Προσοµοίωση. Κεφάλαιο Ο Ασθενής Νόµος των Μεγάλων Αριθµών. X = 1 n

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προσοµοίωση. Κεφάλαιο 6. 6.1 Ο Ασθενής Νόµος των Μεγάλων Αριθµών. X = 1 n"

Transcript

1 Κεφάλαιο 6 Προσοµοίωση Αυτό το κεφάλαιο συµπληρώνει το προηγούµενο κεφάλαιο το οποίο αναφερόταν στο πώς µπορεί να γίνει απλός προγραµµατισµός στην R. Θα χρησιµοποιηθούν οι έννοιες του προγραµµατισµού για να εξαχθούν αποτελέσµατα από απλές προσο- µοιώσεις γνωστών πιθανοθεωρητικών αποτελεσµάτων. 6. Ο Ασθενής Νόµος των Μεγάλων Αριθµών Σύµφωνα µε τον ασθενή νόµο των µεγάλων αριθµών, αν X,..., X n είναι ανεξάρτητες και ισόνοµες τυχαίες µεταβλητές µε πεπερασµένη µέση τιµή µ, τότε X = n n X i µ, i= κατά πιθανότητα, όταν το n. Συγκεκριµένα, αν X,..., X n είναι δίτιµες τυχαίες µεταβλητές µε P (X i = ) = p, τότε X = n n X i p, i= κατά πιθανότητα, όταν το n. Το αποτέλεσµα αυτό µπορεί να παρουσιαστεί εµπειρικά στην R µε τις ακόλουθες συναρτήσεις : uniforms <- runif(500) tosses <- as.numeric(i(uniforms > 0.5)) relfreq <- cumsum(tosses)/(:500) plot(relfreq) 67

2 abline(0.5,0) title(main="illustration of the Weak Law of Large Numbers") Η πρώτη εντολή δίνει τυχαίο δείγµα U,..., U 500 από την οµοιόµορφη στο (0,). Στη συνέχεια ορίζουµε τη δίτιµη τυχαία µεταβλητή X i = I(U i > 2 ), όπου I δείκτρια, i =,..., 500. Μετά ϑεωρούµε τη συνάρτηση X σαν ακολουθία, δηλαδή το ακολουθιακό ποσοστό επιτυχιών (γιατί ;). Το γράφηµα (Σχήµα 6.) µας δίνει την σύγκλιση της ακολουθίας στο 0.5, όταν n σύµφωνα µε το νόµο των µεγάλων αριθµών. Illustration of the Weak Law of Large Numbers relfreq Inde Σχήµα 6.: Ο ασθενής νόµος των µεγάλων αριθµών για δυαδικές τυχαίες µετα- ϐλητές. Εφαρµόζοντας τα πιο πάνω τέσσερις ϕορές και απεικονίζοντας τις γραφικές παραστάσεις σε ένα 2 2 γράφηµα (Σχήµα 6.2), έχουµε ότι, par(mfrow=c(2,2)) for(rep in :4) { uniforms <- runif(500) tosses <- as.numeric(uniforms > 0.5) relfreq <- cumsum(tosses)/(:500) 68

3 plot(relfreq) abline(0.5,0) relfreq relfreq Inde Inde relfreq relfreq Inde Inde Σχήµα 6.2: Ο ασθενής νόµος των µεγάλων αριθµών για δυαδικές τυχαίες µετα- ϐλητές. ηλαδή το γράφηµα αυτό δείχνει καθαρά την τυχαιότητα αλλά και τη σύγκλιση. Τι συµβαίνει όµως όταν η αναµενόµενη τιµή της τυχαίας µεταβλητής δεν υπάρχει ; Ενα πολύ γνωστό παράδειγµα µιας τέτοιας τυχαίας µεταβλητής είναι η κατανοµή Cauchy f() = π( + 2 ), R, της οποίας η αναµενόµενη τιµή δεν υπάρχει (γιατί ;). Οι ακόλουθες συναρτήσεις µαζί µε το Σχήµα 6.3 καταδεικνύουν ότι η ακολουθία των µέσων τιµών δεν συγκλίνει. par(mfrow=c(2,2)) 69

4 for(rep in :4) { cauchys <- rcauchy(500) bar <- cumsum(cauchys)/(:500) plot(bar) abline(0,0) bar bar Inde Inde bar bar Inde Inde Σχήµα 6.3: Ακολουθία µέσων τιµών από την κατανοµή Cauchy. 6.2 Κεντρικό Οριακό Θεώρηµα Εστω X,..., X n τυχαίες µεταβλητές µε πεπερασµένη µέση τιµή µ και διασπορά σ 2. Τότε, σύµφωνα µε το κεντρικό οριακό ϑεώρηµα n( X µ) N (0, σ 2 ), 70

