Masa i gustina. zadaci

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Masa i gustina. zadaci"

Transcript

1 Masa i gustina zadaci

2 1.)Vaga je u ravnote i dok je na jednom njenom tasu telo, a na drugom su tegovi od: 10 g, 2 g, 500 mg i 200 mg.kolika je masa ovog tela? 2.)Na jednom tasu vage se nal azi telo i teg od 100 mg, a na drugom tegovi od: 5 g, 2 g i 200 mg.kolika je masa tela ako je vaga u ravnote i? 3.) Odredi gustinu metala ija je masa 4,45 t, a zapremina 0,5 m 3. 4.)Masa stene j e 520 kg, a njena zapremina 0,2 m 3.Odredi gustinu stene.

3 5.) Kolika je gustina metala ako jedan njegov komad ima masu 44,8 g, a zapremi nu 2 cm 3? 6.) Odredi gustinu meda ako 0,5 l ove supstancije ima masu 710 g. 7.) Kolika masa benzi na stane u kantu zapremine 15 l? (ρ=710kg/m 3 ) 8.) Masa eli ne konstrukcije za most je 39 t.kolika je zapremina ove konstrukci je? (ρ=7800kg/m 3 )

4 9.)Rezervoar zapremi ne 2,3 m 3 ispunjen je naftom. Izra unaj masu nafte. (ρ=800kg/m 3 ) 10.)U rezervoaru zapremi ne 25 m 3 nalazi se 17,75 t te nosti.odredi gustinu te nosti. 11.)Masa betona j e 5,4 t. Odredi zapreminu. (ρ=2200kg/m 3 ) 12.)Odredi masu kvadra od al uminijuma ije su dimenzije 2 dm, 8 cm i 5 mm? (ρ=2700kg/m 3 ) 13.)Da li iva mase 340 g mo e stati u sud zapremine 26 cm 3? (ρ=11300kg/m 3 )

5 14.)U akvarijum du ine 30 cm, irine 20 cm nasuto je vode do visine 25 cm. Odredi masu vode u akvari jumu. (ρ=1000kg/m 3 ) 15.)Odredi masu staklene plo e na izlogu robne ku e ako je du ine ove plo e 4 m, visina 2,5 m i debljina 6 mm. (ρ=2500kg/m 3 ) 16.)Dimenzije u ionice su 5 m, 8 m i 4 m. Kolika je masa vazduha u u ionici? (ρ=1,29kg/m 3 ) 17.)U sud mase 240 g nasuto j e 75 cm 3 te nosti.masa suda s te no u je 375 g.odredi gustinu te nosti.

6 18.Koje telo je gu e: ono ija je masa 5 t a zapremina 4 m 3, ili telo ija je masa 3 mg a zapremina 2 mm 3? 19.Izra unati zapreminu meteorita od istog gvo a ako njegova masa iznosi 663 g. (ρ=7800kg/m 3 ) 20. Kocka napravl jena od aluminijuma ima ivicu dugu 5 cm. Kol ika je njena masa? (ρ=2700kg/m 3 )

7 21.Kolika je masa 2 dm 3 olova? (ρ=11300kg/m 3 ) 22.U cisternu je nasuto 200 m 3 nafte.kolika je masa nafte? (ρ=800kg/m 3 ) 23.Kolika je masa alkohola kojim je napunjena fla a zapremine 2 l? (ρ=800kg/m 3 ) 24.Kolike zapremine mora biti sanduk u koj i stane 2 t peska? (ρ=1600kg/m 3 )

8 25.Metalna kugla ima masu 1,4 kg. Kol ika je gustina kugle, ako joj je zapremina 518 cm 3? 26.Odredi masu tacne ije dno ima dimenzije 2,8 dm, 3,6 dm i 10 mm. (ρ=550kg/m 3 ) 27.Koliku zapreminu ima drvena stol ica mase 4 kg? (ρ=750kg/m 3 ) 28.Kolika je zapremina 1350 g ulja? (ρ=900kg/m 3 ) 29.Kolika je masa drvene kocke i vice 10 cm? (ρ=800kg/m 3 )

