαβάστε περισσότερα

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan)

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) On-the-fly feedback, Upper Secondary Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) Τάξη: Β Λυκείου Διάρκεια ενότητας Μάθημα: Φυσική Θέμα: Ταλαντώσεις (αριθμός Χ διάρκεια μαθήματος): 6X90

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1.ΓΕΝΙΚΑ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ 1207002 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 7 ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΜΙΑΣ ΕΡΕΥΝΑΣ. ΜΑΝΟΥΣΟΣ ΕΜΜ. ΚΑΜΠΟΥΡΗΣ, ΒΙΟΛΟΓΟΣ, PhD ΙΑΤΡΙΚHΣ

ΟΡΓΑΝΩΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΜΙΑΣ ΕΡΕΥΝΑΣ. ΜΑΝΟΥΣΟΣ ΕΜΜ. ΚΑΜΠΟΥΡΗΣ, ΒΙΟΛΟΓΟΣ, PhD ΙΑΤΡΙΚHΣ ΟΡΓΑΝΩΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΜΙΑΣ ΕΡΕΥΝΑΣ ΜΑΝΟΥΣΟΣ ΕΜΜ. ΚΑΜΠΟΥΡΗΣ, ΒΙΟΛΟΓΟΣ, PhD ΙΑΤΡΙΚHΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΕΡΕΥΝΑΣ Η επιστημονική έρευνα στηρίζεται αποκλειστικά στη συστηματική μελέτη της εμπειρικής

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΑΝΑΛΥΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΩΝ ΟΔΗΓΩΝ ΣΕ ΣΥΝΘΗΚΕΣ ΚΑΝΟΝΙΚΕΣ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΕ ΑΣΤΙΚΗ ΟΔΟ. Δανάη Βουτσινά

ΣΥΓΚΡΙΤΙΚΗ ΑΝΑΛΥΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΩΝ ΟΔΗΓΩΝ ΣΕ ΣΥΝΘΗΚΕΣ ΚΑΝΟΝΙΚΕΣ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΕ ΑΣΤΙΚΗ ΟΔΟ. Δανάη Βουτσινά Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τομέας Μεταφορών και Συγκοινωνιακής Υποδομής ΣΥΓΚΡΙΤΙΚΗ ΑΝΑΛΥΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΩΝ ΟΔΗΓΩΝ ΣΕ ΣΥΝΘΗΚΕΣ ΚΑΝΟΝΙΚΕΣ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΕ ΑΣΤΙΚΗ ΟΔΟ Δανάη

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Επιστημονική έρευνα Σε τι μας βοηθάει η έρευνα Χαρακτηριστικά της επιστημονικής

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ (MAE532) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΜΑΕ532 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ (MAE532) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΜΑΕ532 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ (MAE532) ΓΕΝΙΚΑ ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΜΑΕ532 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΣΤΟΧΑΣΤΙΚΕΣ

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΑΝΑΛΥΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΩΝ ΟΔΗΓΩΝ ΣΕ ΣΥΝΘΗΚΕΣ ΚΑΝΟΝΙΚΕΣ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΕ ΥΠΕΡΑΣΤΙΚΗ ΟΔΟ ΝΙΚΑΣ ΜΑΡΙΟΣ

ΣΥΓΚΡΙΤΙΚΗ ΑΝΑΛΥΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΩΝ ΟΔΗΓΩΝ ΣΕ ΣΥΝΘΗΚΕΣ ΚΑΝΟΝΙΚΕΣ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΕ ΥΠΕΡΑΣΤΙΚΗ ΟΔΟ ΝΙΚΑΣ ΜΑΡΙΟΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟΔΟΜΗΣ ΣΥΓΚΡΙΤΙΚΗ ΑΝΑΛΥΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΩΝ ΟΔΗΓΩΝ ΣΕ ΣΥΝΘΗΚΕΣ ΚΑΝΟΝΙΚΕΣ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΕ ΥΠΕΡΑΣΤΙΚΗ ΟΔΟ ΝΙΚΑΣ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Στόχοι Ο κύριος στόχος του μαθήματος είναι να βοηθήσει τους φοιτητές να αναπτύξουν πρακτικές

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

Νοσηλευτική Σεμινάρια

Νοσηλευτική Σεμινάρια Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Νοσηλευτική Σεμινάρια Ενότητα 5: Τρόποι συγγραφής των Λέξεων ευρετηριασμού και του Εισαγωγικού μέρους μιας επιστημονικής εργασίας Μαίρη Γκούβα

