Στοιχεία Θεωρίας Αριθμών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Στοιχεία Θεωρίας Αριθμών"

Transcript

1 Ε Μ Π Σ Ε Μ & Φ Ε Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Κωστής Γ Διδάσκοντες: Στάθης Ζ Άρης Π 9 Δεκεμβρίου 2011

2 1 Πιθανές Επιθέσεις στο RSA Υπενθύμιση RSA Η Alce θέλει να στείλει ένα μήνυμα στον Bob χρησιμοποιώντας το σύστημα κρυπτογράφησης RSA. Η διαδικασία που ακολουθεί είναι η ακόλουθη: 1. Ο Bob επιλέγει δυο διαφορετικούς πρώτους αριθμούς p, q N με τυχαίο τρόπο και υπολογίζει τον αριθμό n = p q. 2. Διαλέγει e N : gcd(e, ϕ(n)) = 1, όπου ϕ(n) είναι η συνάρτηση Euler και επειδή οι p, q είναι πρώτοι ισχύει πως ϕ(n) = (p 1)(q 1). 3. Τέλος αξιοποιώντας τον Επεκταμένο Αλγόριθμο του Ευκλείδη υπολογίζει τον αριθμό d που είναι τέτοιος ώστε e d 1 ( mod ϕ(n)). Κοινώς βρίσκει τον αντίστροφο του e στο ϕ(n). 4. Στέλνει στην Alce το δημόσιο κλειδί του, δηλαδή τους αριθμούς n και e (P u k (n, e)). Το ιδιωτικό κλειδί του Bob είναι P r k (p, q, d) 5. Η Alce κρυπτογραφεί το μήνυμα m υπολογίζοντας το αντίστοιχο κρυπτομήνυμα C με τη συνάρτηση κρυπτογράφησης E(m) = m e mod n και το στέλνει στον Bob. 6. Ο Bob αποκρυπτογραφεί το C με τη συνάρτηση αποκρυπτογράφησης D(C) = C d mod n και διαβάζει το μύνημα m. Άσκηση 1. Υποθέτουμε πως μία εταιρεία (τα παλιά χρόνια) είχε ζητήσει από τους υπαλλήλους της να επιλέγουν δημόσια κλειδιά P u k (n, 3) ώστε η κρυπτογράφηση να είναι γρήγορη και να μην σπαταλούνται οι διαθέσιμοι υπολογιστικοί εταιρικοί πόροι. Οι υπάλληλοι λοιπόν με τον περιορισμό το gcd(3, ϕ(n)) = 1 επιλέγουν με τυχαίο τρόπο p, q ώστε να σχηματίσουν τα δημόσια κλειδιά τους. 1

3 Η Alce, που είναι υπάλληλος της εταιρείας, επιθυμεί να στείλει στους τρεις συναδέλφους της Bob, Charle και Dane ένα ιδιαίτερα σημαντικό μήνυμα, έστω m. Η Eve, που δουλεύει σε μια ανταγωνιστική εταιρεία, καταφέρνει και υποκλέπτει τα κρυπτομήνυμα C με {1, 2, 3}. Θα μπορέσει η Eve να αποκρυπτογραφήσει το μήνυμα; Λύση. Ναι, θα μπορέσει. Καταρχάς η Eve βρίσκει τα δημόσια κλειδιά των Bob, Charle και Dane στον κατάλογο της εταιρείας: Όνομα Δημόσιο Κλειδί Βοb (n 1, 3) Charle (n 2, 3) Dane (n 3, 3) H Eve σχηματίζει το παρακάτω σύστημα εξισώσεων: C 1 = m 3 mod n 1 m 3 C 1 mod n 1 C 2 = m 3 mod n 2 m 3 C 2 mod n 2 C 3 = m 3 mod n 3 m 3 C 3 mod n 3 Αν οι p, q έχουν επιλεγεί με τυχαίο τρόπο μπορούμε να υποθέσουμε, με μεγάλη πιθανότητα, πως οι Bob, Charle και Dane έχουν επιλέξει διαφορετικά p, q. Συνεπώς τα n είναι αν δυο σχετικά πρώτοι και σύμφωνα με το Κινέζικο Θεώρημα Υπολοίπων (CRT) το παραπάνω σύστημα έχει μοναδική λύση στο Z N, όπου N = n 1 n 2 n 3. Έτσι η Eve λύνει το σύστημα και λαμβάνει: u m 3 mod N Επειδή η κρυπτογράφηση γίνεται modulo n έπεται πως m < n, m 3 < N u = m 3. Έτσι η Eve λαμβάνει το μύνημα m = 3 u. Σημειώνουμε πως η παραπάνω αδυναμία του RSA υπάρχει όποτε ο αριθμός των παραληπτών είναι μεγαλύτερος του εκθέτη και οι παραλήπτες έχουνε εκλέξει διαφορετικά p, q. 2