5 κατά κατανοµή, όταν το n. Στο πιο πάνω, το N συµβολίζει την κανονική κατανοµή. Η προσοµοίωση µπορεί να ϐοηθήσει διαισθητικά στην κατανόηση του ϑεωρήµατος. Εστω X,..., X 00 ανεξάρτητες και ισόνοµες τυχαίες κατανοµές από την Poisson µε παράµετρο λ =. Τότε µ = σ 2 = και συνεπώς, από το κεντρικό οριακό ϑεώρηµα Ε( X) = και Var( X) = /00 = 0.0. Στην R, η πιο κάτω συνάρτηση παράγει δείγµατα από την ασυµπτωτική κατανοµή της µέσης τιµής poisson.clt <- function(k,n, parameter) { samples.mean <- rep(na, k) for (i in :k) { samples.mean[i] <- mean(rpois(n, lambda=parameter)) return(samples.mean) Τρέχοντας αυτή την συνάρτηση παράγονται τα ακόλουθα αποτελέσµατα : > test.pois <- poisson.clt(200,00,) > summary(test.pois) Min. st Qu. Median Mean 3rd Qu. Ma > var(test.pois) [] > par(mfrow=c(,3)) > hist(test.pois) > boplot(test.pois) > qqnorm(test.pois) > qqline(test.pois) ηλαδή, δηµιουργούµε k δείγµατα από την Poisson, και για καθένα από αυτά υπολογίζουµε το µέσο όρο τους, έστω, X,..., X k. Στο παράδειγµα k = 200 και 7

6 το δείγµα που παίρνουµε κάθε ϕορά έχει µέγεθος 00. Να εξηγήσετε λεπτοµερώς κάθε ϐήµα του προγράµµατος. Τα αριθµητικά αποτελέσµατα µαζί µε το Σχήµα 6.4 παρουσιάζουν εµπειρικά το κεντρικό οριακό ϑεώρηµα. Histogram of test.pois Boplot of test.pois Normal Q Q Plot Frequency Sample Quantiles test.pois Theoretical Quantiles Σχήµα 6.4: Κεντρικό οριακό ϑεώρηµα για την κατανοµή Poisson. Πρέπει να σηµειωθεί ότι η συνάρτηση poisson.clt δεν είναι και ο πιο αποτελεσµατικός τρόπος προγραµµατισµού, αλλά παρουσιάζει την γενική ιδέα πίσω από τους υπολογισµούς. Για πιο αποτελεσµατική χρήση των ϐρόγχων σε σχέση µε την µνήµη και τον υπολογιστικό χρόνο του υπολογιστή, η συνάρτηση lapply είναι καταλληλότερη. 6.3 Προσέγγιση της ιωνυµικής Κατανοµής από την Κανονική και την Poisson Σε αυτό το σηµείο ϑα εξερευνηθεί το πως προσεγγίζεται η διωνυµική κατανοµή µε τη ϐοήθεια του κεντρικού οριακού ϑεωρήµατος αλλά και από την κατανοµή Poisson. Εστω η διωνυµική κατανοµή Bin(n, p). Από τη ϑεωρεία είναι γνωστό ότι αυτή προσεγγίζεται από την κατανοµή Poisson όταν το n είναι µεγάλο και το p είναι µικρό και την κανονική κατανοµή όταν το n είναι µεγάλο. Στην προσοµοίωση που ακολουθεί ϑα δούµε πόσο καλή είναι η προσέγγιση για διάφορες τιµές του n και του p. Στην αρχή επιλέγονται οι τιµές για το n και το p να είναι : p<-c(0.0,0.,0.3,0.5) n<-c(0,00,000,0000) 72