Διαβάστε περισσότερα

Περιεχόμενα. ΚΕΦΑΛΑΙΟ 1 Κατευθύνσεις στην έρευνα των επιστημών υγείας. ΚΕΦΑΛΑΙΟ 2 Έρευνα και θεωρία

Περιεχόμενα. ΚΕΦΑΛΑΙΟ 1 Κατευθύνσεις στην έρευνα των επιστημών υγείας. ΚΕΦΑΛΑΙΟ 2 Έρευνα και θεωρία Περιεχόμενα Σχετικά με τους συγγραφείς... ΧΙΙΙ Πρόλογος... XV Eισαγωγή...XVΙΙ ΚΕΦΑΛΑΙΟ 1 Κατευθύνσεις στην έρευνα των επιστημών υγείας Εισαγωγή... 1 Τι είναι η έρευνα;... 2 Τι είναι η έρευνα των επιστημών

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α ΘΕΩΡΙΑ ΤΗΣ ΓΝΩΣΗΣ ΚΑΙ ΘΕΩΡΙΑ ΤΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ ΣΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ. του αντικειμένου προσεγγίσεων...

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α ΘΕΩΡΙΑ ΤΗΣ ΓΝΩΣΗΣ ΚΑΙ ΘΕΩΡΙΑ ΤΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ ΣΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ. του αντικειμένου προσεγγίσεων... ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α ΘΕΩΡΙΑ ΤΗΣ ΓΝΩΣΗΣ ΚΑΙ ΘΕΩΡΙΑ ΤΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ ΣΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΚΕΦΑΛΑΙΟ 1: Εισαγωγή..................................................... 17 1.1 Νόηση και γνώση και η σχέση

Διαβάστε περισσότερα

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της

Διαβάστε περισσότερα

ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΕΣΣ. Εντατικό

ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΕΣΣ. Εντατικό ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΡΓΑΣΤΗΡΙΟ ΥΓΙΕΙΝΗΣ, ΕΠΙΔΗΜΙΟΛΟΓΙΑΣ & ΙΑΤΡΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΜΟΝΑΔΑΑ ΕΦΑΡΜΟΓΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΜΕΘΟΔΟΛΟΓΙΑΣ & ΑΝΑΛΥΣΗΣΣ ΔΕΔΟΜΕΝΩΝ ΜΟΝΑΔΑ ΑΝΑΠΤΥΞΗΣ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΜΕΤΑΒΑΤΙΚΟΙ ΚΑΝΟΝΕΣ ΕΞΕΤΑΣΗΣ ΜΑΘΗΜΑΤΩΝ ΛΟΓΩ ΕΦΑΡΜΟΓΗΣ ΤΟΥ ΝΕΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΑΠΟ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014

ΜΕΤΑΒΑΤΙΚΟΙ ΚΑΝΟΝΕΣ ΕΞΕΤΑΣΗΣ ΜΑΘΗΜΑΤΩΝ ΛΟΓΩ ΕΦΑΡΜΟΓΗΣ ΤΟΥ ΝΕΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΑΠΟ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΜΕΤΑΒΑΤΙΚΟΙ ΚΑΝΟΝΕΣ ΕΞΕΤΑΣΗΣ ΜΑΘΗΜΑΤΩΝ ΛΟΓΩ ΕΦΑΡΜΟΓΗΣ ΤΟΥ ΝΕΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΑΠΟ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΣΗΜΕΙΩΣΗ 1: ΣΗΜΕΙΩΣΗ 2: ΣΗΜΕΙΩΣΗ 3: ΟΛΟΙ ΟΙ ΠΑΡΑΚΑΤΩ ΜΕΤΑΒΑΤΙΚΟΙ ΚΑΝΟΝΕΣ ΠΟΥ ΑΦΟΡΟΥΝ

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

Μεθοδολογία ερευνητικής εργασίας

Μεθοδολογία ερευνητικής εργασίας Μεθοδολογία ερευνητικής εργασίας Σύντομος οδηγός επιβίωσης Μεθοδολογία Ερευνητικής Εργασίας: Γ. Τράπαλης & Ά. Μητρέλης 1 Τι είναι Έρευνα: η παραγωγή πρωτότυπων αποτελεσμάτων μέσω της συστηματικής, ορθολογικής