4 Παράδειγμα Έστω πως τα δημόσια κλειδιά των παραληπτών είναι: Όνομα Δημόσιο Κλειδί (n,e) Βοb (2419, 3) Charle (979, 3) Dane (1219, 3) Αναφέρουμε πως τα ιδιωτικά κλειδιά των παραληπτών είναι: Όνομα Ιδιωτικό Κλειδί (p,q,d) Βοb (41, 59, 1547) Charle (89, 11, 587) Dane (53, 23, 763) Η Alce κρυπτογραφεί το μήνυμα m = 327 με τη συνάρτηση κρυπτογράφησης και λαμβάνει: c 1 = mod 2419 = 1557 c 2 = mod 979 = 798 c 3 = mod 1219 = 1206 Η Eve υποκλέπτει τα μηνύματα και σχηματίζει το σύστημα: u = C 1 mod n 1 u = C 2 mod n 2 u = C 3 mod n 3 Με το CRT βρίσκει u = και στη συνέχεια υπολογίζει το m = 3 u =

5 Άσκηση 2. Η ανταλλαγή μηνυμάτων πραγματοποιείται με το κρυπτοσύστημα RSA¹. Με κάποιο τρόπο έχει διέρρευσε το μυστικό κλειδί d. Το δημόσιο κλειδί είναι (n, e) (υποθέτουμε πως το e είναι μικρό). Να δείξετε πως μπορούμε να παραγοντοποιήσουμε το n, δηλαδή να βρούμε πρώτους αριθμούς p, q ώστε n = p q. Απόδειξη. Γνωρίζουμε πως στο RSA ο αριθμός d επιλέγεται έτσι ώστε να ικανοποιείται η σχέση e d 1 (mod φ(n)). Σημειώνουμε πως η επιλογή του είναι μοναδική. Συνεπώς θα υπάρχει k Z ώστε: e d 1 = kφ(n) (1) Το d έχει υπολογιστεί modulo ϕ(n) και συνεπώς d < ϕ(n) e d 1 < e ϕ(n) 1. Άρα λόγω της (1) ισχύει πως: k ϕ(n) < e ϕ(n) 1 Από την τελευταία ανισότητα προκύπτει πως το k {1, 2,..., e 1}. Έτσι μέσω της εξίσωσης (1) έχουμε πως: ϕ(n) = e d 1 k και επειδή πρέπει το ϕ(n) < n με O(e) ελέγχους προσδιορίζουμε το ϕ(n). Αφού προσδιορίσαμε το ϕ(n) η παραγοντοποίηση του n είναι εύκολη. Γνωρίζουμε τις σχέσεις: ϕ(n) = (p 1)(q 1) (2) n = p q (3) Από την (2) λαμβάνουμε: ϕ(n) = pq p q + 1 ϕ(n) (3) = n p q + 1 p + q = n + 1 ϕ(n) ¹Η άσκηση αυτή μοιάζει με την επίθεση κοινού γινομένου. 4