9 30.Od betona je izliven blok u obliku kvadra du ine 0,5 m i irine 0,3 m. Odredi debljinu betonskog bloka, ako se zna da j e njegova masa 49,5 kg. ( ρ=2200kg/m 3 ) 31.Kolika ja masa rastvora koj i se dobije me anjem 0,1 l alkohola sa 2 l vode? (ρ vode =1000kg/m 3, ρ alkohola =790kg/m 3 ) 32.Du ine ivica cigle su 20 cm, 10 cm i 5 cm. Masa ci gle je 2,1 kg. Kolika je gustina materijala od kojeg je napravljena cigla?

10 33.Masa prazne menzure j e 220 g. Kada se u nju sipa 0,5 l te nosti masa je 575 g. Izra unati gustinu te nosti. 34.U posudi mase 50 g obl ika kvadra dimenzija 10 cm, 2 dm i 0,05 m nalazi se te nost koja u potpunosti ispunjava posudu.ukupna masa posude sa te no u je 250 g. Kolika je gustina te nosti?

11 35.)Masa prazne a e je 30 g, a kad se ispuni vodom njena masa je 50 g.kolika je masa ove a e kada se ispuni ivom? (ρ vode =1000kg/m 3, ρ ive =13600kg/m 3 ) 36.)Koliko komada cigala ije su dimenzije: 24 cm, 12 cm i 6 cm mo e odjednom da stane na kami on ija je nosivost 4 t? (ρ=1800kg/m 3 ) 37.)Kolika je masa kocke od zl ata ivice 5 cm? (ρ=19300kg/m 3 )

12 38.)Bazen du ine 30 m i irine 15 m napunjen je sa 900 m 3 vode.kolika je dubina vode u bazenu? Kol ika je masa vode u bazenu? (ρ=1000kg/m 3 ) 39.)Kolika je masa betona koj i stane u gra evinska kolica ako imaju oblik kvadra ije su dimenzije 75 cm, 50 cm i 25 cm? (ρ betona =2200kg/m 3 ) 40.)Du ina dosko nog prostora skoka udal j je 10 m, a irina 2,5 m. Debljina sloja peska u njemu je 25 cm. Sa kol iko tona peska je ispunjen ovaj prostor? (ρ peska =2500kg/m 3 )

13 41.) Dimenzije cigle su 6,5 cm, 12 cm i 25 cm. Masa cigle je 3200 g. Kolika je gustina cigle? 42.)Masa prazne a e je 213 g. Masa a e, napunjene uljem je 821 g. Kolika je gustina ulja, ako je zapremina a e 800 cm 3? 43.)Masa a e je 60 g, a zapremi na 200 cm 3. Kolika je masa a e napunjene vodom? ( vode = 1000kg/m 3 )

14 44.)Kada se na jedan tas terazi ja stavi kuglica, a na drugi tegovi od 5 g i 1 g terazije nisu u ravnote i. Ako se na tas sa kuglicom doda teg od 100 mg, terazi je se uravnote e. Kolika je masa kuglice? 45.)Kutija sa e erom ima dimenzije 16 cm, 8 cm i 5 cm. a) Koliko ovakvih kutija se mo e smestiti u magacin dimenzije 22 m, 2,4m i 2,4 m? b) Masa e era u jednoj kutiji je 1 kg. Kolika je ukupna masa e era u magacinu? c) Kolika je gustina e era?