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

Ιδιότητες και Τεχνικές Σύνταξης Επιστημονικού Κειμένου Σχολιασμός ερευνητικής πρότασης

Ιδιότητες και Τεχνικές Σύνταξης Επιστημονικού Κειμένου Σχολιασμός ερευνητικής πρότασης Ιδιότητες και Τεχνικές Σύνταξης Επιστημονικού Κειμένου Σχολιασμός ερευνητικής πρότασης Αναστασία Χριστοδούλου, Dr. Γεώργιος Δαμασκηνίδης Τμήμα Ιταλικής Γλώσσας & Φιλολογίας Θεσσαλονίκη, 2015 Ιδιότητες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ Εξάμηνο Υ/Ε Ώρες Θεωρίας Ώρες Ασκήσης Διδακτικές μονάδες ECTS A Υ 3 3 4 6 Διδάσκουσα Μ. Αλεξίου Χατζάκη, Επίκ. Καθηγήτρια Γεν. Βιολογίας. Aντικειμενικοί στόχοι του μαθήματος Οι στόχοι

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ (1) ΓΕΝΙΚΑ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΕΠΙΣΤΗΜΗΣ ΥΛΙΚΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΕΤΥ 303 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 3 o ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΦΥΣΙΚΟΧΗΜΕΙΑ Ι ΑΥΤΟΤΕΛΕΙΣ

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Τμήμα Επιστήμης Φυσικής Αγωγής & Αθλητισμού. ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ & ΣΤΑΤΙΣΤΙΚΗ Γ Εξάμηνο

Πανεπιστήμιο Θεσσαλίας Τμήμα Επιστήμης Φυσικής Αγωγής & Αθλητισμού. ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ & ΣΤΑΤΙΣΤΙΚΗ Γ Εξάμηνο Πανεπιστήμιο Θεσσαλίας Τμήμα Επιστήμης Φυσικής Αγωγής & Αθλητισμού ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ & ΣΤΑΤΙΣΤΙΚΗ Γ Εξάμηνο Διδάσκοντες Χατζηγεωργιάδης Αντώνης / Zουρμπάνος Νίκος ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ & ΣΤΑΤΙΣΤΙΚΗ Μορφή

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ Γνωστικό αντικείμενο Επίπεδο ΦΥΣΙΚΗ Α Λυκείου Ταυτότητα Στόχος Περιγραφή Προτεινόμενο ή υλοποιημένο Λογισμικό Λέξεις κλειδιά Δημιουργοί α) Γνώσεις για τον κόσμο: Οι δυνάμεις εμφανίζονται

Διαβάστε περισσότερα

Δόμηση ενός ερευνητικού προγράμματος

Δόμηση ενός ερευνητικού προγράμματος Εισαγωγή στην κοινωνική έρευνα Earl Babbie Κεφάλαιο 3 Δόμηση ενός ερευνητικού προγράμματος 3-1 Σύνοψη κεφαλαίου Τρεις σκοποί έρευνας Η λογική της νομοθετικής προσέγγισης Ικανές και αναγκαίες συνθήκες Μονάδες

Διαβάστε περισσότερα

Πανηγύρι των Φυσικών Επιστημών» στο 2ο Γυμνάσιο Πυλαίας

Πανηγύρι των Φυσικών Επιστημών» στο 2ο Γυμνάσιο Πυλαίας «Το Πανηγύρι των Φυσικών Επιστημών» στο 2ο Γυμνάσιο Πυλαίας Συμμετέχουν: Οι μαθητές της 2ας και 3ης τάξης Υπεύθυνη καθηγήτρια: Μαρία Καλλέρη Τα μέρη της παρουσίασης Μέρος 1ο: Περιγραφή της πορείας της

Διαβάστε περισσότερα

ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ)

ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ) ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ) Α1. ΣΥΝΤΟΜΗ ΠΕΡΙΓΡΑΦΗ ΦΥΣΙΚΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ Tο Πρόγραµµα Μεταπτυχιακών Σπουδών του Τµήµατος Μαθηµατικών του Πανεπιστηµίου Κρήτης είναι ένα από τα πρώτα οργανωµένα µεταπτυχιακά

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

Νοσηλευτική Σεμινάρια

Νοσηλευτική Σεμινάρια Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Νοσηλευτική Σεμινάρια Ενότητα 6: Τρόποι Συγγραφής της Μεθόδου και των Αποτελεσμάτων μιας επιστημονικής εργασίας Μαίρη Γκούβα 1 Ανοιχτά Ακαδημαϊκά