6 Επίσης έχουμε πως: p q = p 2 2pq + q 2 = (p + q) 2 4pq (3) = (p + q) 2 4n Έτσι καταλήγουμε στο γραμμικό σύστημα δυο εξισώσεων με δύο αγνώστους: p + q = n + 1 ϕ(n) p q = (n + 1 ϕ(n)) 2 4n από όπου προσδιορίζουμε τα p, q πολύ εύκολα. Παράδειγμα για e = 3 Έστω πως το ιδιοτικό κλειδί είναι: (p, q, d) = (41, 59, 1547) το δημόσιο είναι: (n, e) = (2419, 3) και έχει διαρεύσει το d. Θα παραγοντοποιήσουμε το n γνωρίζοντας τα: (n, e, d) = (2419, 3, 1547) Αφού το k 1, 2 ελέγχουμε: 1. Αν = 1 τότε: ϕ(n) = e d 1 k = = = 4640 > n (αδύνατο) 2. Αν = 2 τότε: ϕ(n) = = 2320 < n 5

7 Έτσι: p + q = n + 1 ϕ(n) = = 100 p q = (n + 1 ϕ(n)) 2 4n = = 18 και από τις παραπάνω βρίσκουμε πως p = 41 και q = 59. Άσκηση 3 (chosen-cphertext attack). Η Eve θέλει να αποκρυπτογραφήσει το κρυπτοκείμενο c C της εταιρείας NTUA. H Eve έχει λαδώσει έναν υπάλληλο της NTUA, ο οποίος είναι διατεθειμένος να αποκρυπτογραφήσει οποιοδήποτε κρυπτοκείμενο του στείλει η Eve εκτός από αυτά που έχει αποστείλει η NTUA (Adaptve CCA, βλ. Πίνακα 1). Ο υπάλληλος θεωρεί πως με τη συμπεριφορά του δεν δημιουργεί κανένα ρήγμα στην ασφάλεια του συστήματος. Έχει δίκιο ή η Eve θα μπορέσει να αποκρυπτογραφήσει το c και να λάβει το μήνυμα m; Non-Adaptve CCA Ο Κρυπταναλυτής έχει καταφέρει να έχει στη διάθεση του κάποια ζεύγη κειμένων - κρυπτοκειμένων. Adaptve CCA Ο Κρυπταναλυτής μπορεί να ζητά την αποκρυπτογράφηση οποιουδήποτε κειμένο εκτώς του κρυπτοκειμένου που θέλει να αποκρυπτογραφησει. Πίνακας 1: Είδη επιθέσεων τύπου chosen-cyphertext attack. Απόδειξη. Η Eve θα εκμεταλλευτεί τη πολλαπλασιαστική ιδιότητα του RSA. Δηλαδή αν: c 1 = (m 1 ) e c 2 = (m 2 ) e mod n mod n τότε: (c 1 c 2 ) = (m 1 m 2 ) e mod n Συγκεκριμένα η Eve επιλέγει ένα r P τέτοιο ώστε να γνωρίζει το αντίστροφο του modulo n r 1. Στέλνει στον συνεργάτη της το μήνυμα r e c για να της το 6

8 αποκρυπτογραφήσει. Έτσι λαμβάνει: (r e c) d r e d c d (mod n) r c d (mod n) r m (mod n) Πολλαπλασιάζοντας το (r m (mod n)) με r 1 λαμβάνει το μήνυμα. 7