15 46.Jedno telo ima masu 5 kg i zapreminu 1dm 3. Masa drugog tel a je 150 g, a zapremina 30 cm 3. Koje telo ima ve u gustinu? 47.Kolika je masa rastvora koj i se dobije me anjem 0,1l alkohola sa 2 l vode? (ρv=1000kg/m 3, ρa=790kg/m 3 ) 48.Kolika je gustina rastvora dobi jenog me anjem 250 g vode sa 79 g al kohola? (ρv=1000kg/m 3, ρa=790kg/m 3 )

16 49.U posudi mase 50 g oblika kvadra ije su dimenzije 10 cm, 2 dm i 5 cm nalazi se te nost koja potpuno ispunjava posudu. Ukupna masa posude sa te no u je 250 g. Kolika je gustina te nosti? 50.Masa aluminijumske ipke iznosi 10,8 kg. Odrediti masu zlatne ipke istih dimenzija. (ρ aluminijuma =2700kg/m 3, ρ zlata =19300kg/m 3 )

17 Re enja 1.m=0,0127kg, 2.m=0,0071kg, 3.ρ =8900kg/m 3, 4. ρ =2600kg/m 3, 5.ρ =22400kg/m 3, 6.ρ =1420kg/m 3, 7.m=10,65kg, 8.V=5m 3, 9.m=1840kg, 10.ρ =710kg/m 3,11.V=2,45m 3, 12.m=0,217kg, 13.V=0,00002cm 3, 14.V=0,015m 3, m=15kg, 15.V=0,06m3, m=150kg, ,4kg, 17.ρ=1800kg/m 3, 18.ρ1=1250kg/m 3, ρ2=1500kg/m 3, ρ2>ρ1

18 19.V= m 3, 20.m=0,3375g, 21.m=22,6kg, 22.m=160t, 23.m=1,6kg, 24.V=1,25m 3, 25.ρ=2700kg/m 3, 26.V=0,001008m 3, m=0,554kg 27.V=0,005m 3, 28.V=0,00015m 3, 29.V=0,001m 3, m=0,8kg, 30.V=0,0225m 3, c=0,15m, 31.mv=2kg, ma=0,079kg, mu=2,079kg, 32.V=0.001m 3, ρ=2100kg/m 3,

19 33.ρ=710kg/m 3, 34.V=0,001m 3, ρ=200kg/m 3, 35.V=0,00002m 3, m=0,302kg, 36.V=0,0017m 3, m=3,1kg, n=1290, 37.V= m 3, m=2,41kg, 38.c=2m, m= kg, 39.V=0,093m 3, m=204,6kg, 40.V=6,25m 3, m=15,625t, 41. V=0,00195m 3, ρ=1641kg/m 3, 42. ρ=760kg/m 3, 43.m=0,2kg, m1=0,25kg,

20 44.m=0,0059kg, 45.Vk=0,00064m 3, Vm=126,72m 3, n=198000, mu=198000kg, ρ=1562,5kg/m 3, 46.ρ1=5000kg/m 3, ρ2=5000kg/m 3, 47.mv=2kg, ma=0,079kg, mu=2,079kg, 48.Vv=0,00025m 3, Va=0,0001m 3, mu=0,329kg, Vu=0,00035m 3, ρ=940kg/m 3, 49.V=0,001m 3, ρ2=200kg/m 3, 50.Va=0,004m 3, Va=Vz, mz=77,2kg

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

2.3 Γενικά για το χημικό δεσμό - Παράγοντες που καθορίζουν τη χημική συμπεριφορά του ατόμου.

2.3 Γενικά για το χημικό δεσμό - Παράγοντες που καθορίζουν τη χημική συμπεριφορά του ατόμου. 2.3 Γενικά για το χημικό δεσμό - Παράγοντες που καθορίζουν τη χημική συμπεριφορά του ατόμου. 10.1. Ερώτηση: Τι ονομάζουμε χημικό δεσμό; Ο χημικός δεσμός είναι η δύναμη που συγκρατεί τα άτομα ή άλλες δομικές

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Διατήρηση της Ορμής. R=10m. www.ylikonet.gr 1

Διατήρηση της Ορμής. R=10m. www.ylikonet.gr 1 Διατήρηση της Ορμής. 2.1.Ορµή και ρυθµός µεταβολής της ορµής. Ένα σώµα µάζας m=2kg εκτελεί οµαλή κυκλική κίνηση µε ταχύτητα υ=5m/s σε κύκλο κέντρου Ο και ακτίνας R=10m. i) Υπολογίστε την ορµή του σώµατος

Διαβάστε περισσότερα

ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ Φ 250 25,6 275 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,800 Φ 250 1,800 Υ: 1.75 B:0.59 Π: 0.

ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ Φ 250 25,6 275 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,800 Φ 250 1,800 Υ: 1.75 B:0.59 Π: 0. ΚΑΜΙΝΑΔΑΣ Kw ΒΑΡΟΣ 1 B:0.59 150 25,6 275 1,700 2 3 4 5 ΣΤΡΟΓΓΥΛΟ Τ 90 B:0.73 B:0.76 Υ: 1.72 B:0.62 Π: 0.98 B:0.66 Π:1.06 150 150 24 20 20 20 288 295 305 1,700 1,700 1,700 1,800 ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ

Διαβάστε περισσότερα

Računske vežbe iz Fizike

Računske vežbe iz Fizike Računske vežbe iz Fizike Praktikum Decembar 2009 Mašinski Fakultet Kraljevo Zlatan Šoškić Predgovor Ovaj praktikum je zamišljen kao pomoćni materijal koji se koristi u nastavi predmeta Fizika na Mašinskom

Διαβάστε περισσότερα

Vjerojatnost - 1. dio. Uvod u vjerojatnost. 1. Kolika je vjerojatnost da se pri bacanju dviju kocki pojavi: a) zbroj 8 b) barem jedna četvorka?

Vjerojatnost - 1. dio. Uvod u vjerojatnost. 1. Kolika je vjerojatnost da se pri bacanju dviju kocki pojavi: a) zbroj 8 b) barem jedna četvorka? Vjerojatnost - 1. dio Uvod u vjerojatnost 1. Kolika je vjerojatnost da se pri bacanju dviju kocki pojavi: a zbroj 8 b barem jedna četvorka? ( 5, 11 36 36. Ako se znade da je od 100 žarulja pet neispravnih,

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

2.Kolika je relativna vlažnost zraka pri temperaturi 30 C ako svaki m 3 zraka sadrži 22,7 g vodene pare?

2.Kolika je relativna vlažnost zraka pri temperaturi 30 C ako svaki m 3 zraka sadrži 22,7 g vodene pare? Ponavljanje 1. Kolika je korisnost toplinskog stroja koji radi prema Carnotovom kružnom procesu, prilikom kojega je najveća razlika u temperaturi 100 C, a najveća temperatura tokom procesa je 130 C? 2.Kolika

Διαβάστε περισσότερα

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch)

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch) A B C D E F G STOLICE Naziv Visina (inch) Širina (inch) Dubina (inch) AQ1000002 SKIPPER SKLOPIVA STOLICA BIJELA SA BIJELIM JASTUKOM 18 20 17 A AQ1000025 SKIPPER SKLOPIVA STOLICA,BIJELA SA BIJELO PLAVIM

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΕΝΩΣΗΣ ΦΥΣΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑΔΑΣ ΘΕΜΑΤΑ B ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ 2014-2015

ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΕΝΩΣΗΣ ΦΥΣΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑΔΑΣ ΘΕΜΑΤΑ B ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ 2014-2015 ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΕΝΩΣΗΣ ΦΥΣΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑΔΑΣ ΘΕΜΑΤΑ B ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ 2014-2015 Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες λανθασμένες (Λ); α. Κατά τη μετωπική σύγκρουση

Διαβάστε περισσότερα

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΑΡΙΙΘΜΗΤΙΙΚΗΣ -- ΑΛΓΕΒΡΑΣ Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί Α. 1. 1 1. Ποιοι αριθμοί ονομάζονται φυσικοί και ποια είναι η χαρακτηριστική τους ιδιότητα; Οι αριθμοί