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003 Λευκωσία, Κύπρος Τηλ: 22378101- Φαξ:22379122 cms@cms.org.cy, www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Η Κυπριακή Μαθηματική Εταιρεία

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o ΓΕΝΙΚΑ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

Διάταξη Θεματικής Ενότητας ΕΠΑ51 / Εφαρμοσμένη Εκπαιδευτική Έρευνα

Διάταξη Θεματικής Ενότητας ΕΠΑ51 / Εφαρμοσμένη Εκπαιδευτική Έρευνα Διάταξη Θεματικής Ενότητας ΕΠΑ51 / Εφαρμοσμένη Εκπαιδευτική Έρευνα Σχολή ΣΑΚΕ Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Πρόγραμμα Σπουδών ΕΠΑ Επιστημών της Αγωγής Θεματική Ενότητα ΕΠΑ51 Εφαρμοσμένη

Διαβάστε περισσότερα

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών. Κουτσογιάννης Α. Ευστρατιάδης Φεβρουάριος 2002 Εισαγωγή

Διαβάστε περισσότερα

Κύρια σημεία. Μεθοδολογικές εργασίες. Άρθρα Εφαρμογών. Notes - Letters to the Editor. Εργασίες στη Στατιστική Μεθοδολογία

Κύρια σημεία. Μεθοδολογικές εργασίες. Άρθρα Εφαρμογών. Notes - Letters to the Editor. Εργασίες στη Στατιστική Μεθοδολογία Κύρια σημεία Εργασίες στη Στατιστική Μεθοδολογία Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Κατηγορίες άρθρων Στατιστικά Περιοδικά Βιβλιογραφική Έρευνα Βιβλιογραφικές Βάσεις Δεδομένων Γενικές Μηχανές

Διαβάστε περισσότερα

Διαφοροποίηση στρατηγικών διδασκαλίας ανάλογα με το περιεχόμενο στα μαθήματα των φυσικών επιστημών

Διαφοροποίηση στρατηγικών διδασκαλίας ανάλογα με το περιεχόμενο στα μαθήματα των φυσικών επιστημών Διαφοροποίηση στρατηγικών διδασκαλίας ανάλογα με το περιεχόμενο στα μαθήματα των φυσικών επιστημών Κων/νος Στεφανίδης Σχολικός Σύμβουλος Πειραιά kstef2001@yahoo.gr Νικόλαος Στεφανίδης Φοιτητής ΣΕΜΦΕ, ΕΜΠ

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Σχεδιασμός, εφαρμογή και παρουσίαση ερευνητικών

Διαβάστε περισσότερα

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο

Διαβάστε περισσότερα

Σκοπός του μαθήματος. Αρχές Φυσικής Μοντελοποίησης

Σκοπός του μαθήματος. Αρχές Φυσικής Μοντελοποίησης Αρχές Φυσικής Μοντελοποίησης (Μαθηματική έκφραση της λεκτικής περιγραφής των φαινομένων) Σκοπός του μαθήματος Αρχές Φυσικής Μοντελοποίησης Αρχές Φυσικής Προσομοίωσης 1/2.1 Σκοπός της Φυσικής Προσομοίωσης

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ Ενημερωτικό Φυλλάδιο Αθήνα, Οκτώβριος 2016 Εργαστήριο

Διαβάστε περισσότερα

Ερευνητικές Εργασίες

Ερευνητικές Εργασίες Ερευνητικές Εργασίες 1. Οδηγίες μεθοδολογίας της έρευνας, συλλογής δεδομένων και εξαγωγής συμπερασμάτων. 2. Συγγραφή της ερευνητικής εργασίας. Απόστολος Ντάνης Σχολικός Σύμβουλος Η ΜΕΘΟΔΟΣ PROJECT Επιλογή

Διαβάστε περισσότερα

3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών

3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών 3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών Στην ενότητα αυτή παρουσιάζονται τα συνοπτικά περιγράμματα των μαθημάτων που διδάσκονται στο Πρόγραμμα Σπουδών, είτε αυτά προσφέρονται από το τμήμα που είναι

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων. Επιμέλεια: Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων. Επιμέλεια: Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Επιμέλεια: Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Περιεχόμενο μαθήματος (γενικά) Μέρος Ι: Εισαγωγή στην Εκπαιδευτική Έρευνα Μέρος ΙΙ: Ποσοτικές Προσεγγίσεις

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Θεωρία και Εφαρμογές Επεξεργασίας Πληροφορίας 2.