9 2 Τάξη γινομένου στοιχείων ομάδας Άσκηση 4. Έστω (G, ) αβελιανή ομάδα με ουδέτερο στοιχείο το e. Αν a, b G, με ord(a) = k και ord(b) = m. Να δείξετε πως αν gcd(k, m) = 1 τότε ord(a b) = km. Απόδειξη. Επειδή η G είναι αβελιανή ισχύει η αντιμεταθετική ιδιότητα, δηλαδή a, b G : a b = b a. Από το προηγούμενο προκύπτει εύκολα πως a, b G και n Z : (a b) n = a n b n, ιδιότητα που δεν ισχύει γενικά σε ομάδες που δεν είναι αβελιανές. Έτσι παρατηρούμε πως (a b) km = a km b km = (a k ) m (b m ) k = e m e k = e. Το οποίο σημαίνει πως ord(a b) (km) (1) Ένα δεύτερο συμπέρασμα που αφορά τις αβελιανές ομάδες είναι πως αν τα x, y είναι αντίστροφα στοιχεία τότε έχουν την ίδια τάξη. Διότι: x y = e { (x y) ord(x) = e y ord(x) = e { ord(y) ord(x) (x y) ord(y) = e x ord(y) = e ord(x) = ord(y) ord(x) ord(y) Aν θέσουμε u = ord(a b), λόγω του (2) προκύπτει πως (a b) u = e a u b u = e το οποίο λόγω του δεύτερου συμπεράσματος σημαίνει πως: ord(a u ) = ord(b u ) (2) Έστω τώρα πως x = ord(a u ) τότε a ux = e όπου x o ελάχιστος δυνατός φυσικός ώστε ord(a) ux. Άρα: ux = lcm (u, ord(a)) = Συνεπώς από σχέση (2): u ord(a) gcd (u, ord(a)) x = ord(a) gcd (u, ord(a)) = ord(b) gcd (u, ord(b)) ord(a) gcd (u, ord(a)) Όμως και τα δύο κλάσματα είναι ακέραιοι (αφού είναι οι τάξεις των a u, b u αντίστοιχα) και επομένως είναι διαιρέτες των k = ord(a), m = ord(b). Αφού όμως τα k, m είναι πρώτοι μεταξύ τους ο μόνος κοινός διαιρέτης είναι η μονάδα. Επομένως: 8

10 ord(a) = gcd (u, ord(a)) ord(b) = gcd (u, ord(b)) οπότε: k = ord(a) u m = ord(b) u και επειδή k, m πρώτοι μεταξύ τους προκύπτει km u = ord(a b) Αφού λοιπόν u km και km u προκύπτει u = km. 9

11 Αʹ Χρήσιμη Haskell για την Άσκηση 1 1 E u c l d e a n E x t e n d e d a l g o r t h m Da v d Gr a y : 3 I m p l e m e n t n g P u b l c Key C r y p t o g r a p h y n H a s k e l l 5 7 g c de : : I n t e g e r > I n t e g e r > ( I n t e g e r, I n t e g e r, I n t e g e r ) g c de a b = 9 l e t g c d _ f ( r1, x1, y1 ) ( r2, x2, y2 ) 11 r 2 == 0 = ( r1, x1, y1 ) o t h e r w s e = 13 l e t q = r 1 d v r 2 15 r = r 1 mod r 2 n 17 g c d _ f ( r2, x2, y2 ) ( r, x1 q*x2, y1 q* y2 ) ( d, x, y ) = g c d _ f ( a, 1, 0 ) ( b, 0, 1 ) 19 n f d < 0 21 t he n ( d, x, y ) e l s e ( d, x, y ) 23 I n v e r s e mo dul o n 25 n v : : I n t e g e r > I n t e g e r > I n t e g e r 27 n v a n g /= 1 = e r r o r No n v e r s e e x s t s 29 o t h e r w s e = x mod n w he r e ( g, x, _ ) = g c de a n 31 R e l a t v e l y P r me 33 r l p : : I n t e g e r > I n t e g e r > I n t e g e r 35 r l p a b g /= 1 = 0 37 g == 1 = 1 w he r e ( g, x, _ ) = g c de a b 39 C h n e s e R e ma n d e r T heorem 41 c r t : : [ I n t e g e r ] > [ I n t e g e r ] > I n t e g e r c r t a m = 43 mod ( sum ( z pw t h ( * ) ( z pw t h ( * ) bg_m b g _ n ) a ) ) prod_m w he r e 45 prod_m = p r o d u c t m bg_m = [ d v prod_m < m] 47 b g _ n = z pw t h ( n v ) bg_m m 10

