Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης."

Transcript

1 Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m / s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε ότι η χρονική διάρκεια της διάτρησης είναι Δt = 0,1 s και ότι το βέλος εξέρχεται από μήλο με ταχύτητα, μέτρου υ 2 = 2 m / s, να υπολογίσετε : Δ 1. το μέτρο της ορμής του μήλου ακριβώς μετά την έξοδο του βέλους από αυτό, Δ 2. τη μεταβολή της ορμής του βέλους εξαιτίας της διάτρησης, Δ 3. τη μέση δύναμη που ασκείται από το βέλος στο μήλο κατά τη χρονική διάρκεια της διάτρησης καθώς και τη μέση δύναμη που ασκείται από το μήλο στο βέλος στην ίδια χρονική διάρκεια, Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης. Για την επίλυση του προβλήματος θεωρήστε το βέλος αλλά και το μήλο ως υλικά σημεία. Λύση Δ 1. Αρχή διατήρησης της ορμής: p oλ.αρχ = p oλ.τελ m υ 1 = m υ 2 + Μ υ Μ υ = m υ 1 - m υ 2 υ = m (υ 1 - υ 2 ) / Μ υ = 0,04 (10 2) / 0,2 υ = 0,32 / 0,2 υ = 1,6 m / s. p M = M υ = 0,2 1,6 = 0,32 kg m / s. 1

2 Δ 2. Δp m = p τελ,m p αρχ,m = m υ 2 - m υ 1 Δp m = m (υ 2 - υ 1 ) Δp m = 0,04 (2 10) = 0,32 kg m / s. Δ 3. ΣF m = Δp m / Δt ΣF m = 0,32 / 0,1 = 3,2 N ΣF M = Δp M / Δt ΣF M = (p M - 0) / 0,1 = 0,32 / 0,1 = 3,2 N. Δ 4. H ενέργεια διατηρείται: Κ αρχ = Κ τελ + Q Q = Κ αρχ - Κ τελ Q = ½ m υ 1 ² (½ m υ 2 ² + ½ M υ ²) Q = ½ 0,04 10² (½ 0,04 2² + ½ 0,2 1,6²) Q = 2 (0,08 + 0,256) = 2 0,336 = 1,664 joule. Ζητείται το ποσοστό: (Q / Κ αρχ ) 100% = (1,664 / 2) 100% = 83,2 %. Μια βόμβα μάζας m = 3 kg βρίσκεται στιγμιαία ακίνητη σε ύψος H = 500 m από την επιφάνεια της Γης. Τη στιγμή εκείνη εκρήγνυται σε δύο κομμάτια. Το πρώτο κομμάτι έχει μάζα m 1 = 2 kg και εκτοξεύεται οριζόντια με αρχική ταχύτητα υ 1 = 40 m / s. Δ 1. Να υπολογίσετε με πόση ταχύτητα εκτοξεύεται το δεύτερο κομμάτι. Δ 2. Να υπολογίσετε την ταχύτητα, σε μέτρο και κατεύθυνση, του δεύτερου κομματιού, 6 s μετά από την έκρηξη. Δ 3. Ποια χρονική στιγμή φτάνει το κάθε κομμάτι στο έδαφος; Σχολιάστε το αποτέλεσμα. Δ 4. Εάν το πρώτο κομμάτι φτάνει στο έδαφος στο σημείο Α και το άλλο στο σημείο Β να υπολογίσετε την απόσταση ΑΒ. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m / s 2. Η αντίσταση του αέρα θεωρείται αμελητέα. 2

3 ΛΥΣΗ Δ 1. Βλέπουμε αριστερά στο σχήμα την βόμβα μάζας m σε ύψος H. Δεξιά η βόμβα έχει μόλις εκραγεί στα m 1 και m 2 τμήματα που την αποτελούν. Ισχύει m = m 1 + m 2 m 2 = m - m 1 m 2 = 3 2 = 1 kg. Iσχύει η αρχή διατήρησης της ορμής: p ολ,,αρχ = p ολ,τελ 0 = m 1 υ 1 - m 2 υ 2 υ 2 = m 1 υ 1 / m 2 υ 2 = 2 40 / 1 = 80 m / s. Δ 2. Tα δύο τμήματα εκτελούν οριζόντια βολή. Το δεύτερο κομμάτι: υ 2,x = υ 2 = 80 m / s και υ 2,y = g t = 10 6 = 60 m / s. Η συνολική ταχύτητα υ 2 ² = υ 2,x 2 + υ 2,y 2 υ 2 ² = 80² + 60² υ 2 = 100 m / s. H διεύθυνση εφ θ = υ 2,y / υ 2,x εφ θ = 60 / 80 = 3 / 4. Δ 3. Η = ½ g t² t² = 2H / g t² = / 10 t² = 100 t = 10 s. Και οι δύο μάζες θα φτάσουν στο έδαφος ταυτόχρονα, οι μάζα των σωμάτων δεν έχει σημασία εφόσον εκτελούν ελεύθερη πτώση στον y άξονα. Δ 4. Το βεληνεκές του m 1 είναι Δx 1 = υ 1 t Δx 1 = = 400 m. Το βεληνεκές του m 2 είναι Δx 2 = υ 2 t Δx 1 = = 800 m. H AB απόσταση είναι : ΑΒ = Δx 1 + Δx 2 = = 1200 m. 3

4 Ανεμογεννήτρια οριζοντίου άξονα περιστροφής έχει τα εξής χαρακτηριστικά: Ύψος πύργου Η = 18 m (δηλαδή απόσταση από το έδαφος μέχρι το κέντρο της κυκλικής τροχιάς), ακτίνα έλικας R = 2 m, ενώ πραγματοποιεί 60 περιστροφές ανά λεπτό. Δ 1. Να υπολογίσετε τη γωνιακή ταχύτητα περιστροφής της έλικας. Στην άκρη της έλικας έχει κολλήσει ένα (σημειακό) κομμάτι λάσπης. Δ 2. Να υπολογίσετε τη γραμμική ταχύτητα και την κεντρομόλο επιτάχυνση του κομματιού της λάσπης. Τη στιγμή που η λάσπη περνάει από το ανώτερο σημείο της τροχιάς της ξεκολλάει κι εγκαταλείπει την έλικα. Δ 3. Τι είδους κίνηση θα εκτελέσει; Δ 4. Μετά από πόσο χρόνο θα φτάσει στο έδαφος και με τι ταχύτητα; 4

5 Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g =10 m/s 2. Θεωρήστε π 2 ~ 10. Επίσης θεωρήστε αμελητέα την αντίσταση του αέρα. Λύση Δ 1. Δίνεται η συχνότητα: f = N / t f = 60 / 1 min = 60 / 60 s = 1 Ηz. Η γωνιακή ταχύτητα ω = 2π f = 2 3,14 1 = 6,28 rad / s ή 2π rad / s. Δ 2. H γραμμική ταχύτητα του άκρου: υ = ω R υ = 2π 2 = 4π m / s. H κεντρομόλoς επιτάχυνση είναι α κ = υ 2 / R α κ = (4π)² / 2 α κ = 80 m / s². Δ 3. Θα εκτελέσει οριζόντια βολή: με υ x = υ = 4π m / s. Δ 4. Το ύψος που βρίσκεται το σώμα στο πάνω μέρος της κυκλικής του τροχιάς είναι Η = Η + R = = 20 m. Εκτελεί και ελεύθερη πτώση, άρα Η = ½ g t² t² = 2 H / g t² = 2 20 / 10 t² = 4 t = 2 s. Με ταχύτητα στον y άξονα: υ y = g t = 10 2 = 20 m / s. H συνολική ταχύτητα θα είναι: υ² = υ x ² + υ y ² υ² = (4π)² + 20² υ² = 16π² υ² = 560 υ = 23,7 m / s. 5