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ

ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ Θ = ΘΕΩΡΙΑ Ε = ΕΡΓΑΣΤΗΡΙΟ Σ = ΣΥΝΟΛΟ ΔΜ = ΔΙΔΑΚΤΙΚΕΣ ΜΟΝΑΔΕΣ ECTS = ΠΙΣΤΩΤΙΚΕΣ ΜΟΝΑΔΕΣ 1 ο ΕΞΑΜΗΝΟ Α ΕΤΟΣ 1ΚΠ01 Μαθηματική Ανάλυση Ι 4 1 5 5 5 1ΚΠ02 Γραμμική Άλγεβρα 4 5

Διαβάστε περισσότερα

Εισαγωγή στη Μεθοδολογία της Έρευνας ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ΜΕΘΟ ΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΜΕΘΟ ΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Μορφή µαθήµατος.

Εισαγωγή στη Μεθοδολογία της Έρευνας ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ΜΕΘΟ ΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΜΕΘΟ ΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Μορφή µαθήµατος. ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ιάλεξη 1. Εισαγωγή στη Μεθοδολογία της έρευνας

Διαβάστε περισσότερα

Γ. Ραχωνης. 5-6 Μαθηματικά Λογισμικά. Σαραφόπουλος Ν. 7-8 Καραμπετάκης

Γ. Ραχωνης. 5-6 Μαθηματικά Λογισμικά. Σαραφόπουλος Ν. 7-8 Καραμπετάκης ΠΡΟΓΡΑΜΜΑ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝ/ΚΟ ΕΤΟΣ 2015-2016 Εξάμηνο 2ο Αναλυτική Γεωμετρία Ι Μ. Μαριάς Επαναληπτικό εργαστήριο Εισαγωγή στον Προγραμματισμό Πορφυριάδης 2α Εργ. Συμβολικές Γλώσσες Προγραμματισμού

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ. Δημόσια Οικονομική. Διαλέξεις 4 6. Ελληνική. Ναι (στην Αγγλική)

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ. Δημόσια Οικονομική. Διαλέξεις 4 6. Ελληνική. Ναι (στην Αγγλική) ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ (1) ΓΕΝΙΚΑ ΣΧΟΛΗ Κοινωνικών, Πολιτικών και Οικονομικών Επιστημών ΤΜΗΜΑ Οικονομικών Επιστημών ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΝΕ77 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Ζ εξάμηνο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μοντελοποίηση Προσομοίωση

Μοντελοποίηση Προσομοίωση Μοντελοποίηση Προσομοίωση Σχεδιασμός είναι η διαδικασία μετατροπής των φυσικών νόμων σε μαθηματικές εξισώσεις είναι το κατάλληλο λογισμικό το οποίο χρησιμοποιώντας το μαθηματικό μοντέλο προβλέπει τη συμπεριφορά

Διαβάστε περισσότερα

Πέμπτη, 27 Μαρτίου 2014

Πέμπτη, 27 Μαρτίου 2014 6 η Διεθνής Μαθηματική Εβδομάδα 2014 Πέμπτη, 27 Μαρτίου 2014 Διδάσκοντας σε μεγάλα ακροατήρια Πέμπτη, 27 Μαρτίου 2014 Το πείραμα του μαθήματος «Εισαγωγή στην Άλγεβρα» Ομιλητές: Ελευθεριάδου Ηρώ Επταμηνιτάκης

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ Σ.Τ.ΕΦ ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ 2201301 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Γ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

ΣΥΓΓΡΑΦΗ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΕΡΕΥΝΑΣ

ΣΥΓΓΡΑΦΗ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΕΡΕΥΝΑΣ ΣΥΓΓΡΑΦΗ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΕΡΕΥΝΑΣ Τίτλος Ονοματεπώνυμο συγγραφέα Πανεπιστήμιο Ονοματεπώνυμο δεύτερου (τρίτου κ.ο.κ.) συγγραφέα Πανεπιστήμιο Η κεφαλίδα (μπαίνει πάνω δεξιά σε κάθε σελίδα): περιγράφει το θέμα

Διαβάστε περισσότερα

Ειδικής Υποδομής Υποχρεωτικό

Ειδικής Υποδομής Υποχρεωτικό ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ GD780 ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Τεχνητή Νοημοσύνη ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ σε περίπτωση που οι