12 Βʹ Χρήσιμη σχέση για Άσκηση 4 Πρόταση Βʹ.1. Έστω m, n Z, ισχύει ότι: lcm(m, n) = mn gcd (m, n) Απόδειξη. Σύμφωνα με το Θεμελιώδες Θεώρημα της Αριθμητική κάθε z Z μπορεί να γραφεί στη μορφή: z = p e 1 1 pe 2 2 pe k k όπου p πρώτοι και e δυνάμεις. Μια άλλη ισοδύναμη έκφραση για τον z θα ήταν ως το γινόμενο όλων των πρώτων με τις δυνάμεις των πρώτων που δεν συμμετέχουν στην παραπάνω έκφραση ίσες με το 0. Έτσι: Συνεπώς έχουμε: και z = m = n = Επίσης ισχύουν οι παρακάτω σχέσεις: =1 =1 =1 p e p m p n και gcd(m, n) = lcm(m, n) = =1 =1 p mn(m,n ) p max(m,n ) 11

13 Έτσι τώρα εύκολα προκύπτει η ζητούμενη σχέση: gcd(m, n) lcm(m, n) = = = = =1 =1 =1 =1 = m n p mn(m,n ) =1 p max(m,n ) p mn(m,n )+max(m,n ) p m +n p m + =1 p n 12

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος

Διαβάστε περισσότερα

Κρυπτογραφία Δημοσίου Κλειδιού

Κρυπτογραφία Δημοσίου Κλειδιού Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Πρόβληµα 2 (12 µονάδες)

Πρόβληµα 2 (12 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 Η Aσύμμετρη Kρυπτογραφία ή Κρυπτογραφία Δημοσίου Κλειδιού χρησιμοποιεί δύο διαφορετικά κλειδιά για την κρυπτογράφηση και αποκρυπτογράφηση. Eπινοήθηκε στο τέλος της δεκαετίας

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Θεωρία αριθμών Αλγεβρικές δομές Χρήστος Ξενάκης Το σύνολο των ακεραίων Ζ = {..., -2, -1, 0, 1, 2,...} Το σύνολο των φυσικών Ν = {0, 1, 2,...}

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true

Διαβάστε περισσότερα

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Κρυπτογραφία Δημόσιου Κλειδιού -RSA 1 Κρυπτογραφία Δημόσιου Κλειδιού - Ιστορία Ηνωμένες Πολιτείες 1975: Ο Diffie οραματίζεται

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)

Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Κρυπτογραφία Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Εύρεση αντίστροφου αριθμού Mod n Έχουμε ήδη δει ότι πολύ συχνά συναντάμε την ανάγκη να βρούμε τον αντίστροφο ενός αριθμού a modulo n, δηλαδή

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2 Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ Η Alice θέλει να στείλει ένα μήνυμα m(plaintext) στον Bob μέσα από ένα μη έμπιστο κανάλι και να μην μπορεί να το

Διαβάστε περισσότερα

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α. 1 Ψηφιακές Υπογραφές Η ψηφιακή υπογραφή είναι μια βασική κρυπτογραφική έννοια, τεχνολογικά ισοδύναμη με την χειρόγραφη υπογραφή. Σε πολλές Εφαρμογές, οι ψηφιακές υπογραφές χρησιμοποιούνται ως δομικά συστατικά

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Υπολογισμός της δύναμης z=x b modn

Υπολογισμός της δύναμης z=x b modn Υπολογισμός της δύναμης z=x b modn 1.Γράφουμε τον εκθέτη b στο δυαδικό σύστημα αρίθμησης i b = b i όπου i= 0 bi {0,1} I==0,1,,l-1.Εφαρμόζουμε έπειτα τον εξής αλγόριθμο: z=1 for I=l-1 downto 0 do z=z modn

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Καλογερόπουλος Παναγιώτης

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr

Διαβάστε περισσότερα

6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 6.1. Εισαγωγή Οι σύγχρονες κρυπτογραφικές λύσεις συμπεριλαμβάνουν κρυπτογραφία δημόσιου κλειδιού ή αλλιώς, ασύμμετρη κρυπτογραφία. Η ασύμμετρη κρυπτογραφία βασίζεται αποκλειστικά