6 Τη χρονική στιγμή t o = 0 σώμα μάζας m 1 = 0,4 kg βάλλεται οριζόντια με ταχύτητα μέτρου υ 1 = 30 m/s από ύψος 160 m από το έδαφος. Ταυτόχρονα από το έδαφος βάλλεται κατακόρυφα προς τα επάνω ένα δεύτερο σώμα μάζας m 2 = 0,1 kg με ταχύτητα μέτρου m 2 = 40 m/s. Όταν το m 2 φτάσει στο μέγιστο ύψος της τροχιάς του, τα δύο σώματα συγκρούονται πλαστικά. Να υπολογίσετε: Δ 1. To μέγιστο ύψος που φτάνει το m 2 και τη χρονική στιγμή t 1 της κρούσης. Δ 2. Την ταχύτητα του σώματος m 1 (σε μέτρο και κατεύθυνση, υπολογίζοντας τη γωνία που σχηματίζει το διάνυσμα της ταχύτητας του σώματος m l με τον οριζόντιο άξονα) τη χρονική στιγμή t 1. Δ 3. Να αποδείξετε ότι τη χρονική στιγμή που το σώμα μάζας m 2 φτάνει στο μέγιστο ύψος του, το σώμα m 1 βρίσκεται επίσης στο ίδιο ύψος. Δ 4. Την ταχύτητα του συσσωματώματος (σε μέτρο και κατεύθυνση, υπολογίζοντας τη γωνία που σχηματίζει το διάνυσμα της ταχύτητας του συσσωματώματος με τον οριζόντιο άξονα) αμέσως μετά την κρούση. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της γης g = 10 m/s 2. Η αντίσταση του αέρα θεωρείται αμελητέα. ΛΥΣΗ Δ 1. To m 2 εκτελεί κατακόρυφη βολή και φτάνει σε μέγιστο ύψος h όπου η ταχύτητα του μηδενίζεται: υ y = υ 2 g t 1 0 = υ 2 g t 1 υ 2 = g t 1 t 1 = υ 2 / g t 1 = 40 / 10 t 1 = 4 s. To μέγιστο ύψος είναι: h = υ 2 t 1 - ½ g t 1 ² h = ½ 10 4² h = = 80 m. 6

7 Δ 2. Την χρονική στιγμή t 1 το σώμα m 1 έχει ταχύτητα υ 1,y = g t 1 και συνολική ταχύτητα: υ 1 ² = υ 1 ² + υ 1,y ² υ 1 ² = 30² + (10 4)² υ 1 ² = υ 1 ² = 2500 υ 1 = 50 m / s. H διεύθυνση της ταχύτητας είναι: εφ θ = υ 1,y / υ 1 εφ θ = 40 / 30 = 4 / 3. Δ 3. Το m 1 την χρονική στιγμή t 1 βρίσκεται σε ύψος y 1 = ½ g t 1 ² = ½ 10 4² = 80 m, άρα βρίσκεται σε ύψος h 1 = H - y 1 h 1 = = 80 m στο ίδιο ύψος με το m 2. Δ 4. Ισχύει η αρχή διατήρησης της ορμής: p oλ,αρχ = p ολ,τελ m 1 υ 1 = (m 1 + m 2 ) υ υ = m 1 υ 1 / (m 1 + m 2 ) υ = 0,4 50 / (0,4 + 0,1) υ = 20 / 0,5 υ = 40 m / s. H διεύθυνση της ταχύτητας του συσσωματώματος είναι η ίδια με την διεύθυνση της m 1 λίγο πριν την κρούση, άρα εφ θ = 4 / 3. Ένα βλήμα μάζας m = 0,1 kg κινείται με οριζόντια ταχύτητα μέτρου υ = 100 m / s και προσκρούει σε ακίνητο στόχο μάζας M = 4,9 kg οπότε και δημιουργείται συσσωμάτωμα. Να βρείτε: Δ 1. Την ταχύτητα του συσσωματώματος. Δ 2. Τη θερμότητα η οποία ελευθερώθηκε λόγω της σύγκρουσης. Δ 3. Το μέτρο της μεταβολής της ορμής για κάθε σώμα ξεχωριστά κατά τη διάρκεια της σύγκρουσης. Δ 4. Το βλήμα διανύει μέσα στο στόχο απόσταση 1 m. Να βρεθεί η μέση δύναμη που ασκείται από το στόχο στο βλήμα κατά της διάρκεια της ενσωμάτωσής του, αν υποτεθεί ότι το βλήμα και ο στόχος εκτελούν ευθύγραμμες ομαλά μεταβαλλόμενες κινήσεις κατά τη χρονική διάρκεια της σύγκρουσης. ΛΥΣΗ Δ 1. Η αρχή διατήρησης της ορμής: p ολ,αρχ = p ολ,τελ m υ =(m + M) υ υ = m υ / (m + M) υ = 0,1 100 / (0,1 + 4,9) υ = 2 m / s. Δ 2. H θερμότητα που απελευθερώθηκε λόγω της κρούσης υπολογίζεται από την αρχή διατήρησης της ενέργειας: K αρχ = Q + K τελ Q = K αρχ - K τελ Q = ½ m υ² - ½ (Μ + m) υ ² Q = ½ 0,1 100² - ½ 5 2² Q = = 490 joule. Δ 3. Τo μέτρο της μεταβολής της ορμής για τα δύο σώματα είναι: Δp m = p τελ,m - p αρχ,m Δp m = m υ m υ Δp m = m (υ υ) Δp m = 0,1 (2 100) Δp m = 9,8 kg m / s. Δp M = p τελ,m - p αρχ,m Δp M = M υ 0 Δp M = M υ Δp M = 4,9 2 = 9,8 kg m / s. 7

8 Δ 4.Τo βλήμα εκτελεί ευθύγραμμη ομαλά επιβραδυνόμενη κίνηση διανύοντας απόσταση x + d. υ = υ α t t = (υ υ ) / α και Δx = x + d = υ t ½ α t² συνδιάζουμε τις σχέσεις (αντικαθιστούμε το t στο Δx) και τελικά φτάνουμε στη σχέση x + d = (υ² υ ²) / 2 α (1) και ισχύει F = m α (2) Τo σώμα Μ εκτελεί ευθύγραμμη ομαλά επιταχυνόμενη κίνηση διανύοντας απόσταση d. υ = α t και d = ½ α t² => d = υ ² / 2 α (3) και ισχύει F = M α (4). Aπό τις (2) και (4) => α = (m / Μ) α (5) Aπό τις (1) (3) και (5) βρίσκουμε x = (υ² υ ²) / 2 α - υ ² / 2 α => x = (m (υ² υ ²) υ ² M) / (2 α m) => α = (m (υ² υ ²)- υ ² M) / (2 x m). Eπομένως η (2) δίνει F = m α = (m (υ² υ ²) υ ² M) / (2 x) = 499Ν. Β λύση και με ΘΜΚΕ για το βλήμα m και για το σώμα Μ Βλήμα: F (d+x) = ½ m υ ² ½ m υ² Στόχος: + F d = ½ Μ υ ² 0 Με πρόσθεση κατά μέλη: F x = ½ (Μ+m) υ ² ½ m υ² F = 499 N. Σώμα μάζας m 1 = 2 kg αφήνεται από κάποιο ύψος και μετά από 3 s χτυπάει με ταχύτητα μέτρου υ 1 στο έδαφος. Το σώμα αναπηδά με ταχύτητα μέτρου υ 2 = 20 m / s. Καθώς ανεβαίνει και σε ύψος 15 m από το έδαφος, συγκρούεται πλαστικά με άλλο σώμα μάζας m 2 = 3 kg που συγκρατείται ακίνητο στο ύψος αυτό, και τη στιγμή της κρούσης απελευθερώνεται. Να υπολογίσετε: 8

9 Δ 1. την ταχύτητα υ 1 καθώς και το αρχικό ύψος από το οποίο αφέθηκε το σώμα m 1, Δ 2. τη μέση συνισταμένη δύναμη που δέχτηκε το σώμα μάζας m 1 κατά την κρούση του με το έδαφος, εάν ο χρόνος επαφής με αυτό ήταν 0,1 s, Δ 3. την ταχύτητα του συσσωματώματος αμέσως μετά την κρούση, Δ 4. το μέγιστο ύψος από το έδαφος που θα φθάσει το συσσωμάτωμα, Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της γης g = 10 m / s 2. Η αντίσταση του αέρα θεωρείται αμελητέα. ΛΥΣΗ Δ 1. Κατά την ελεύθερη πτώση του σώματος m 1 από ύψος h = ½ g t 1 ² h = ½ 10 3² h = 45 m, η ταχύτητα υ 1 = g t 1 υ 1 = 10 3 υ 1 = 30 m / s. Άλλος δρόμος για την λύση είναι ο ενεργειακός: με την αρχή διατήρησης μηχανικής ενέργειας ή το θεώρημα μεταβολής κινητικής ενέργειας που εφαρμόσαμε στο Δ3. Δ 2. H συνισταμένη δύναμη ΣF = Δp 1 / Δt ΣF = (m 1 υ 2 -(- m 1 υ 1 )) / Δt ΣF = ( ) / 0,1 ΣF = 1000 N. Δ 3. Θεώρημα μεταβολής της κινητικής ενέργειας: Κ τελ Κ αρχ = W ½ m 1 υ 2 2 ½ m 1 υ 2 2 = m 1 g y υ 2 2 = υ g y υ 2 2 = 20² υ 2 2 = υ 2 2 = 100 υ 2 = 10 m / s. Αρχή διατήρησης της ορμής: p oλ,αρχ = p ολ,τελ m 1 υ = (m 1 + m 2 ) υ υ = m 1 υ 2 / (m 1 + m 2 ) υ = 2 10 / 5 υ = 4 m / s. Δ 4. Το συσσωμάτωμα θα φτάσει στο μέγιστο ύψος άρα υ = 0, το θεώρημα μεταβολής της κινητικής ενέργειας είναι: Κ τελ Κ αρχ = W ½ (m 1 + m 2 ) υ 2 ½ (m 1 + m 2 ) υ 2 = 9