7 Για κάθε συνδυασµό (n, p) ϑα συγκριθούν τρείς κατανοµές, η διωνυµική κατανοµή, η προσέγγιση από την Poisson, και η προσέγγιση από την κανονική. Για καλύτερη εποπτική ανάλυση ϑα παρασταθεί γραφικά η συνάρτηση πυκνότητας πιθανότητάς τους ταυτόχρονα στο ίδιο γράφηµα. Θα κατασκευαστεί ένα γράφηµα για κάθε συνδυασµό (n, p). par (mfrow=c(4,4)) for (i in :4) { for (j in :4) { mu <- n[j]*p[i] sd <- sqrt(mu * (-p[i])) lo <- round(mu-3*sd) hi <- round(mu+3*sd) if (hi-lo<40) <- seq(lo,hi,by=) else <- round(seq(lo,hi,len=40)) <- cbind(dbinom(,n[j],p[i]),dpois(,mu),dnorm(,mu,sd)) [<0,:2]<- 0 matplot(,,main=paste("p=", p[i],", n=",n[j],sep="")) Στο πιο πάνω πρόγραµµα, είναι ένας πίνακας µε τρεις στήλες οι οποίες περιέχουν τις συναρτήσεις πυκνότητας πιθανότητας πιθανότητας της διωνυµικής, της Poisson και της κανονικής, αντίστοιχα. Η εντολή matplot κατασκευάζει γράφηµα πίνακα. Παρουσιάζει τη γραφική παράσταση της κάθε στήλης συναρτήσει του. Η πρώτη στήλη αναπαρίσταται µε το σύµβολο, η δεύτερη µε το σύµβολο 2 και η τρίτη µε το σύµβολο 3 (Σχήµα 6.5). Πρώτα ϑα εξεταστεί στο γράφηµα η προσέγγιση από την Poisson. Σε κάθε στήλη, η προσέγγιση από την Poisson είναι µεγαλύτερη στο πάνω µέρος της στήλης όπου το p είναι µικρό, και σταδιακά γίνεται ασθενέστερη όσο το p µεγαλώνει (πηγαίνοντας προς τα κάτω). Ο λόγος είναι ότι η µέση τιµή της διωνυµικής κατανοµής είναι np και η διακύµανση np( p). Παρόλο που η µέση τιµή και η διακύµανση δεν είναι ίσες, προσεγγιστικά γίνονται ίσα όταν το p είναι πολύ µικρό. Για την Poisson µε παράµετρο λ, η µέση τιµή και η διακύµανση είναι ίση µε λ. Συνεπώς, η κατανοµή Poisson δεν µπορεί να είναι καλή προσέγγιση µιας κατανοµής της 73

8 οποίας η µέση τιµή και η διακύµανση είναι πολύ διαφορετικές µεταξύ τους και έτσι η προσέγγιση είναι καλή για τη διωνυµική µόνο όταν το p είναι µικρό. Στην περίπτωση της προσέγγισης από την κανονική κατανοµή, η προσέγγιση δεν είναι καλή στο πάνω αριστερό κοµµάτι του γραφήµατος. Συγκεκριµένα, όταν (p =.0, n = 00) ή (p =., n = 0), η προσέγγιση από την κανονική επιτρέπει στο να είναι αρνητικό ενώ η διωνυµική (και η Poisson) κατανοµή απαιτεί το να µην παίρνει αρνητικές τιµές. Σε κάθε γραµµή, η προσέγγιση από την κανονική γίνεται καλύτερη όσο προχωρούµε διαµέσου της γραµµής. Αυτό είναι το αποτέλεσµα από το κεντρικό οριακό ϑεώρηµα. Επίσης, σε κάθε στήλη, η προσέγγιση από την κανονική γίνεται καλύτερη όσο προχωρούµε προς τα κάτω. Αυτό συµβαίνει επειδή η διωνυµική κατανοµή είναι συµµετρική όταν p = 0.5, δηλαδή έχει µορφή παρόµοια µε την κανονική, και συνεπώς δεν χρειάζεται µεγάλο n για να είναι είναι καλή η προσέγγιση από την κανονική. Σε αντίθεση, η διωνυµική µε p = 0.0 είναι πολύ λοξή, δηλαδή δεν µοιάζει µε την κανονική, και συνεπώς χρειάζεται µεγάλο n για να γίνει καλή η προσέγγιση από την κανονική. p=0.0, n=0 p=0.0, n=00 p=0.0, n=000 p=0.0, n= p=0., n=0 p=0., n=00 p=0., n=000 p=0., n= p=0.3, n=0 p=0.3, n=00 p=0.3, n=000 p=0.3, n= p=0.5, n=0 p=0.5, n=00 p=0.5, n=000 p=0.5, n= Σχήµα 6.5: Προσέγγιση της διωνυµικής από την Poisson και την κανονική. 74