Διαβάστε περισσότερα

Το κρυπτοσύστημα RSA

Το κρυπτοσύστημα RSA Το κρυπτοσύστημα RSA Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία (2016-2017) 25/11/2016 1 / 49 (ΕΜΠ - Κρυπτογραφία (2016-2017)) Το κρυπτοσύστημα RSA Περιεχόμενα Κρυπτογραφία Δημοσίου Κλειδιού

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις)

Κρυπτογραφία. Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις) Κρυπτογραφία Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις) Έστω ότι το κλειδί είναι ένας πίνακας 2 x 2. Αυτό σημαίνει ότι: Σπάμε το μήνυμα σε ζευγάρια γραμμάτων Κάθε γράμμα το αντιστοιχούμε σε έναν αριθμό

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας Ηλεκτρονικό εμπόριο HE 7 Τεχνολογίες ασφάλειας Πρόκληση ανάπτυξης ασφαλών συστημάτων Η υποδομή του διαδικτύου παρουσίαζε έλλειψη υπηρεσιών ασφάλειας καθώς η οικογένεια πρωτοκόλλων TCP/IP στην οποία στηρίζεται

Διαβάστε περισσότερα

Αλγεβρικές Δομές και Αριθμοθεωρία

Αλγεβρικές Δομές και Αριθμοθεωρία Κεφάλαιο 9 Αλγεβρικές Δομές και Αριθμοθεωρία 9.1 Εισαγωγή Θα παρουσιάσουμε κάποια στοιχεία από Θεωρία Αριθμών και ελάχιστα από Θεωρία Ομάδων. Οι γνώσεις αυτές είναι οι ελάχιστες απαραίτητες για την κατανόηση

Διαβάστε περισσότερα

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ Η θεωρία αριθμών και οι αλγεβρικές δομές τα τελευταία χρόνια χρησιμοποιούνται όλο και περισσότερο στην κρυπτολογία. Αριθμο-θεωρητικοί αλγόριθμοι χρησιμοποιούνται σήμερα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ ΜΕΓΑΛΩΝ ΑΚΕΡΑΙΩΝ ΚΑΙ ΟΙ ΚΡΥΠΤΑΝΑΛΥΤΙΚΕΣ ΕΠΙΘΕΣΕΙΣ Διπλωματική Εργασία της Σακάρου

Διαβάστε περισσότερα

Κρυπτοσυστήματα Δημοσίου Κλειδιού

Κρυπτοσυστήματα Δημοσίου Κλειδιού Κεφάλαιο 6 Κρυπτοσυστήματα Δημοσίου Κλειδιού 6.1 Εισαγωγή Η ιδέα της κρυπτογραφίας δημοσίων κλειδιών οφείλεται στους Diffie και Hellman (1976) [4], και το πρώτο κρυπτοσύστημα δημοσίου κλειδιού ήταν το

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Αρχικές διαφάνειες: Παναγιώτης Γροντάς Τροποποιήσεις: Άρης Παγουρτζής Εθνικό

Διαβάστε περισσότερα

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ 4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Πολυωνυµική εξίσωση Λέγεται κάθε εξίσωση της µορφής Ρ(x) = 0, όπου Ρ(x) πολυώνυµο.. Ρίζα πολυωνυµικής εξίσωσης Λέγεται κάθε ρίζα του αντίστοιχου πολυωνύµου.