10 (m 1 + m 2 ) g Η 0 - ½ (m 1 + m 2 ) υ 2 = - (m 1 + m 2 ) g Η Η = υ 2 / 2 g Η = 16 / 20 Η = 0,8 m, το συνολικό ύψος που θα ανέβει το συσσωμάτωμα είναι: Η = Η + y H = 0, = 15,8 m. Ένας ξύλινος στόχος μάζας M = 5 kg βρίσκεται ακίνητος σε λείο οριζόντιο δάπεδο. Βλήμα μάζας m = 0,1 kg λίγο πριν την κρούση με το στόχο, έχει οριζόντια προς τα δεξιά ταχύτητα με μέτρο 200 m / s. Το βλήμα διαπερνά το στόχο και εξέρχεται από αυτόν με οριζόντια ταχύτητα μέτρου 100 m / s, ομόρροπη της αρχικής του ταχύτητας. Δ 1. Να βρεθεί η ταχύτητα την οποία αποκτά ο στόχος αμέσως μετά τη σύγκρουση. Δ 2. Να βρεθεί το ποσό της κινητικής ενέργειας που μετατράπηκε σε θερμότητα εξ αιτίας της συγκρούσεως. Υποθέτουμε ότι οι δυνάμεις που αναπτύσσονται μεταξύ του στόχου και του βλήματος, όταν το βλήμα διαπερνά το στόχο, είναι χρονικά σταθερές. Δ 3. Αν ο χρόνος που χρειάστηκε το βλήμα να διαπεράσει το στόχο είναι Δt = 0,01 s, να βρείτε το μέτρο της δύναμης που ασκείται από το βλήμα στο στόχο. Δ 4. Ο στόχος βρίσκεται στην άκρη ενός τραπεζιού, οπότε μετά την κρούση εκτελεί οριζόντια βολή. Όταν ο στόχος πέφτει στο δάπεδο, τότε το μέτρο της ταχύτητάς του είναι διπλάσιο από το μέτρο της ταχύτητας που έχει αμέσως μετά τη σύγκρουσή του με το βλήμα. Να βρεθεί το ύψος του τραπεζιού. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της γης g = 10 m / s 2. ΛΥΣΗ : Δ 1. Μια περίπτωση ανελαστικής κρούσης, το βλήμα m περνάει μέσα από το σώμα M. Στο πρώτο και δεύτερο σχήμα βλέπουμε τα m και M πριν και μετά την κρούση. 10

11 Αρχή διατήρησης της ορμής: p ολ,αρχ = p ολ,τελ m υ 1 = M υ 2 + m υ 1 M υ 2 = m υ 1 - m υ 1 υ 2 = (m υ 1 - m υ 1 ) / M υ 2 = (0, ,1 100) / 5 υ 2 = (20 10) / 5 υ 2 = 2 m / s. Δ 2. Αρχή διατήρησης της ενέργειας: Κ αρχ = Q + Κ τελ Q = Κ αρχ - Κ τελ Q = ½ m υ 1 ² (½ m υ 1 ² + ½ M υ 2 ²) Q = ½ 0,1 200² (½ 0,1 100² + ½ 5 2²) Q = 2000 ( ) Q = 1490 joule. Δ 3. Ο 2ος γενικευμένος νόμος του Newton: ΣF = Δp / Δt ΣF = (M υ 2-0) / Δt ΣF = 5 2 / 0,01 ΣF = 1000 N. Δ 4. Το σώμα Μ εκτελεί οριζόντια βολή. Mας δίνεται υ 2 = 2 υ 2 = 4 m / s. Από το θεώρημα μεταβολής της κινητικής ενέργειας: Κ τελ - Κ αρχ = W ½ M υ 2 ² - ½ M υ 2 ² = M g h h = (υ 2 ² - υ 2 ²) / 2 g h = (4² 2²) / 2 10 h = (16 4) / 20 h = 12 / 20 = 0,6 m. Δύο σώματα με μάζες m 1 = 1 kg και m 2 = 2 kg κινούνται το ένα προς το άλλο, σε λείο οριζόντιο επίπεδο με ταχύτητες μέτρου 4 m / s και 3 m / s και σε αντίθετες κατευθύνσεις. Τα σώματα κουβαλούν μικροποσότητες εκρηκτικών, τα οποία ενδέχεται να εκραγούν κατά τη μεταξύ τους σύγκρουση. Παρατηρούμε ότι μετά τη σύγκρουσή τους η ταχύτητα του σώματος 1 έχει μέτρο 8 m / s και κατεύθυνση αντίθετη από την αρχική κατεύθυνση κίνησης του σώματος 1. Να βρείτε: Δ 1. Την ταχύτητα του σώματος 2 μετά τη σύγκρουση. Δ 2. Τη μεταβολή της ορμής κατά μέτρο για κάθε σώμα ξεχωριστά. Δ 3. Τη μέση δύναμη που ασκεί το κάθε σώμα στο άλλο, αν η σύγκρουση διαρκεί Δt = 0,01 s. Δ 4. Κατά τη σύγκρουση εξερράγη κάποια ποσότητα εκρηκτικού ή απλώς παράχθηκε κάποιο ποσό θερμικής ενέργειας λόγω της σύγκρουσης; Να προσδιορίσετε το ποσό της θερμότητας που παράχθηκε λόγω της σύγκρουσης ή της ελάχιστης ενέργειας που ελευθερώθηκε από το εκρηκτικό, με βάση την απάντησή σας στο προηγούμενο ερώτημα. ΛΥΣΗ : Δ 1. Το σχήμα της άσκησης: 11

12 Ισχύει η αρχή διατήρησης της ορμής: p ολ,αρχ = p ολ,τελ m 1 υ 1 - m 2 υ 2 = m 2 υ 2 - m 1 υ 1 m 2 υ 2 = m 1 υ 1 - m 2 υ 2 + m 1 υ 1 υ 2 = (m 1 (υ 1 + υ 1 ) m 2 υ 2 ) / m 2 υ 2 = (1 (8 + 4) 2 3) / 2 υ 2 = 3 m / s. Δ 2. H μεταβολή της ορμής για το m 1 : Δp 1 = p 1 - p 1 Δp 1 = m 1 υ 1 - m 1 υ 1 Δp 1 = m 1 ( υ 1 - υ 1 ) Δp 1 = 1 (- 8 4) = 12 kg m / s. H μεταβολή της ορμής για το m 2 : Δp 2 = p 2 - p 2 Δp 2 = m 2 υ 2 (- m 2 υ 2 ) Δp 2 = m 2 ( υ 2 + υ 2 ) Δp 2 = 2 (3 + 3 ) = - 12 kg m / s. Λογικό αποτέλεσμα γιατί ισχύει Δp 1 = - Δp 2. Δ 3. O 2oς γενικευμένος νόμος του Newton : ΣF 1 = Δp 1 / Δt ΣF 1 = 12 / 0,01 = 1200 N. O 2oς γενικευμένος νόμος του Newton : ΣF 2 = Δp 2 / Δt ΣF 2 = 12 / 0,01 = 1200 Ν. Λογικό γιατί ισχύει ΣF 1 = - ΣF 2 (δυνάμεις δράσης αντίδρασης). Δ 4. Ισχύει η αρχή διατήρησης της ενέργειας: K αρχ = Q + K τελ Q = K αρχ - K τελ Q = (½ m 1 υ 1 ² + ½ m 2 υ 2 ²) - (½ m 1 υ 1 ² + ½ m 2 υ 2 ²) Q = (½ 1 4² + ½ 2 3²) (½ 1 8² + ½ 2 3²) Q = (8 + 9) (32 + 9) Q = = 24 joule. Σώμα βρίσκεται στην οριζόντια ταράτσα ουρανοξύστη και εκτελεί ομαλή κυκλική κίνηση σε κύκλο ακτίνας r = 5 / π m με περίοδο T = ½ s. Να βρείτε: Δ 1. Το μέτρο της γραμμικής ταχύτητας του σώματος. Κάποια χρονική στιγμή το σκοινί το οποίο κρατάει το σώμα στην κυκλική τροχιά κόβεται, με αποτέλεσμα αυτό να διαφύγει εκτελώντας οριζόντια βολή. Να βρείτε: Δ 2. Την ταχύτητα του σώματος κατά μέτρο και κατεύθυνση 2 s αφού εγκαταλείψει την οροφή της πολυκατοικίας. Δ 3. Την απόσταση από το σημείο που διέφυγε από την ταράτσα μέχρι το σημείο που βρίσκεται τη χρονική στιγμή που περιγράφεται στο ερώτημα Δ 2. Δ 4. Παρατηρούμε ότι το σώμα πέφτει στο οριζόντιο έδαφος με γωνία ως προς αυτό θ για την οποία ισχύει: εφθ = 2. Να βρείτε το πηλίκο της κατακόρυφης απόστασης του σημείου βολής από το έδαφος προς τη μέγιστη οριζόντια μετατόπιση (βεληνεκές) του σώματος. 12