Διαβάστε περισσότερα

Η ΕΠΙΔΡΑΣΗ ΤΟΥ ΗΓΕΤΙΚΟΥ ΣΤΥΛ ΚΑΙ ΤΗΣ ΚΟΥΛΤΟΥΡΑΣ ΣΤΙΣ ΕΠΔΟΣΕΙΣ ΤΩΝ ΜΑΘΗΤΩΝ ΤΩΝ ΔΗΜΟΤΙΚΩΝ ΣΧΟΛΕΙΑ ΤΗΣ ΚΥΠΡΟΥ

Η ΕΠΙΔΡΑΣΗ ΤΟΥ ΗΓΕΤΙΚΟΥ ΣΤΥΛ ΚΑΙ ΤΗΣ ΚΟΥΛΤΟΥΡΑΣ ΣΤΙΣ ΕΠΔΟΣΕΙΣ ΤΩΝ ΜΑΘΗΤΩΝ ΤΩΝ ΔΗΜΟΤΙΚΩΝ ΣΧΟΛΕΙΑ ΤΗΣ ΚΥΠΡΟΥ Η ΕΠΙΔΡΑΣΗ ΤΟΥ ΗΓΕΤΙΚΟΥ ΣΤΥΛ ΚΑΙ ΤΗΣ ΚΟΥΛΤΟΥΡΑΣ ΣΤΙΣ ΕΠΔΟΣΕΙΣ ΤΩΝ ΜΑΘΗΤΩΝ ΤΩΝ ΔΗΜΟΤΙΚΩΝ ΣΧΟΛΕΙΑ ΤΗΣ ΚΥΠΡΟΥ Ανδρέας Κυθραιώτης- Πέτρος Πασιαρδής Τμήμα Επιστημών της Αγωγής Πανεπιστήμιο Κύπρου Συνέδριο Παιδαγωγικής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Διάκριση Μαθηματικών Οικονομικές συναρτήσεις Ορισμοί Μαθηματικά στα οικονομικά φαινόμενα Βελτιστοποίηση κερδών Μέτρηση χρησιμότητας Οριακά μεγέθη Ελαστικότητα Πολλαπλασιαστής

Διαβάστε περισσότερα

I.C.B.S. METAΠTYXIAKO TMHMA ΠΡΟΓΡΑΜΜΑ: DMS ΜΑΘΗΜΑ: ΜΑΝΑΤΖΜΕΝΤ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ ΑΤΟΜΙΚΗ ΕΡΓΑΣΙΑ. ΜΕΡΟΣ Α (70% του βαθµού)

I.C.B.S. METAΠTYXIAKO TMHMA ΠΡΟΓΡΑΜΜΑ: DMS ΜΑΘΗΜΑ: ΜΑΝΑΤΖΜΕΝΤ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ ΑΤΟΜΙΚΗ ΕΡΓΑΣΙΑ. ΜΕΡΟΣ Α (70% του βαθµού) I.C.B.S. METAΠTYXIAKO TMHMA ΠΡΟΓΡΑΜΜΑ: DMS ΜΑΘΗΜΑ: ΜΑΝΑΤΖΜΕΝΤ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ ΑΤΟΜΙΚΗ ΕΡΓΑΣΙΑ ΜΕΡΟΣ Α (70% του βαθµού) Ετοιµάστε µια αναφορά προς τη διοίκηση, µε µέγιστο αριθµό λέξεων 3000 (+/- %), χωρίς

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ Πειραιάς, 2/10/2014 ΑΝΑΚΟΙΝΩΣΗ ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Η κατάταξη των υποψηφίων στο Τμήμα για το ακαδημαϊκό έτος 2014-15, θα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ. Θεωρία και Πολιτική

ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ. Θεωρία και Πολιτική ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ Θεωρία και Πολιτική Παντελής Καλαϊτζιδάκης Σαράντης Καλυβίτης ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΚΕΦΑΛΑΙΟ 1 Εισαγωγή στην οικονομική μεγέθυνση Ορισμός της οικονομικής μεγέθυνσης 15 Μια σύντομη

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

Μοντέλα. Μαθηματικά. Άγγελος Μάρκος. Λέκτορας ΠΤΔΕ

Μοντέλα. Μαθηματικά. Άγγελος Μάρκος. Λέκτορας ΠΤΔΕ Μαθηματικά Μοντέλα Άγγελος Μάρκος Λέκτορας ΠΤΔΕ Ορισμός Μαθηματικό μοντέλο είναι η μαθηματική περιγραφή ενός φαινομένου. Τα ονομαζόμενα εφαρμοσμένα μαθηματικά έχουν ως άμεσο στόχο την αναζήτηση μαθηματικών