9 6.4 Monte Carlo Ολοκλήρωση Εστω ότι είναι αναγκαίο να εκτιµηθεί η αναµενόµενη τιµή της τυχαίας µεταβλητής X µε συνάρτηση πυκνότητας πιθανότητας f() δεδοµένου ότι αυτή υπάρχει. Συγκεκριµένα, έστω ότι το δ µπορεί να οριστεί από δ = c()f()d = Ε f [c(x)], και υποθέστε ότι υπάρχει και είναι πεπερασµένο. Υπάρχουν διάφοροι µέθοδοι για υπολογισµό του δ και ίσως η πιο γνωστές ανάµεσα στους στατιστικούς είναι αυτές που ϐασίζονται στη Monte Carlo ολοκλήρωση. Ανάλογα, αν X,..., X n τυχαίο δείγµα από την f(), τότε σύµφωνα µε τον ασθενή νόµο των µεγάλων αριθµών, η εκτιµήτρια ˆδ = n n c(x i ) προσεγγίζει το δ µε µεγάλη πιθανότητα όταν το n τείνει στο άπειρο. i= Παρατίθεται πως µπορεί η R να χρησιµοποιηθεί για να υπολογίσει τέτοια ο- λοκληρώµατα. Εστω ότι η X είναι τυχαία µεταβλητή που ακολουθεί τη κατανοµή Beta µε συνάρτηση πυκνότητας πιθανότητας f() = B(α, β) α ( ) β για (0, ) και έστω ότι είναι αναγκαίο να υπολογιστούν τα ακόλουθα δύο ολοκληρώµατα : δ = f()d = I [0.2,0.4] f()d, όπου I είναι η δείκτρια συνάρτηση, και δ 2 = sin()e f()d όπου υποθέτουµε ότι η f είναι η συνάρτηση πυκνότητας πιθανότητας της κατανοµής Βήτα µε παράµετρους 2.5 και 5. Τότε η ακόλουθη συνάρτηση δίνει τα επιθυµητά αποτελέσµατα σε µορφή πίνακα. estim.beta <- function(k) { delta <- rep(na, k) delta2 <- rep(na, k) for (i in :k) 75

10 { <- rbeta(500, shape=2.5, shape2=5) delta[i] <- mean(as.numeric(i(0.2 < & <0.4))) delta2[i] <- mean(sin()*ep(-)) return(cbind(delta,delta2)) Να εξηγήσετε λεπτοµερώς τι κάνει κάθε ϐήµα στην πιο πάνω συνάρτηση. Τρέχοντας τη συνάρτηση παίρνονται τα ακόλουθα > delta.estim <- estim.beta(500) > apply(delta.estim,2,mean) delta delta > apply(delta.estim,2,var) delta delta e-006 > sqrt(apply(delta.estim,2,var)) delta delta Συνεπώς, το δ εκτιµάται να είναι ίσο µε µε τυπικό σφάλµα , ενώ το δ 2 εκτιµάται να είναι ίσο µε µε τυπικό σφάλµα Παρόλο που εδώ υπάρχουν διάφορες συνηθισµένες µέθοδοι για να παραχθούν ψευδο τυχαία αποτελέσµατα για αρκετές κατανοµές, συνήθως ένα τέτοιο εγχεί- ϱηµα µπορεί να είναι αρκετά απαιτητικό εξαιτίας της µορφής της συνάρτησης πυκνότητας πιθανότητας. Για αυτό το λόγο κάποιες άλλες τεχνικές µπορούν να χρησιµοποιηθούν εναλλακτικά και µια από τις πιο δηµοφιλείς µεθόδους προσο- µοίωσης είναι η importance sampling η εφαρµογή της οποίας παρουσιάζεται πιο κάτω : Γέννηση Z,..., Z n ανεξάρτητων και ισόνοµων τυχαίων µεταβλητών µε συνάρτηση πυκνότητα πιθανότητας g(z) των οποίων ο ϕορέας, έστω Α, περιέχει το ϕορέα της f(.). Αφού παρατηρηθεί ότι δ = c(z) f(z) g(z) g(z)dz 76