13 Δίδεται η επιτάχυνση της βαρύτητας στη επιφάνειας της γης g =10 m / s², και ότι κάθε είδους τριβή όπως και η αντίσταση από τον αέρα θεωρούνται αμελητέες. ΛΥΣΗ Δ 1. Στο αριστερό σχήμα μια κάτοψη της ταράτσας, η γραμμική ταχύτητα υ = 2π r / T υ = 2π (5 / π) / (½) υ = 20 m / s. Δ 2. Τo σώμα εκτελεί οριζόντια βολή, όπως βλέπουμε στο δεξί σχήμα, ισχύει: υ x = υ = 20 m / s και υ y = g t υ y = 10 2 = 20 m / s. Η συνολική ταχύτητα υ ² = υ x ² + υ y ² υ ² = 20² + 20² υ ² = 2 20² υ = 20 2 m / s. H διεύθυνση εφθ = υ y / υ εφθ = 20 / 20 = 1 θ = 45 Δ 3. Το ύψος y είναι: y = ½ g t² y = ½ 10 2² = 20 m. επίσης διανύει x απόσταση στον οριζόντιο άξονα: υ = x / t x = υ t x = 20 2 = 40 m, άρα η απόσταση όπως βλέπουμε στο σχήμα είναι: d² = y² + x² d² = 20² + 40² d² = d² = 2000 d = 20 5 m. Δ 4. Η εφθ = υ y / υ υ y = υ εφθ = 20 2 = 40 m / s. υ y = g t t = υ y / g t = 40 / 10 = 4 s. Ύψος : H = ½ g t ² H = ½ 10 4² = 80 m. Βεληνεκές: S = υ t = 20 4 = 80 m. Άρα o ζητούμενος λόγος: Η / S = 1. 13

14 Ο καθηγητής της φυσικής μιας σχολής αξιωματικών του στρατού θέτει ένα πρόβλημα σχετικά με το πώς οι φοιτητές, αξιοποιώντας τις γνώσεις τους από το μάθημα, θα μπορούσαν να υπολογίσουν την ταχύτητα υ του βλήματος ενός πιστολιού. Ο καθηγητής υποδεικνύει στους φοιτητές την παρακάτω διαδικασία: Το βλήμα μάζας m εκτοξεύεται οριζόντια και σφηνώνεται σε ένα κομμάτι ξύλου, μάζας Μ, που ισορροπεί ελεύθερο στην κορυφή ενός στύλου ύψους h. Οι μάζες m και Μ μετρώνται με ζύγιση και το ύψος h μετράται με μετροταινία. Το συσσωμάτωμα αμέσως μετά την κρούση εκτελεί οριζόντια βολή και χτυπάει στο έδαφος σε οριζόντια απόσταση x από τη βάση του στύλου, αφήνοντας ένα σημάδι στο χώμα ώστε να είναι δυνατή η μέτρηση αυτής της απόστασης x. Οι φοιτητές έκαναν τη διαδικασία και τις μετρήσεις που τους υπέδειξε ο καθηγητής τους και βρήκαν τις τιμές m = 0,1 kg, M = 1,9 kg, h = 5 m και x = 10 m. Λαμβάνοντας υπόψη τις προηγούμενες τιμές των μεγεθών που μετρήθηκαν από τους φοιτητές, και θεωρώντας την αντίσταση του αέρα αμελητέα, να υπολογίσετε: Δ 1. Το χρονικό διάστημα που πέρασε από την στιγμή της κρούσης μέχρι το συσσωμάτωμα να αγγίξει το έδαφος. Δ 2. Το μέτρο της οριζόντιας ταχύτητας V την οποία απέκτησε το συσσωμάτωμα αμέσως μετά την κρούση. Δ 3. Το μέτρο της ταχύτητας υ του βλήματος πριν σφηνωθεί στο ξύλο. Δ 4. Την απώλεια της μηχανικής ενέργειας του συστήματος βλήμα ξύλο κατά την κρούση. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γής g = 10m/s 2. ΛΥΣΗ Δ 1. Το συσσωμάτωμα εκτελεί οριζόντια βολή: h = ½ g t² t² = 2 h / g t² = 2 5 / 10 t = 1 s. 14

15 Δ 2. Τo βεληνεκές S = x = υ t υ = x / t υ = 10 / 1 = 10 m / s. Δ 3. Η αρχή διατήρησης της ορμής: P oλ,αρχ = P oλ,τελ m υ = (m + M) υ υ = (m + M) υ / m υ = (0,1 + 1,9) 10 / 0,1 υ = 200 m / s. Δ 4. H απώλεια της μηχανικής ενέργειας Q, αρχή διατήρησης της ενέργειας: Κ αρχ = Κ τελ + Q Q = Κ αρχ - Κ τελ Q = ½ m υ² - ½ (Μ + m) υ ² Q = ½ 0,1 200² - ½ (1,9 + 0,1) 10² Q = Q = 1900 joule. Μία οβίδα μάζας 3 kg εκτοξεύεται από το σημείο Α του οριζόντιου εδάφους κατακόρυφα προς τα πάνω. Όταν φθάνει στο ανώτερο σημείο O της τροχιάς της, δηλαδή έχει στιγμιαία ταχύτητα μηδέν, σπάει ακαριαία, λόγω εσωτερικής έκρηξης, σε δύο κομμάτια με μάζες m 1 = 1 kg και m 2 = 2 kg. Το σημείο Ο βρίσκεται σε ύψος 20 m από το έδαφος. Το κομμάτι μάζας m 1 αποκτά αμέσως μετά την έκρηξη οριζόντια ταχύτητα μέτρου 10 m / s με φορά προς τα δεξιά ενός παρατηρητή. Τα κομμάτια m 1 και m 2 κινούνται και πέφτουν στο έδαφος στα σημεία Κ και Λ αντιστοίχως. Να υπολογίσετε: Δ 1. Το μέτρο και την κατεύθυνση της ταχύτητας που αποκτά το κομμάτι μάζας m 2 αμέσως μετά την έκρηξη. Δ 2. Το χρονικό διάστημα που κινείται κάθε κομμάτι από τη στιγμή της έκρηξης μέχρι να αγγίξει το έδαφος. Δ 3. Την απόσταση ΚΛ. Δ 4. Το μέτρο της ταχύτητας του κομματιού μάζας m 1 ακριβώς πριν ακουμπήσει στο σημείο Κ του εδάφους. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m / s 2, και ότι η αντίσταση του αέρα θεωρείται αμελητέα. ΛΥΣΗ Δ 1. Το σχήμα της άσκησης είναι: 15