Διαβάστε περισσότερα

Πέτρος Γαλάνης, MPH, PhD Εργαστήριο Οργάνωσης και Αξιολόγησης Υπηρεσιών Υγείας Τμήμα Νοσηλευτικής, Πανεπιστήμιο Αθηνών

Πέτρος Γαλάνης, MPH, PhD Εργαστήριο Οργάνωσης και Αξιολόγησης Υπηρεσιών Υγείας Τμήμα Νοσηλευτικής, Πανεπιστήμιο Αθηνών Πέτρος Γαλάνης, MPH, PhD Εργαστήριο Οργάνωσης και Αξιολόγησης Υπηρεσιών Υγείας Τμήμα Νοσηλευτικής, Πανεπιστήμιο Αθηνών Σχέση μεταξύ εμβολίων και αυτισμού Θέση ύπνου των βρεφών και συχνότητα εμφάνισης του

Διαβάστε περισσότερα

Ερευνητική διαδικασία και συγγραφή διατριβής: Μεθοδολογικές παρατηρήσεις ρ. Ηλίας Μαυροειδής Σ.Ε.Π., Ελληνικό Ανοικτό Πανεπιστήμιο Τα στάδια της ερευνητικής διαδικασίας Τα βασικά στάδια για την εκπόνηση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 1 H διαπλοκή θεωρίας, μεθόδων και δεδομένων. 2 Θεωρητικές έννοιες, μεταβλητές και μέτρηση

ΠΕΡΙΕΧΟΜΕΝΑ. 1 H διαπλοκή θεωρίας, μεθόδων και δεδομένων. 2 Θεωρητικές έννοιες, μεταβλητές και μέτρηση ΠPOΛOΓOΣ... 15 1 H διαπλοκή θεωρίας, μεθόδων και δεδομένων Eισαγωγή... 19 Αξιολογικές κρίσεις και αντικειμενικότητα... 20 Η ιδιαιτερότητα των κοινωνικών φαινομένων... 30 H σχέση θεωρίας και έρευνας...

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα Μαθηματικών

Αναλυτικό Πρόγραμμα Μαθηματικών Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,

Διαβάστε περισσότερα

Σχεδιασμός και Διεξαγωγή Πειραμάτων

Σχεδιασμός και Διεξαγωγή Πειραμάτων Σχεδιασμός και Διεξαγωγή Πειραμάτων Πρώτο στάδιο: λειτουργικοί ορισμοί της ανεξάρτητης και της εξαρτημένης μεταβλητής Επιλογή της ανεξάρτητης μεταβλητής Επιλέγουμε μια ανεξάρτητη μεταβλητή (ΑΜ), την οποία

Διαβάστε περισσότερα

Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας

Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας Dr. Anthony Montgomery Επίκουρος Καθηγητής Εκπαιδευτικής & Κοινωνικής Πολιτικής antmont@uom.gr Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας Αυτό το μάθημα

Διαβάστε περισσότερα

1. Ο όρος «μακροοικονομική θεωρία» είναι ταυτόσημος με τον όρο «θεωρία των τιμών».

1. Ο όρος «μακροοικονομική θεωρία» είναι ταυτόσημος με τον όρο «θεωρία των τιμών». ΑΘ. ΧΑΡΙΤΩΝΙΔΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΛ 1 ΚΕΦΑΛΑΙΟ 7Ο : ΑΚΑΘΑΡΙΣΤΟ ΕΓΧΩΡΙΟ ΠΡΟΪΟΝ 7.1. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ Για τις παρακάτω προτάσεις, να γράψετε στην κόλλα σας τον αριθμό της καθεμιάς και

Διαβάστε περισσότερα

12/11/16. Τι είναι «ερευνητικό πρόβλημα» 1/2. Τι είναι «ερευνητικό πρόβλημα» 2/2

12/11/16. Τι είναι «ερευνητικό πρόβλημα» 1/2. Τι είναι «ερευνητικό πρόβλημα» 2/2 Τι είναι «ερευνητικό πρόβλημα» 1/2... είναι ένα εκπαιδευτικό θέμα ή ζήτημα που ένας ερευνητής παρουσιάζει και αιτιολογεί σε μία έρευνητική μελέτη θέμα πρόβλημα σκοπός - ερωτήματα Τι είναι «ερευνητικό πρόβλημα»