Διαβάστε περισσότερα

PRSKALICA - LELA 12 L / LELA16 L

PRSKALICA - LELA 12 L / LELA16 L PRSKALICA - LELA 12 L / LELA16 L UPUTSTVO ZA UPOTREBU 1 Prskalica je pogodna za raspršivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Uredjaj je namenjen za kućnu,

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Eξαρτήματα Σύνδεσης & Στήριξης

Eξαρτήματα Σύνδεσης & Στήριξης MDE IN GERMNY VORMNN Eξαρτήματα Σύνδεσης & Στήριξης ΠΡΟΓΡΜΜ ΠΕΡΓΚΟΛΣ Πιστοποιημένα εξαρτήματα σύνδεσης και στήριξης όπως βάσεις, γωνίες, δοκοδοχούς που βοηθούν στην απλούστευση της εργασίας και στην εύκολη

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE **** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga

Διαβάστε περισσότερα

Φυσικές και χημικές ιδιότητες

Φυσικές και χημικές ιδιότητες Φυσικές και χημικές ιδιότητες Φυσικές ιδιότητες Οι ιδιότητες που προσδιορίζονται χωρίς αλλοίωση της χημικής σύστασης της ουσίας (π.χ. σ. τήξεως, σ. ζέσεως, πυκνότητα, χρώμα, γεύση, σκληρότητα). Χημικές

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

PREGLED OSNOVNIH VELIČINA ZA DEFINISANJE SASTAVA RASTVORA

PREGLED OSNOVNIH VELIČINA ZA DEFINISANJE SASTAVA RASTVORA I RAČUNSKE EŽBE PREGLED OSNONIH ELIČINA ZA DEFINISANJE SASTAA RASTORA Za izražavanje kvantitativnog sastava rastvora u heiji koriste se različite fizičke veličine i odnosi. Koriste se i različite jedinice.

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

ΠΑΝΕΚΦΕ. Πρόταση διδασκαλίας του μαθήματος «Φυσική Α Γυμνασίου»

ΠΑΝΕΚΦΕ. Πρόταση διδασκαλίας του μαθήματος «Φυσική Α Γυμνασίου» Πρόταση διδασκαλίας του μαθήματος «Φυσική Α Γυμνασίου» Στόχοι και μέσα Η βασική επιδίωξη της παρούσας πρότασης διδασκαλίας της φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν βασικές έννοιες

Διαβάστε περισσότερα

Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ

Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ Τβριδιςμόσ Υβριδικά τροχιακά και γεωμετρίεσ Γηαίξεζε

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

ZADACI IZ FIZIKE PREDVI\ENI ZA TEST NA PRIJEMNOM ISPITU

ZADACI IZ FIZIKE PREDVI\ENI ZA TEST NA PRIJEMNOM ISPITU ZADACI IZ FIZIKE PREDVI\ENI ZA TEST NA PRIJEMNOM ISPITU . Nanose}i na apscisu vreme u [s], a na ordinatu pre eni put u [m], nacrtaj grafik funkcije s = + t. Kolika je brzina kretawa? Koliki je po~etni

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Zadatci za vježbanje Termodinamika

Zadatci za vježbanje Termodinamika Zadatci za vježbanje Termodinamika 1. Električnim bojlerom treba zagrijati 22 litre vode 15 ⁰C do 93 ⁰C. Koliku snagu mora imati grijač da bi se to postiglo za 2 sata zagrijavanja? Specifični toplinski

Διαβάστε περισσότερα

ÍÅÁ ÃÍÙÓÇ ÎÁÍÈÇ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

ÍÅÁ ÃÍÙÓÇ ÎÁÍÈÇ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

( ) ( ) β = gdje je β koeficijent linearnog rastezanja koji se definira izrazom:

( ) ( ) β = gdje je β koeficijent linearnog rastezanja koji se definira izrazom: Zadatak 8 (Filip, elektrotehnička škola) Štap od cinka i štap od željeza iaju pri C jednaku duljinu l Kolika je razlika duljina štapova pri C? (koeficijent linearnog rastezanja cinka β cink 9-5 K -, koeficijent