16 Βλέπουμε στο αριστερό σχήμα το σώμα m που έχει φτάσει στο ανώτερο ύψος της τροχιάς του και έχει υ = 0. Η αρχή διατήρησης της ορμής: P oλ,αρχ = P oλ,τελ 0 = m 1 υ 1 - m 2 υ 2 m 1 υ 1 = m 2 υ 2 υ 2 = m 1 υ 1 / m 2 υ 2 = 1 10 / 2 υ 2 = 5 m / s. H m 2 θα κινηθεί προς τα αριστερά σε οριζόντια διεύθυνση. Δ 2. Το κάθε κομμάτι θα εκτελέσει οριζόντια βολή, άρα : Η = ½ g t² t² = 2 H / g t² = 2 20 / 10 t = 2 s. O χρόνος κίνησης είναι ο ίδιος και για τις δύο μάζες. Δ 3. Το βεληνεκές για τις δύο μάζες είναι: Δx 1 = υ 1 t Δx 1 = 10 2 = 20 m και Δx 2 = υ 2 t Δx 2 = 5 2 = 10 m. Από το σχήμα: (ΚΛ) = Δx 1 + Δx 2 (ΚΛ) = = 30 m / s. Δ 4. H ταχύτητα του m 1 είναι υ 1,x = υ 1 = 10 m / s και υ 1,y = g t = 10 2 = 20 m / s, στους δύο άξονες, άρα συνολικά: υ 1 ² = υ 1,x ² + υ 1,y ² υ 1 ² = 10² + 20² υ 1 ² = υ 1 ² = 500 υ 1 = 10 5 m / s. Μικρή σφαίρα μάζας 0,1 kg αφήνεται από ύψος h να πέσει ελεύθερα πάνω σε οριζόντιο δάπεδο. Η σφαίρα προσκρούει στο δάπεδο με ταχύτητα μέτρου υ 1 = 5 m / s και αναπηδά κατακόρυφα έχοντας αμέσως μόλις χάσει την επαφή της με το δάπεδο, ταχύτητα μέτρου υ 2 = 2 m / s. Η χρονική διάρκεια της επαφής της σφαίρας με το δάπεδο είναι 0,1 s. Να υπολογιστούν: Δ 1. Η μεταβολή της ορμής της σφαίρας (κατά μέτρο και κατεύθυνση) κατά την κρούση της με το δάπεδο. Δ 2. Η μέση τιμή της δύναμης που ασκήθηκε από το δάπεδο στη σφαίρα κατά την κρούση. Δ 3. Το ύψος h από το οποίο αφέθηκε η σφαίρα. Δ 4. Το % ποσοστό της αρχικής μηχανικής ενέργειας της σφαίρας που μεταφέρθηκε στο περιβάλλον κατά την κρούση. Δίνονται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m / s 2 και ότι η αντίσταση του αέρα θεωρείται αμελητέα. Θεωρήστε ως επίπεδο δυναμικής ενέργειας μηδέν, το επίπεδο του δαπέδου. ΛΥΣΗ 16

17 Δ 1. Η μεταβολή της ορμής της σφαίρας: Δp = p 1 - p 2 Δp = - m υ 1 - m υ 2 Δp = 0,1 (5 + 2) = 1 kg m / s². H διεύθυνση της Δp είναι κατακόρυφη και η φορά προς τα κάτω. Δ 2. O 2oς γενικευμένος νόμος του Newton: ΣF = Δp / Δt ΣF = 1 / 0,1 = 10 Ν. Η ΣF και Δp έχουν ίδια διεύθυνση και φορά. Η συνισταμένη δύναμη που ασκείται στο σώμα: ΣF = m g N N = m g - ΣF N = 0, N = 9 N. Το μείον απλά δηλώνει ότι η φορά της Ν είναι αντίθετη της θετικής φοράς (προς τα πάνω) όπως και συμβαίνει. Δ 3. Η σφαίρα εκτελεί ελεύθερη πτώση: με ταχύτητα υ 1 = g t t = υ 1 / g t = 5 / 10 t = ½ s. To ζητούμενο ύψος h = ½ g t² h = 5 / 4 = 1,25 m. Δ 4. H αρχή διατήρησης της ενέργειας: Κ αρχ = Κ τελ + Q Q = Κ αρχ - Κ τελ Q = ½ m υ 1 ² - ½ m υ 2 ² Q = ½ 0,1 5² - ½ 0,1 2² Q = 1,25 0,2 Q = 1,23 joule. To ζητούμενο ποσοστό: (Q / Κ αρχ ) 100% = (1,23 / 1,25) 100% = 98,4 %. Μικρή σφαίρα μάζας 0,1 kg αφήνεται από ύψος h να πέσει ελεύθερα πάνω σε οριζόντιο δάπεδο. Η σφαίρα προσκρούει στο δάπεδο με ταχύτητα μέτρου υ 1 = 5 m / s και αναπηδά κατακόρυφα έχοντας αμέσως μόλις χάσει την επαφή της με το δάπεδο, ταχύτητα μέτρου υ 2 = 2 m / s. Η χρονική διάρκεια της επαφής της σφαίρας με το δάπεδο είναι 0,1 s. Να υπολογιστούν: Δ 1. Η μεταβολή της ορμής της σφαίρας (κατά μέτρο και κατεύθυνση) κατά την κρούση της με το δάπεδο. Δ 2. Η μέση τιμή της δύναμης που ασκήθηκε από το δάπεδο στη σφαίρα κατά την κρούση. Δ 3. Το ύψος h από το οποίο αφέθηκε η σφαίρα. Δ 4. Το % ποσοστό της αρχικής μηχανικής ενέργειας της σφαίρας που μεταφέρθηκε στο περιβάλλον κατά την κρούση. 17

18 Δίνονται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m / s 2 και ότι η αντίσταση του αέρα θεωρείται αμελητέα. Θεωρήστε ως επίπεδο δυναμικής ενέργειας μηδέν, το επίπεδο του δαπέδου. ΛΥΣΗ Δ 1. Η μεταβολή της ορμής της σφαίρας: Δp = p 1 - p 2 Δp = - m υ 1 - m υ 2 Δp = 0,1 (5 + 2) = 1 kg m / s². H διεύθυνση της Δp είναι κατακόρυφη και η φορά προς τα κάτω. Δ 2. O 2oς γενικευμένος νόμος του Newton: ΣF = Δp / Δt ΣF = 1 / 0,1 = 10 Ν. Η ΣF και Δp έχουν ίδια διεύθυνση και φορά. Η συνισταμένη δύναμη που ασκείται στο σώμα: ΣF = m g N N = m g - ΣF N = 0, N = 9 N. Το μείον απλά δηλώνει ότι η φορά της Ν είναι αντίθετη της θετικής φοράς (προς τα πάνω) όπως και συμβαίνει. Δ 3. Η σφαίρα εκτελεί ελεύθερη πτώση: με ταχύτητα υ 1 = g t t = υ 1 / g t = 5 / 10 t = ½ s. To ζητούμενο ύψος h = ½ g t² h = 5 / 4 = 1,25 m. Δ 4. H αρχή διατήρησης της ενέργειας: Κ αρχ = Κ τελ + Q Q = Κ αρχ - Κ τελ Q = ½ m υ 1 ² - ½ m υ 2 ² Q = ½ 0,1 5² - ½ 0,1 2² Q = 1,25 0,2 Q = 1,23 joule. To ζητούμενο ποσοστό: (Q / Κ αρχ ) 100% = (1,23 / 1,25) 100% = 98,4 %. 18

19 Ένας ξύλινος κύβος μάζας Μ = 1 kg ισορροπεί στην άκρη της ταράτσας στο σημείο Ο ενός κτηρίου Κ 1 ύψους 40 m. Κάποια στιγμή, που τη θεωρούμε ως αρχή μέτρησης του χρόνου t = 0, ένα βλήμα μάζας m = 0,1 kg, το οποίο κινείται με οριζόντια ταχύτητα μέτρου υ 1 = 200 m / s, διαπερνά ακαριαία τον κύβο και εξέρχεται από αυτόν με οριζόντια ταχύτητα μέτρου υ 2, ενώ ο κύβος αποκτά οριζόντια ταχύτητα μέτρου v. Ο κύβος εκτελεί στη συνέχεια οριζόντια βολή και καθώς κινείται συναντά έλα κτήριο Κ 2 ύψους 20 m, οπότε προσκρούει στο σημείο Α της ταράτσας, που είναι το πλησιέστερο σημείο της στο κτήριο Κ 1. Τα κτήρια απέχουν 20 m, όπως φαίνεται στο σχήμα. Να υπολογιστούν: Δ 1. η χρονική στιγμή της πρόσκρουσης του κύβου στο σημείο Α, Δ 2. το μέτρο v της ταχύτητας του κύβου αμέσως μετά τη διέλευση του βλήματος, Δ 3. το μέτρο της ταχύτητας του κύβου πριν ακριβώς προσκρούσει στο σημείο Α, Δ 4. η απώλεια της μηχανικής ενέργειας του συστήματος βλήμα κύβος κατά τη διέλευση του βλήματος από τον κύβο. Δίνονται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m / s 2 και ότι η αντίσταση του αέρα θεωρείται αμελητέα. ΛΥΣΗ 19