11 = c(z)w(z)g(z)dz = Ε g [c(z)w(z)], µε w = f/g, κατασκευάζεται η ακόλουθη εκτιµήτρια δ = n n c(z i )w(z i ). i= Προφανώς, η εκτιµήτρια δ µιµείται την εκτιµήτρια ˆδ στην έννοια ότι η αναµενόµενη τιµή σε σχέση µε το X ακολουθώντας την f, αντικαθίσταται από την αντίστοιχη αναµενόµενη τιµή σε σχέση µε το Z, ακολουθώντας την g. Θα ήταν εκπαιδευτικό σκόπιµο να προσπαθήσει ο αναγνώστης να χρησιµοποιήσει την R για να υπολογίσει το δ για το πιο πάνω παράδειγµα όταν η g είναι η συνάρτηση πυκνότητας πιθανότητας από την οµοιόµορφη κατανοµή. 6.5 Βελόνα του Buffon Ενα τραπέζι χωρίζεται σε παράλληλες ευθείες οι οποίες απέχουν d µονάδες µεταξύ τους. Ρίχνουµε µία ϐελόνα µήκους l στο τραπέζι (µε l d) n ϕορές και µετράµε R τον αριθµό των ϕορών που η ϐελόνα τέµνει µία ευθεία. Εστω X η απόσταση από το κέντρο της ϐελόνας στην πιο κοντινή παράλληλη ευθεία και θ η γωνία που σχηµατίζει η κάθετη ευθεία από το κέντρο της ϐελόνας στην πιο κοντινή παράλληλη ευθεία. Τότε η ϐελόνα ϑα τέµνει µία από τις παράλληλες ευθείες αν και µόνο αν cos θ l 2. Οµως, αφού η X µεταβάλλεται µεταξύ 0 και d/2 και η θ είναι µεταξύ 0 και π/2, µπορούµε να υποθέσουµε ότι είναι ανεξάρτητες τυχαίες µεταβλητές από την οµοιόµορφη. Συνεπώς, έχουµε P (X l cos θ ) = 4 2 πd = 4 πd = 2l πd. π/2 l cos y/2 0 π/2 0 0 l cos y dy 2 ddy Συνεπώς, αν ρ = l/d, και φ = /π, µία εκτιµήτρια του π δίνεται από ˆπ 0 = ˆφ0 = 2ρˆp 77

12 όπου ˆp = R/n. Μία ϐασική ερώτηση είναι πώς να ϐελτιστοποιήσουµε τις τιµές των l και d για να ελαχιστοποιήσουµε την διακύµανση της εκτιµήτριας ˆφ 0. Επειδή η R είναι διωνυµική τυχαία µεταβλητή έχουµε ότι Var(ˆp) = p( p)/n. Συνεπώς, Var( ˆφ 0 ) = 2ρφ( 2ρφ)/4ρ 2 n και αυτή η ποσότητα ελαχιστοποιείται αν ρ = ή l = d. Το παρακάτω πρόγραµµα δίνει ακριβώς την παραπάνω µεθοδολογία. buf<-function(n, d,l) # n is the number of simulations, #d is the distance between the lines { # and l is the needle s length (l =< d). R <- rep(na, n) <- runif(n, 0, d/2) theta <- runif(n, 0, pi/2) y <- (l/2)*cos(theta) R <- ifelse(y >,,0) pi <- cumsum(r)/(:n) rho <- l/d phi <- pi/(2*rho) pi.hat <- /phi pi.hat plot(:n, pi.hat, type="l", lab="number of Simulations", ylab="proportion of Hits") 6.6 Εµπειρική Σύγκριση Εκτιµητριών Η προσοµοίωση µπορεί να χρησιµοποιηθεί για εµπειρική σύγκριση διαφόρων ε- κτιµητρίων οι οποίες χρησιµοποιούνται για την εκτίµηση συγκεκριµένης παραµέτρου. Ας υποθέσουµε ότι στο Πανεπιστήµιο ϕοιτούν 3000 ϕοιτητές εκ των οποίων το 30% είναι µέλη συνδικαλιστικών οργανώσεων ενώ το άλλο 70% είναι ανεξάρτητοι. Υπάρχει µία µελλοντική εκλογή προέδρου των ϕοιτητών και ας υποθέσουµε ότι δύο ανεξάρτητοι υποψήφιοι, ο Α και Β, διεκδικούν την εκλογή. Εστω θ U = ποσοστό µη ανεξάρτητων ϕοιτητών που υποστηρίζουν τον Α θ I = ποσοστό ανεξάρτητων ϕοιτητών που υποστηρίζουν τον Α 78