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 32 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Άρης Παγουρτζής Στάθης Ζάχος Σχολή ΗΜΜΥ ΕΜΠ Διοικητικά του μαθήματος Διδάσκοντες Στάθης Ζάχος Άρης Παγουρτζής Πέτρος Ποτίκας Βοηθοί διδασκαλίας Παναγιώτης Γροντάς Αντώνης

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα [1, n] που

Διαβάστε περισσότερα

Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης

Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης Γεώργιος Κοτζάμπασης Εκπαιδευτήρια «Ο Απόστολος Παύλος» georgekotzampasis@gmail.com Επιβλέπων καθηγητής: Λάζαρος Τζήμκας Καθηγητής

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 1 Το Κρυπτοσύστηµα RSA Η ιδέα της κρυπτογραφίας δηµοσίου κλειδιού παρουσιάσθηκε για πρώτη φορά το 1976 από τους Dffe και Hellman Ένα χρόνο αργότερα, οι R L Rvest, A Shamr

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτοαλγόριθμοι Χρήστος Ξενάκης Θεωρία Πληροφορίας Η Θεωρία πληροφορίας (Shannon 1948 1949) σχετίζεται με τις επικοινωνίες και την ασφάλεια

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Εισαγωγή Χρήστος Ξενάκης Στόχος του μαθήματος Η παρουσίαση και ανάλυση των βασικών θεμάτων της θεωρίας κρυπτογραφίας. Οι εφαρμογές της κρυπτογραφίας

Διαβάστε περισσότερα

Σύγχρονη Κρυπτογραφία

Σύγχρονη Κρυπτογραφία Σύγχρονη Κρυπτογραφία 50 Υπάρχουν μέθοδοι κρυπτογράφησης πρακτικά απαραβίαστες Γιατί χρησιμοποιούμε λιγότερο ασφαλείς μεθόδους; Η μεγάλη ασφάλεια κοστίζει σε χρόνο και χρήμα Πολλές φορές θυσιάζουμε ασφάλεια

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Υπογραφές Επιπρόσθετης Λειτουργικότητας Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές  3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2011-2012 Μαριάς Ιωάννης marias@aueb.gr Μαρκάκης Ευάγγελος markakis@gmail.com

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Chapter 12 Cryptography

Chapter 12 Cryptography Chapter 12 Cryptography Σακαβάλας Δημ ήτρης Δ ΠΜΣ Εφαρμοσμ ένες μαθημ ατικές επιστήμ ες Σχη μ ατική αναπαράσταση κρυπτοσυστή μ ατος Κλειδί κρυπτογράφησης : e Κλειδί αποκρυπτογράφησης : d (ιδιωτικό) Αλγόριθμ

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού

Διαβάστε περισσότερα

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιανουάριος 2012 Τμήμα Μαθηματικών Διδάσκων: Χρήστος Κουρουνιώτης Μ1124 ΘΕΜΕΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρατηρήσεις 1. Διαβάστε προσεκτικά τα θέματα πριν αρχίσετε να απαντάτε. Οι απαντήσεις

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών Κρυπτογραφία Θεωρία Αριθμών Παύλος Εφραιμίδης v1.8, 02/04/2014 1 Θεωρία Αριθμών Θεωρία Αριθμών Ένας όμορφος κλάδος των μαθηματικών Απέκτησε μεγάλη πρακτική αξία χάρη στη Σύγχρονη Κρυπτογραφία Η Υπολογιστική

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 10: Αριθμητική υπολοίπων - Κυκλικές ομάδες: Διαιρετότητα - Ευκλείδειος αλγόριθμος - Κατάλοιπα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

a b b < a > < b > < a >.

a b b < a > < b > < a >. Θεωρια Δακτυλιων και Modules Εαρινο Εξαμηνο 2016 17 Διάλεξη 1 Ενότητα 1. Επανάληψη: Προσθετικές ομάδες, δακτύλιοι, αντιμεταθετικοί δακτύλιοι, δακτύλιοι με μοναδιαίο στοιχείο, παραδείγματα. Συμφωνήσαμε

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος

Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 2-3-4

Κρυπτογραφία. Εργαστηριακό μάθημα 2-3-4 Κρυπτογραφία Εργαστηριακό μάθημα 2-3-4 Ασκήσεις επανάληψης Αλγόριθμοι μετατόπισης Προσπαθήστε, χωρίς να γνωρίζετε το κλειδί, να αποκρυπτογραφήσετε το ακόλουθο κρυπτόγραμμα που έχει προκύψει από κάποιον