20 Δ 1. O κύβος εκτελεί οριζόντια βολή, η διαφορά ύψους των σημείων Ο, Α είναι: (40 20) = ½ g t² t² = 4 t = 2 s. Δ 2. Το βεληνεκές: S = v t v = S / t v = 20 / 2 = 10 m / s. Προσοχή: είναι 20 m και η οριζόντια απόσταση. Δ 3. Iσχύει: v y = g t = 10 2 = 20 m / s. Η συνολική ταχύτητα v ² = v² + v y ² v ² = 10² + 20² = 500 v = 10 5 m / s. Δ 4. Η αρχή διατήρησης της ορμής: P ολ,αρχ = P ολ,τελ m υ 1 = Μ v + m υ 2 m υ 2 = m υ 1 - Μ v υ 2 = υ 1 - (Μ / m) v υ 2 = 200 (1 / 0,1) 10 = 100 m / s. Aρχή διατήρησης της ενέργειας: K αρχ = Q + Κ τελ Q = K αρχ - Κ τελ Q = ½ m υ 1 ² (½ m υ 2 ² + ½ M v²) Q = ½ 0,1 200² (½ 0,1 100² + ½ 1 10²) Q = 2000 ( ) Q = = 1450 joule. 20

Οριζόντια βολή κυκλική κίνηση Ορμή-Κρούσεις

Οριζόντια βολή κυκλική κίνηση Ορμή-Κρούσεις 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Οριζόντια βολή κυκλική κίνηση Ορμή-Κρούσεις ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Ευθύγραμμη ομαλή κίνηση: Είναι κάθε ευθύγραμμη κίνηση στην οποία το διάνυσμα

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΑΤΟΛΙΣΜΟΥ Διαγωνίσματα 2014-2015 1 ο Διαγώνισμα Θεματικό πεδίο: Επαναληπτικό (Οριζόντια ολή Κυκλική Κίνηση Κρούσεις) Ημερομηνία 16 οεμβρίου 2014 Διάρκεια Επιμέλεια 2 Ώρες ΘΕΜΑ 1 25

Διαβάστε περισσότερα

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 8 αυτοκίνητα σταθμευμένα ένα μετά το άλλο κάτω από μια οριζόντια πλατφόρμα. Το κάθε αυτοκίνητο έχει μήκος d = 3 m και ύψος h = 1,2 m. Τo

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ. 1. Μπορεί ένα σύστημα σωμάτων να έχει κινητική ενέργεια χωρίς να έχει ορμή; Ισχύει το ίδιο και στην περίπτωση ενός σώματος;

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ. 1. Μπορεί ένα σύστημα σωμάτων να έχει κινητική ενέργεια χωρίς να έχει ορμή; Ισχύει το ίδιο και στην περίπτωση ενός σώματος; ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΕΡΩΤΗΣΕΙΣ ΠΡΩΤΟΥ ΚΑΙ ΔΕΥΤΕΡΟΥ ΘΕΜΑΤΟΣ 1. Μπορεί ένα σύστημα σωμάτων να έχει κινητική ενέργεια χωρίς να έχει ορμή; Ισχύει το ίδιο και στην περίπτωση ενός σώματος; 2. Ποιο από τα παρακάτω

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

2. Κιβώτιο μάζας Μ = 995 g κρέμεται ακίνητο στη μια άκρη αβαρούς μη εκτατού νήματος μήκους l = 1 m από το κλαδί ενός δέντρου.

2. Κιβώτιο μάζας Μ = 995 g κρέμεται ακίνητο στη μια άκρη αβαρούς μη εκτατού νήματος μήκους l = 1 m από το κλαδί ενός δέντρου. 1. Ο μπάρμαν σπρώχνει ένα ποτήρι μπίρας πάνω στον πάγκο του μπαρ, το ο- ποίο γλιστράει και πέφτει στο πάτωμα σε απόσταση d = 1,4m από τη βάση του πάγκου. Αν το ύψος του πάγκου είναι h = 0,8m, να υπολογίσετε:

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ Θέση, μετατόπιση και διάστημα Όταν ένα σημειακό αντικείμενο κινείται ευθύγραμμα, για να μελετήσουμε την κίνησή του θεωρούμε σαν σύστημα αναφοράς έναν άξονα χ χ. Στην αρχή του

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Φυσική Α Λυκείου Στο παρών παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 2 ο, 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N.

Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N. ΘΕΜΑ Β Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N. Α) Να επιλέξετε τη σωστή πρόταση. Ο ρυθμός με τον οποίο

Διαβάστε περισσότερα

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση. Ένας ακίνητος τρoχός δέχεται σταθερή συνιστάμενη ροπή ως προς άξονα διερχόμενο

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ B' ΛΥΚΕΙΟΥ 16/11/2014

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ B' ΛΥΚΕΙΟΥ 16/11/2014 ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... www.syghrono.gr ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ B' ΛΥΚΕΙΟΥ 16/11/2014

Διαβάστε περισσότερα

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 Ο : ΚΡΟΥΣΕΙΣ ΦΑΙΝΟΜΕΝΟ DOPPLER ENOTHT 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ Κρούση: Κρούση ονομάζουμε το φαινόμενο κατά το οποίο δύο ή περισσότερα σώματα έρχονται σε επαφή για πολύ μικρό χρονικό διάστημα κατά

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

ΚΕΦ. 2.1: ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ

ΚΕΦ. 2.1: ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ ΚΕΦ. 2.1: ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ Ερωτήσεις σύντομης απάντησης 1. Να εξηγήσετε τα παρακάτω φαινόμενα με βάση την αρχή διατήρησης της ορμής: α) ανάκρουση του όπλου και β) κίνηση πυραύλου. 2. Γιατί ο πυροσβέστης

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή Φυσική Β Λυκειου, Γενικής Παιδείας - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν

Διαβάστε περισσότερα

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν.

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν. ΘΕΜΑ Β Β 1. Ένα παιγνίδι - αυτοκινητάκι μάζας 1 Kg είναι ακίνητο στη θέση x = 0 m. Την χρονική στιγμή t = 0 s ξεκινά να κινείται ευθύγραμμα. Στον παρακάτω πίνακα φαίνονται οι τιμές της θέσης του αυτοκινήτου

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά)

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά) ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 31/05/2010 ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΧΡΟΝΟΣ: 07:30 10:00 π.μ. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:...

Διαβάστε περισσότερα

Ελατήριο σταθεράς k = 200 N/m διατηρείται σε κατακόρυφη θέση στερεωμένο στο κάτω άκρο

Ελατήριο σταθεράς k = 200 N/m διατηρείται σε κατακόρυφη θέση στερεωμένο στο κάτω άκρο ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΤΟ ΣΩΜΑ ΑΡΧΙΚΑ ΝΑ ΒΡΙΣΚΕΤΑΙ ΕΚΤΟΣ ΕΛΑΤΗΡΙΟΥ.. Σώμα που αφήνεται από κάποιο ύψος. Ελατήριο σταθεράς k = N/ διατηρείται σε κατακόρυφη θέση στερεωμένο στο κάτω άκρο του. Σώμα μάζας = kg αφήνεται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 014 Ε_3.ΦλΓΑΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ & ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 7 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F ΘΕΜΑ Β Β 1. Ένας μικρός μεταλλικός κύβος βρίσκεται αρχικά ακίνητος σε λείο οριζόντιο δάπεδο. Στον κύβο ασκείται την χρονική στιγμή t= 0 s οριζόντια δύναμη της οποίας η τιμή σε συνάρτηση με το χρόνο παριστάνεται

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ. Θα μελετήσουμε τώρα συστήματα που η ταλάντωση ξεκινά εξαιτίας μίας κρούσης ή έχουμε ήδη μία ταλάντωση και κάπου στην πορεία συμβαίνει και μία κρούση.. Σώμα που κινείται με κάποια

Διαβάστε περισσότερα

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1 H θέση ενός κινητού που κινείται σε ένα επίπεδο, προσδιορίζεται κάθε στιγμή αν: Είναι γνωστές οι συντεταγμένες του κινητού (x,y) ως συναρτήσεις του χρόνου Είναι γνωστό

Διαβάστε περισσότερα

(ΙΙ) τα πάνω με σταθερή επιτάχυνση μέτρου α = 2g, όπου g η επιτάχυνση της βαρύτητας.