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία

ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία N. Μισυρλής (e-mail: nmis@di.uoa.gr) Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Parallel Scientific Computing Laboratory (PSCL)

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Υ ΡΟΛΟΓΙΚΑ ΥΠΟΛΟΓΙΣΤΙΚΑ ΜΟΝΤΕΛΑ

Υ ΡΟΛΟΓΙΚΑ ΥΠΟΛΟΓΙΣΤΙΚΑ ΜΟΝΤΕΛΑ Υ ΡΟΛΟΓΙΚΑ ΥΠΟΛΟΓΙΣΤΙΚΑ ΜΟΝΤΕΛΑ 1 1. Υδρολογική ανάλυση Η ποσότητα και η ποιότητα υδρολογικών δεδοµένων που διατίθενται για επεξεργασία καθορίζει τις δυνατότητες και τη διαδικασία που θα ακολουθηθεί, ώστε

Διαβάστε περισσότερα

Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών

Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ «ΧΡΗΣΗ ΛΟΓΙΣΜΙΚΩΝ (SPSS, EXCEL) ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΚΑΙ ΔΙΑΣΦΑΛΙΣΗ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ» To Κέντρο Συνεχιζόμενης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΟΙΚ397 Ερευνητική Μεθοδολογία στα Εφαρμοσμένα Οικονομικά Ι ΟΙΚ497 Ερευνητική Μεθοδολογία στα Εφαρμοσμένα Οικονομικά IΙ Ακαδημαϊκό έτος 2015-16 Στο πλαίσιο των μαθημάτων

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΣΥΝΕΧΙΖΟΜΕΝΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΕΠΙΜΟΡΦΩΣΗΣ

ΚΕΝΤΡΟ ΣΥΝΕΧΙΖΟΜΕΝΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΕΠΙΜΟΡΦΩΣΗΣ ΚΕΝΤΡΟ ΣΥΝΕΧΙΖΟΜΕΝΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΕΠΙΜΟΡΦΩΣΗΣ ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ «ΧΡΗΣΗ ΛΟΓΙΣΜΙΚΩΝ (SPSS, EXCEL) ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΚΑΙ ΔΙΑΣΦΑΛΙΣΗ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ (ΚΩΔ: SPSS)» Η ΚΥΚΛΟΣ To Κέντρο Συνεχιζόμενης

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defned. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Γενικής Υποδομής Υποχρεωτικό. Δεν υφίστανται προϋποθέσεις. Ελληνική

Γενικής Υποδομής Υποχρεωτικό. Δεν υφίστανται προϋποθέσεις. Ελληνική ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ GD0350 ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Κοινωνιολογία ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ σε περίπτωση που οι πιστωτικές

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 7: Συγγραφή μιας εργασίας

Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 7: Συγγραφή μιας εργασίας Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 7: Πόταρη Δέσποινα, Σακονίδης Χαράλαμπος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Έλεγχος του περιεχομένου της έρευνας (1) Είναι σημαντικά

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

Αλεβίζου Μ. Παρασκευή

Αλεβίζου Μ. Παρασκευή Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τομέας Μεταφορών και Συγκοινωνιακής Υποδομής ΚΡΙΣΙΜΟΙ ΠΑΡΑΓΟΝΤΕΣ ΤΩΝ ΑΤΥΧΗΜΑΤΩΝ ΜΟΤΟΣΙΚΛΕΤΙΣΤΩΝ ΣΤΗΝ ΕΛΛΑΔΑ Αλεβίζου Μ. Παρασκευή Επιβλέπων: Γιώργος

Διαβάστε περισσότερα

Μαθήματα Διατμηματικού Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσε

Μαθήματα Διατμηματικού Π.Μ.Σ. Μαθηματικά των Υπολογιστών και των Αποφάσε Διατμηματικού Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσε - «Μαθηματικές Θεμελιώσεις της Επιστήμης των Υπολογιστών» - «Στατιστική, Επιχειρησιακή Έρευνα» - «Θεωρία Αριθμητικών Υπολογισμών» Μεταπτυχιακά

Διαβάστε περισσότερα

ΜΕ - 9900 ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ

ΜΕ - 9900 ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΜΕ9900 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Έρευνα και Συγγραφή Λέκτορας Διάλεξη

Διαβάστε περισσότερα