13 θ = ποσοστό ϕοιτητών που υποστηρίζουν τον Α Γίνεται δειγµατοληπτική έρευνα σε 00 ϕοιτητές για την εκτίµηση της παραµέτρου θ και προτείνονται 3 διαφορετικές µεθόδοι εκτίµησης.. Τυχαία επιλογή 00 ϕοιτητών και εκτίµηση µέσω της στατιστικής συνάρτησης ˆθ = ποσοστό ϕοιτητών που υποστηρίζουν τον Α. 2. Τυχαία επιλογή 00 ϕοιτητών και εκτίµηση µέσω της στατιστικών συνάρτησεων ˆθ U = ποσοστό µη ανεξάρτητων ϕοιτητών που υποστηρίζουν τον Α στο δείγµα ˆθ I = ποσοστό ανεξάρτητων ϕοιτητών που υποστηρίζουν τον Α στο δείγµα ˆθ 2 = 0.30ˆθ U ˆθ I 3. Επιλογή 30 µη ανεξάρτητων και 70 ανέξαρτητων. Τότε ˆθ U = ποσοστό από µη ανεξάρτητους ϕοιτητές που υποστηρίζουν τον Α ˆθ I = ποσοστό από ανεξάρτητους ϕοιτητές που υποστηρίζουν τον Α ˆθ 3 = 0.30ˆθ U ˆθ I Ποια διαδικασία είναι η καλύτερη ; Αν και µπορούµε να απαντήσουµε ϑεωρητικά στην ερώτηση, εδώ ϑα δούµε πώς µπορεί να µας ϐοηθήσει η προσοµοίωση. Αρκεί να επαναλάβουµε κάθε διαδικασία αρκετές ϕορές και µετά να εξετάσουµε πόσο ακριβή είναι τα αποτελέσµατα. Πρέπει να επιλέξουµε τις αληθινές τιµές των πα- ϱαµέτρων ϕυσικά και η όλη ϑεωρία προσοµοιώνεται µε τον παρακάτω κώδικα. Τα αποτελέσµατα δίνουν την γραφική παράσταση 6.6. # choose "true" theta.u and theta.i theta.u <-.8 theta.i <-.4 prop.u <-.3 prop.i <- - prop.u theta <- prop.u * theta.u + prop.i * theta.i sim. <- function() { <- rbinom(,sampsize,theta) 79

14 return ( / sampsize ) sim.2 <- function() { n.u <- rbinom (, sampsize, prop.u ) n.i <- sampsize - n.u.u <- rbinom (, n.u, theta.u ).i <- rbinom (, n.i, theta.i ) t.hat.u <-.u / n.u t.hat.i <-.i / n.i return ( prop.u * t.hat.u + (-prop.u) * t.hat.i ) sim.3 <- function() { n.u <- sampsize * prop.u n.i <- sampsize * prop.i.u <- rbinom (, n.u, theta.u ).i <- rbinom (, n.i, theta.i ) t.hat.u <-.u / n.u t.hat.i <-.i / n.i return ( prop.u * t.hat.u + (-prop.u) * t.hat.i ) sampsize <- 00 n.times <- 000 # should be enough theta.hat <- matri ( NA, n.times, 3 ) for ( i in :n.times ) { theta.hat[i,] <- sim.() theta.hat[i,2] <- sim.2() theta.hat[i,3] <- sim.3() print ( apply(theta.hat,2,mean) ) [] boplot ( theta.hat ~ col(theta.hat) ) 80

15 Σχήµα 6.6: 000 προσοµοιώσεις της ˆθ για τρεις διαφορετικές µεθόδους εκτίµησης. 8

16 82

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

Τεχνικές Αναδειγµατοληψίας

Τεχνικές Αναδειγµατοληψίας Κεφάλαιο 11 Τεχνικές Αναδειγµατοληψίας Ο στατιστικός πολύ συχνά ενδιαφέρεται να υπολογίσει µια εκτιµήτρια µαζί µε το τυπικό της σφάλµα µε σκοπό να κατασκευάσει διαστήµατα εµπιστοσύνης για την πραγµατική

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας. Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

Μέθοδος Newton-Raphson

Μέθοδος Newton-Raphson Κεφάλαιο 14 Μέθοδος Newton-Raphson Θα συζητήσουµε υπολογισµό της εκτιµήτριας µεγίστης πιθανοφάνειας µε τη µέ- ϑοδο Newton-Raphson. Αν και υπάρχουν περιπτώσεις για τις οποίες η λύση µπορεί να υπολογιστεί

Διαβάστε περισσότερα

Γραφήµατα. Κεφάλαιο Απλά Γραφήµατα. > x <- rnorm(50, mean=1, sd=2) > plot(x) > y <- seq(0,20,.1) > z <- exp(-y/10)*cos(2*y)