(ΙΙ) τα πάνω με σταθερή επιτάχυνση μέτρου α = 2g, όπου g η επιτάχυνση της βαρύτητας. ΘΕΜΑ Β Β 1. Μικρή σφαίρα αφήνεται να πέσει από αρχικό μικρό ύψος H, πάνω από το έδαφος και εκτελώντας ελεύθερη πτώση πέφτει στο έδαφος. K (Ι) K (ΙΙ) K (ΙΙΙ) 0 Η y 0 H y 0 H y Α) Να επιλέξετε την σωστή

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦ. 4Ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦ. 4Ο Όνοµα:... Ηµεροµηνία:... Βαθµός : ΘΕΜΑ Ο Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση. Όταν ένα σώµα πραγµατοποιεί µόνο στροφική κίνηση : α) όλα τα σηµεία του έχουν την ίδια γραµµική ταχύτητα

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:...

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:... ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: Φυσική ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΊΑ: 27 Μαίου 2011 ΧΡΟΝΟΣ: 2 ώρες ΩΡΑ: 11.00 1.00 ΒΑΘΜΟΣ: Αριθμητικά:... Ολογράφως:...

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση 1. Mόλις τεθεί σε κίνηση µε σταθερή ταχύτητα, ο µάζας 1000 kg ανελκυστήρας Α ανεβαίνει µε ρυθµό έναν όροφο (3 m) το δευτερόλεπτο.

Διαβάστε περισσότερα

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ ο ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ου ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΔΕΥΤΕΡΑ 3 ΜΑΪΟΥ 200 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ () Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιµέλεια: Γιοµπλιάκης Λάζαρος Ματελόπουλος Αντώνης Τσαµήτρος ηµήτριος

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιµέλεια: Γιοµπλιάκης Λάζαρος Ματελόπουλος Αντώνης Τσαµήτρος ηµήτριος ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιµέλεια: Γιοµπλιάκης Λάζαρος Ματελόπουλος Αντώνης Τσαµήτρος ηµήτριος ΘΕΜΑ Ο. Σφαίρα Α µε µάζα m g συγκρούεται µετωπικά και ελαστικά µε ταχύτητα υ 5m/ µε ακίνητη σφαίρα Β

Διαβάστε περισσότερα

3. Ποια είναι η διαφορά μεταξύ της ελαστικής και της πλαστικής παραμόρφωσης;

3. Ποια είναι η διαφορά μεταξύ της ελαστικής και της πλαστικής παραμόρφωσης; 4.3 Κεφάλαιο 3: Η ΝΕΥΤΩΝΙΚΗ ΣΥΝΘΕΣΗ 4.3.1 Ερωτήσεις σύντομης απάντησης 1. Να περιγράψετε ένα φαινόμενο στο οποίο αλλάζει η κινητική κατάσταση του σώματος και να προσδιορίσετε το αίτιο της αλλαγής. 2. Μια

Διαβάστε περισσότερα

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων.

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων. Το σώμα Α μάζας m A = 1 kg κινείται με ταχύτητα u 0 = 8 m/s σε λείο οριζόντιο δάπεδο και συγκρούεται μετωπικά με το σώμα Β, που έχει μάζα m B = 3 kg και βρίσκεται στο άκρο αβαρούς και μη εκτατού (που δεν

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 10 η Ομαλή κυκλική κίνηση Δθ = ω = σταθερό Δt X = Rσυν (ωt) => X 2 +Υ 2 = R 2 Υ = Rημ(ωt) Οι προβολές της κίνησης στους άξονες των x και y είναι αρμονικές ταλαντώσεις

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Παραδείγµατα δυνάµεων

Παραδείγµατα δυνάµεων ΥΝΑΜΕΙΣ Παραδείγµατα Ορισµός της δύναµης Χαρακτηριστικά της δύναµης Μάζα - Βάρος Μέτρηση δύναµης ράση - αντίδραση Μέτρηση δύναµης Σύνθεση - ανάλυση δυνάµεων Ισορροπία δυνάµεων 1 Ανύψωση βαρών Παραδείγµατα

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 9η Ολυμπιάδα Φυσικής Γ Λυκείου (Β φάση) Κυριακή 9 Μαρτίου 01 Ώρα:.00-1.00 ΟΔΗΓΙΕΣ: 1. Το δοκιμιο αποτελειται απο εννεα (9) σελιδες και επτα (7) θεματα.. Να απαντησετε σε ολα τα θεματα του δοκιμιου.. Μαζι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 50. Σε ένα σώμα μάζας m=2kg που ηρεμεί σε λείο επίπεδο ενεργεί οριζόντια δύναμη F=10Ν για χρόνο t=20s. Να βρεθεί πόσο διάστημα διανύει το σώμα σε χρόνο 25s και να γίνει γραφική παράσταση

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ. 1.1. Μηχανικές. Ομάδα Δ. 1.1.51. Συνάντηση σωμάτων που ταλαντώνονται. Τα σώματα Α και Β του σχήματος έχουν ίσες μάζες m 1 =m 2 =m=1kg. Τα δύο σώματα ισορροπούν πάνω στο λείο οριζόντιο δάπεδο, με τα ελατήρια

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2008 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑÏΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 5 η Παραδείγματα: (1) Δύο σώματα είναι δεμένα με σχοινί όπως στο σχήμα. Στο πρώτο σώμα μάζας m 1 = 2Κg ασκούμε δύναμη F = 4N. Αν η μάζα του σώματος (2) είναι m 2

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Θέμα Α Στις

Διαβάστε περισσότερα

Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις.

Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις. ΔΥΝΑΜΕΙΣ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ ΓΙΑ ΤΗΝ ΚΙΝΗΣΗ Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις. F 2=2N F 1=6N F 3=3N F 4=5N (α) (β) F 5=4N F 6=1N F 7=3N (γ) Να σχεδιάσετε και

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο 1. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ 1. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ Ο Ρ Ο Σ Η Μ Ο. Για το κενό ή αέρα στο SI: N m. , Μονάδα στο S.I. 1. Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων:

ΤΥΠΟΛΟΓΙΟ Ο Ρ Ο Σ Η Μ Ο. Για το κενό ή αέρα στο SI: N m. , Μονάδα στο S.I. 1. Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων: ΤΥΠΟΛΟΓΙΟ Φυσική της Λυκείου Γενικής Παιδείας Στατικός Ηλεκτρισμός Τύποι που ισχύουν Νόμος του Coulomb Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων: α. Χρησιμοποιούμε τη μέθοδο του παραλλογράμμου

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 Μάθηµα: ΦΥΣΙΚΗ Ηµεροµηνία και ώρα εξέτασης: Σάββατο, 4 Ιουνίου 2011 8:30 11:30

Διαβάστε περισσότερα

α) Το µέτρο της ταχύτητας της ταχύτητας την πλαστική κρούση είναι 30% ποια η σχέση των µαζών m, M. ( Η µάζα Μ είναι αρχικά ακίνητη).

α) Το µέτρο της ταχύτητας της ταχύτητας την πλαστική κρούση είναι 30% ποια η σχέση των µαζών m, M. ( Η µάζα Μ είναι αρχικά ακίνητη). 2.72. Το σώµα µάζας Μ=1,2 Κgr είναι ακίνητο σε οριζόντιο επίπεδο. Το βλήµα µάζας =0,3Κgr κινείται οριζόντια µε ταχύτητα 10/sec και συγκρούεται πλαστικά µε την Μ. Εάν ο συντελεστής τριβής συσσωµατώµατος

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση B' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΖΗΤΗΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών

Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών Αντιμετώπιση προβλημάτων που αλλάζουν την τους κατάσταση, εξαιτίας εξωτερικών ροπών Σ' ένα πρόβλημα, παρατηρώ αλλαγή στη κατάσταση ενός στερεού (ή συστήματος στερεών), καθώς αυτό δέχεται εξωτερικές ροπές.