Διαβάστε περισσότερα

YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Ο στόχος της υβριδικής μεθόδου είναι να αντισταθμίσει τα μειονεκτήματα της συμμετρικής

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος ttouskas@aueb.gr

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ [Ενότητες Ορισμός της Συνέχειας Πράξεις με Συνεχείς

Διαβάστε περισσότερα

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα

Διαβάστε περισσότερα

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών Θεμελιώδη Θέματα Επιστήμης Υπολογιστών 5ο εξάμηνοσεμφε 2η ενότητα: Αλγοριθμικές τεχνικές, αριθμητικοί υπολογισμοί Διδάσκοντες Θεωρία: Στάθης Ζάχος, Άρης Παγουρτζής Εργαστήριο: Δώρα Σούλιου Βοηθός διδασκαλίας:

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Ενότητα 5: ΚΡΥΠΤΟΓΡΑΦΗΣΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος

Διαβάστε περισσότερα

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. PGP (Pretty Good Privacy)

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. PGP (Pretty Good Privacy) Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων PGP (Pretty Good Privacy) Εισαγωγή Το λογισμικό Pretty Good Privacy (PGP), το οποίο σχεδιάστηκε από τον Phill Zimmerman, είναι ένα λογισμικό κρυπτογράφησης

Διαβάστε περισσότερα

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΚΕΦΑΛΑΙΟ Ο.. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΛΟΚΛΗΡΩΜΑΤΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Συμφώνα με το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Θ.Θ.Ο.Λ ισχύει : I. d II. d III. d ln IV. d V. d VI. d VII. d

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 10 : Ασφάλεια Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Πρόσφατες κατευθύνσεις

Πρόσφατες κατευθύνσεις Η Παρούσα Κατάσταση σε θέµατα ΚΡΥΠΤΟΓΡΑΦΙΑΣ Κων/νος Χαλάτσης, Τµ. Π&Τ, ΕΚΠΑ Παρούσα κατάσταση - Προβλήµατα Cryptography (σχόλια για κρυπτοσυστήµατα) http://axion.physics.ubc.ca/crypt.html Snake Oil Warning

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» 1 2.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ιδιότητες των πράξεων Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και με την οήθειά τους η αφαίρεση και η διαίρεση. Για

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir)

Κρυπτογραφία. Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir) Κρυπτογραφία Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir) Πρωτόκολλα μηδενικής γνώσης Βασική ιδέα: Ένας χρήστης Α (claimant) αποδεικνύει την ταυτότητά του σε

Διαβάστε περισσότερα

7. O κβαντικός αλγόριθμος του Shor

7. O κβαντικός αλγόριθμος του Shor 7. O κβαντικός αλγόριθμος του Shor Σύνοψη Ο κβαντικός αλγόριθμος του Shor μπορεί να χρησιμοποιηθεί για την εύρεση της περιόδου περιοδικών συναρτήσεων και για την ανάλυση ενός αριθμού σε γινόμενο πρώτων

Διαβάστε περισσότερα

Κεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων

Κεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων Κεφάλαιο Ψηφιακές Υπογραφές Πίνακας Περιεχομένων 11.1 Εισαγωγή..............................................1 11.2 Ένα πλαίσιο για μηχανισμούς ψηφιακών υπογραφών........... 2 11.3 RSA και σχετικά σχήματα

Διαβάστε περισσότερα

Αννα Νταγιου ΑΕΜ: 432. Εξαμηνο 8. Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε.

Αννα Νταγιου ΑΕΜ: 432. Εξαμηνο 8. Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε. Αννα Νταγιου ΑΕΜ: 432 Εξαμηνο 8 Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε. Παρόµοια, πληκτρολογήστε την εντολή: openssl ciphers v Ποιοι συµµετρικοί αλγόριθµοι

Διαβάστε περισσότερα