Γραφήµατα. Κεφάλαιο Απλά Γραφήµατα. > x <- rnorm(50, mean=1, sd=2) > plot(x) > y <- seq(0,20,.1) > z <- exp(-y/10)*cos(2*y) Κεφάλαιο 4 Γραφήµατα Τα γραφήµατα είναι πολύ χρήσιµα για την οπτική αναπαράσταση των δεδοµένων και καθοδηγούν τον στατιστικό στην διαδικασία της µοντελοποίησης και αξιολόγησης της ανάλυσης. Το κεφάλαιο

Διαβάστε περισσότερα

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.) 3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕΡΟΣ Ο ΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Στο εργαστήριο αυτό θα ασχοληθούµε µε την προσοµοίωση της ρίψεως ενός δίκαιου νοµίσµατος. Το µοντέλο το οποίο θα πρέπει να πραγµατοποιήσουµε θα πρέπει να

Διαβάστε περισσότερα

Πρακτική µε στοιχεία στατιστικής ανάλυσης

Πρακτική µε στοιχεία στατιστικής ανάλυσης Πρακτική µε στοιχεία στατιστικής ανάλυσης 1. Για να υπολογίσουµε µια ποσότητα q = x 2 y xy 2, µετρήσαµε τα µεγέθη x και y και βρήκαµε x = 3.0 ± 0.1και y = 2.0 ± 0.1. Να βρεθεί η ποσότητα q και η αβεβαιότητά

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

P (M = 9) = e 9! =

P (M = 9) = e 9! = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης 5ο Φροντιστήριο Ασκηση 1. ύο ποµποί ο Α και ο Β στέλνουν ανεξάρτητα

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

1.4 Λύσεις αντιστρόφων προβλημάτων.

1.4 Λύσεις αντιστρόφων προβλημάτων. .4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014

Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014 Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 22 Σεπτεµβρίου 2014 1 / 49 Συνάρτηση και καµπύλη κόστους Πολύ χρήσιµες

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III 0 TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III Νοέμβριος Eστω,,, τυχαίο δείγμα από κατανομή f( x; ), όπου συμβολίζει άγνωστη παράμετρο (a) Να ορισθεί η έννοια του επαρκούς στατιστικού

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling)

5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling) 5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling) Συχνά, είναι ταχύτερη και ευκολότερη η επιλογή των μονάδων του πληθυσμού, αν αυτή γίνεται από κάποιο κατάλογο ξεκινώντας από κάποιο τυχαίο αρχικό σημείο

Διαβάστε περισσότερα

Εισαγωγή στην R. Κεφάλαιο 1. περιέχει περαιτέρω πληροφορίες καθώς

Εισαγωγή στην R. Κεφάλαιο 1.  περιέχει περαιτέρω πληροφορίες καθώς Κεφάλαιο 1 Εισαγωγή στην R Ο κύριος σκοπός αυτών των σηµειώσεων είναι η εισαγωγή στην στατιστική γλώσσα προγραµµατισµού R. Η γλώσσα R είναι ελεύθερα διαθέσιµη από το διαδίκτυο και η υποστήριξή της γίνεται

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Να κατανοηθεί η έννοια της εκτίµησης σηµείου και της εκτίµησης διαστήµατος. Επίσης να κατανοηθεί η έννοια της δειγµατικής κατανοµής παραµέτρου και να υπολογισθούν µε χρήση της Κεντρικού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας κυρίως τρεις μεθόδους:. Αναλυτικές Μέθοδοι: πραγματοποιείται κατάλληλη μαθηματική μοντελοποίηση του στοχαστικού

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

(X1 X 2 ) 2}. ( ) f 1 (x i ; θ) = θ x i. (1 θ) n x i. x i log. i=1. i=1 t2 i

(X1 X 2 ) 2}. ( ) f 1 (x i ; θ) = θ x i. (1 θ) n x i. x i log. i=1. i=1 t2 i ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΣΤΑΤΙΣΤΙΚΗ I: ΕΚΤΙΜΗΤΙΚΗ 8 Ιουνίου 005 Εξεταστική περίοδος Ιουνίου 005 ΘΕΜΑΤΑ Εστω X = (X,, X n ), n, τυχαίο δείγµα από κατανοµή Bernoull B(, θ), θ Θ = (0, ) (α) (0 µονάδες) Να δειχθεί

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p ΑΣΚΗΣΗ 1 ΣΕΜΦΕ 14-15 i. Έστω yi ο αριθμός των προσπαθειών κάθε μαθητή μέχρι να πετύχει τρίποντο. Ο αριθμός των προσπαθειών πριν ο μαθητής να πετύχει τρίποντο θα είναι xi = yi - 1, i = 1,,18. 2 2 3 2 1