Διαβάστε περισσότερα

ΔΙΑΚΡΟΤΗΜΑ - Τα Καλύτερα Φροντιστήρια της Πόλης!

ΔΙΑΚΡΟΤΗΜΑ - Τα Καλύτερα Φροντιστήρια της Πόλης! ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΗΝΙΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΗΜΕΡΟΜΗΝΙΑ:... /... / 01, ΤΜΗΜΑ :... ΒΑΘΜΟΣ:... ΘΕΜΑ 1 Να επιλέξετε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 23/4/2009

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 23/4/2009 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 7077 594 ΑΡΤΑΚΗΣ 1 Κ. ΤΟΥΜΠΑ THΛ : 919113 9494 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:.....................

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση 1. Δίσκος κυλίεται χωρίς να ολισθαίνει με την επίδραση σταθερής οριζόντιας

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΔΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΥΜΑΤΑ

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΔΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΥΜΑΤΑ ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΔΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΥΜΑΤΑ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΕΝΕΡΓΕΙΙΑ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμ εε ααππααννττήή σσεει ιςς (σελ. 1 ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 4 ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΘΕΜΑ GI_A_FYS_0_4993

ΘΕΜΑ GI_A_FYS_0_4993 ΘΕΜΑ GI_A_FYS_0_4993 ΘΕΜΑ Β Β Ένας αλεξιπτωτιστής που έχει μαζί με τον εξοπλισμό του συνολική μάζα Μ, πέφτει από αεροπλάνο που πετάει σε ύψος Η Αφού ανοίξει το αλεξίπτωτο, κινούμενος για κάποιο χρονικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Υπάρχουν φυσικά μεγέθη που ορίζονται πλήρως, όταν δοθεί η αριθμητική τιμή τους και λέγονται μονόμετρα.. Μονόμετρα μεγέθη είναι ο χρόνος, η μάζα, η θερμοκρασία, η πυκνότητα, η ενέργεια,

Διαβάστε περισσότερα

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr. γ) πr 2.

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr. γ) πr 2. 1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr γ) πr 2 δ) καµία από τις παραπάνω τιµές Το µέτρο της µετατόπισης που έχει υποστεί

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Σε όλες τις κινήσεις που μελετούσαμε μέχρι τώρα, προκειμένου να απλοποιηθεί η μελέτη τους, θεωρούσαμε τα σώματα ως υλικά σημεία. Το υλικό σημείο ορίζεται ως σώμα που έχει

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα

ΘΕΜΑ Β Β1. Σωστό το β. Δόθηκε ότι οι μάζες των σωμάτων είναι ίσες, δηλαδή ma = mb. Με διαίρεση κατά μέλη των σχέσεων (1) και (2) έχουμε:

ΘΕΜΑ Β Β1. Σωστό το β. Δόθηκε ότι οι μάζες των σωμάτων είναι ίσες, δηλαδή ma = mb. Με διαίρεση κατά μέλη των σχέσεων (1) και (2) έχουμε: ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΛΙΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α δ Α β Α β Α4 γ Α5. α Σ, β Λ,

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια 1 ΘΕΜΑ 1 ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ 1. οχείο σταθερού όγκου περιέχει ορισµένη ποσότητα ιδανικού αερίου. Αν θερµάνουµε το αέριο µέχρι να τετραπλασιαστεί η απόλυτη θερµοκρασία

Διαβάστε περισσότερα

W=FSσυνθ. Στο παρακάτω σχεδιάγραμμα φαίνονται οι διάφορες μορφές ενέργειας που θα μας απασχολήσουν. ΕΝΕΡΓΕΙΑ ( Ε ή W)

W=FSσυνθ. Στο παρακάτω σχεδιάγραμμα φαίνονται οι διάφορες μορφές ενέργειας που θα μας απασχολήσουν. ΕΝΕΡΓΕΙΑ ( Ε ή W) ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ-ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ: ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΡΟΟΠΤΙΚΗ Ενέργεια. «Δεν ξέρουμε ακριβώς τι είναι ενέργεια. Ξέρουμε ότι είναι κάτι που μεταμορφώνεται, που μεταφέρεται αλλά στο σύνολο του

Διαβάστε περισσότερα

Κεφάλαιο 11 Στροφορµή

Κεφάλαιο 11 Στροφορµή Κεφάλαιο 11 Στροφορµή Περιεχόµενα Κεφαλαίου 11 Στροφορµή Περιστροφή Αντικειµένων πέριξ σταθερού άξονα Το Εξωτερικό γινόµενο-η ροπή ως διάνυσµα Στροφορµή Σωµατιδίου Στροφορµή και Ροπή για Σύστηµα Σωµατιδίων

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

Η Οδύσσεια μιας μπίλιας ή

Η Οδύσσεια μιας μπίλιας ή Η Οδύσσεια μιας μπίλιας ή ΠΩΣ ΘΑ ΚΙΝΗΘΕΙ MIA ΜΠΙΛΙΑ ΠΟΥ ΑΦΗΝΟΥΜΕ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ΚΑΙ ΜΕΑ ΣΥΝΕΧΙΖΕΙ ΣΕ ΟΡΙΖΟΝΙΟ ΕΠΊΠΕΔΟ ΚΑΙ ΕΠΙΣΡΕΦΕΙ A ϕ Στο σχήμα απεικονίζεται κεκλιμένο επίπεδο κλίσης φ=30 ο και

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΗ ΛΥΕΙΟΥ ΘΕΤΙΗΣ Ι ΤΕΧ/ΗΣ ΤΕΥΘΥΝΣΗΣ ΘΕΜ : Στις ερωτήσεις - να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Στις ερωτήσεις -5 να γράψετε

Διαβάστε περισσότερα

ΘΕΜΑ 1 Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 9 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 6 : Τηλ.: 076070 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΥΚΕΙΟΥ 009 ΘΕΜΑ Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 2 Μη αδρανειακά συστήµατα x Έστω ότι το S αποκτά επιτάχυνση α 0 S z 0 Α x z S y, y Ο παρατηρητής S µετρά µια επιτάχυνση: A = A +

Διαβάστε περισσότερα

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

Διαβάστε περισσότερα

Κεφάλαιο 4 Δυναµική: Νόµοι Κίνησης του Νεύτωνα

Κεφάλαιο 4 Δυναµική: Νόµοι Κίνησης του Νεύτωνα Κεφάλαιο 4 Δυναµική: Νόµοι Κίνησης του Νεύτωνα Δύναµη Περιεχόµενα Κεφαλαίου 4 1 ος Νόµος Κίνησης του Νεύτωνα Μάζα 2 ος Νόµος Κίνησης του Νεύτωνα 3 ος Νόµος Κίνησης του Νεύτωνα Βάρος: Η Δύναµη της Βαρύτητας

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

Επιτάχυνση της Βαρύτητας g = 10m/s 2

Επιτάχυνση της Βαρύτητας g = 10m/s 2 ΛΥΚΕΙΟ ΑΚΡΟΠΟΛΗΣ ΠΡΟΤΕΙΟΜΕΕΣ ΑΠΑΤΗΣΕΙΣ Σχολική Χρονιά:2014-2015 αθμός :. ΔΙΑΓΩΙΣΜΑ κατ. ΣΧΕΔΙΑΣΜΟΣ ΔΥΑΜΕΩ-ΚΙΗΜΑΤΙΚΗ-ΔΥΑΜΙΚΗ-ΤΡΙΗ Υπ. Κηδεμόνα :.. Μάθημα : ΦΥΣΙΚΗ Όνομα μαθητή/τριας: Ημερομηνία : Τμήμα

Διαβάστε περισσότερα

Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σώµα

Διαβάστε περισσότερα

ΚΡΟΥΣΕΙΣ ΚΑΙ ΣΧΕΤΙΚΕΣ ΚΙΝΗΣΕΙΣ

ΚΡΟΥΣΕΙΣ ΚΑΙ ΣΧΕΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΣΧΕΤΙΚΕΣ ΚΙΝΗΣΕΙΣ 5 Κρούσεις 755 Αδρανειακά συστήματα Σχετικές κινήσεις 160 Κέντρο μάζας 163 Φαινόμενο Doppler 167 Σύνοψη 171 Ασκήσεις 11 173 5-1 ΕΙΣΑΓΩΓΗ Η ταχύτητα και η επιτάχυνση των σωμάτων,

Διαβάστε περισσότερα