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

= p 20 1 p 18. 1 p Το σημείο στο οποίο μηδενίζεται η παραπάνω μερική παράγωγος είναι

= p 20 1 p 18. 1 p Το σημείο στο οποίο μηδενίζεται η παραπάνω μερική παράγωγος είναι Άσκηση 1 i) Σε κάθε παρατήρηση περιλαμβάνεται ένας έλεγχος (ο τελευταίος) κατά τον οποίο εμφανίστηκε το πρώτο ελαττωματικό της παραγωγικής διαδικασίας. Επομένως, ο αριθμός ελέγχων που έγιναν πριν εμφανιστεί

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

ειγµατοληπτική κατανοµή

ειγµατοληπτική κατανοµή Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Μάρτιος 2010 ειγµατοληπτική κατανοµή 1. Εισαγωγή Με την ενότητα αυτή, µπαίνουµε στις έννοιες της επαγωγικής

Διαβάστε περισσότερα

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) Α. Ερωτήσεις πολλαπλών επιλογών.(11 βαθµοί) (1:3 βαθµοί, 2-9:8 βαθµοί) 1. ίνεται ο πίνακας: Χ

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ (ΘΕ ΠΛΗ ) ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ TEΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουνίου 8 Θέµα ο ( µονάδες) α) ( µονάδες) yz yz του διανυσµατικού

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1. Περιεχόμενα της Ενότητας Στατιστική ΙI Ενότητα 1: Δειγματοληψία και Κατανομές Δειγματοληψίας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 1. ειγµατοληψία Πιθανοτικές

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

(365)(364)(363)...(365 n + 1) (365) k

(365)(364)(363)...(365 n + 1) (365) k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 21//2016 Ηµεροµηνία Παράδοσης :

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Οµάδα (I): Οµάδα (II): Οµάδα (III):

Οµάδα (I): Οµάδα (II): Οµάδα (III): I Α) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ), δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση ίνονται τρείς οµάδες τιµών Οµάδα (I): 0

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( )

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( ) Ερωτήσεις ανάπτυξης. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι β ( f () f () ) + α ηµ d β α = [f () ηµ] - [f () συν] β α. ( ) β) Αν f () = ηµ, να αποδείξετε ότι f () + f ()

Διαβάστε περισσότερα

Απλός Προγραµµατισµός στην R

Απλός Προγραµµατισµός στην R Κεφάλαιο 5 Απλός Προγραµµατισµός στην R Η έννοια του προγραµµατισµού στην R ϐασίζεται στη δηµιουργία καινούργιων συναρτήσεων οι οποίες ϑα χρησιµοποιηθούν για περαιτέρω ανάπτυξη της γλώσσας. Το κύριο δοµικό

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

Παράδειγµα (Risky Business 1)

Παράδειγµα (Risky Business 1) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 3 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Συµπεράσµατα για την αβεβαιότητα Θέµατα

Διαβάστε περισσότερα

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling)

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) 6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) Από την θεωρία που αναπτύχθηκε στα προηγούμενα κεφάλαια, φαίνεται ότι μια αλλαγή στον σχεδιασμό της δειγματοληψίας και, κατά συνέπεια, στην μέθοδο εκτίμησης

Διαβάστε περισσότερα

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

Κεφάλαιο 9 Κατανομές Δειγματοληψίας Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων ΑΓΡΙΝΙΟ ΣΤΑΤΙΣΤΙΚΗ Φραγκίσκος Κουτελιέρης Αναπληρωτής

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 7: Κανονική Κατανομή Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται

Διαβάστε περισσότερα

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 )

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 0 Θέμα Δίδονται οι πίνακες K= 5 4, L=, M=. 9 7 A) (8 μονάδες) Για κάθε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές I

Ηλεκτρονικοί Υπολογιστές I ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Κατανομές και έλεγχοι υποθέσεων με τη γλώσσα R Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό ο Φροντιστηριο ΗΥ7 - Επαναληπτικό Επιµέλεια : Γ. Καφεντζής 7 Ιανουαρίου 4 Ασκηση. Το σήµα s µεταδίδεται από ένα δορυφόρο αλλά λόγω της επίδρασης του ϑορύβου το λαµβανόµενο σήµα έχει τη µορφή X s + W. Οταν

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία ακραίων τιμών

Εισαγωγή στη θεωρία ακραίων τιμών Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,

Διαβάστε περισσότερα