Διαβάστε περισσότερα

1.1 ΔΙΑΓΩΓΗ... 1 1.2 ΔΞΟΠΛΙΜΟ 1.3 ΓΙΑΣΑΔΙ 1.4 ΣΔΥΝΙΚΑ ΥΑΡΑΚΣΗΡΙΣΙΚΑ 1.5 ΑΠΩΛΔΙΔ ΦΟΡΣΙΟΤ

1.1 ΔΙΑΓΩΓΗ... 1 1.2 ΔΞΟΠΛΙΜΟ 1.3 ΓΙΑΣΑΔΙ 1.4 ΣΔΥΝΙΚΑ ΥΑΡΑΚΣΗΡΙΣΙΚΑ 1.5 ΑΠΩΛΔΙΔ ΦΟΡΣΙΟΤ GR SOLIDA - ΔΛΛΗΝΙΚΑ OLIDA - ΔΛΛΗΝΙΚΑ LIDA - ΔΛΛΗΝΙΚΑ DA - ΔΛΛΗΝΙΚΑ A - ΔΛΛΗΝΙΚΑ - ΔΛΛΗΝΙΚΑ ΔΛΛΗΝΙΚΑ ΛΛΗΝΙΚΑ ΛΗΝΙΚΑ ΗΝΙΚΑ ΝΙΚΑ ΚΑ Α ΠΔΡΙΔΥΟΜΔΝΑ 1 ΣΗ ΤΚΔΤΗ 1.1 ΔΙΑΓΩΓΗ... 1 1.2 ΔΞΟΠΛΙΜΟ 1.3 ΓΙΑΣΑΔΙ 1.4

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max

Διαβάστε περισσότερα

Tehnički jedinstveno rešenje odvodnjavanja

Tehnički jedinstveno rešenje odvodnjavanja ACO MultiDrain sistem linijskog odvodnjavanja Profesionalni polimerbetonski kanali Tehnički jedinstveno rešenje odvodnjavanja Tehnički jedinstveno i nadmoćno. Novom generacijom kanala za odvodnjavanje

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΥΛΙΚΩΝ(Θ)

ΤΕΧΝΟΛΟΓΙΑ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΥΛΙΚΩΝ(Θ) ΤΕΧΝΟΛΟΓΙΑ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΥΛΙΚΩΝ(Θ) Ενότητα 8: ΤΕΧΝΟΛΟΓΙΑ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΥΛΙΚΩΝ Ανθυμίδης Κωνσταντίνος Διδάκτορας Μηχανολόγος Μηχανικός ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΕ 1 Άδειες Χρήσης

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΜΑΘΗΜΑ ΚΟΡΜΟΥ «ΥΔΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΥΔΑΤΙΚΑ ΟΙΚΟΣΥΣΤΗΜΑΤΑ Σημειώσεις

Διαβάστε περισσότερα

με ίσες μάζες ισορροπούν κρεμασμένα από κατακόρυφα ιδανικά ελατήρια με σταθερές k 1 και k 2 /2. Απομακρύνουμε τα σώματα Σ 1

με ίσες μάζες ισορροπούν κρεμασμένα από κατακόρυφα ιδανικά ελατήρια με σταθερές k 1 και k 2 /2. Απομακρύνουμε τα σώματα Σ 1 ΑΣΚΗΣΕΙΣ ( Σε όλα τα προβλήματα - εκτός από το 9 - στα οποία υπεισέρχεται βαρύτητα να θεωρήσετε την τιμή της βαρυτικής επιτάχυνσης ίση με και 10 m/s 2, Να θεωρήσετε επίσης για την τιμή του π ότι π 2 =

Διαβάστε περισσότερα

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Υ.ΠΕ.ΧΩ..Ε. ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΠΕΤΕΠ 08-01-03-02 08 Υδραυλικά Έργα 01 Χωµατουργικά Υδραυλικών Έργων 03 Εκσκαφές και Επανεπιχώσεις Ορυγµάτων Υπογείων ικτύων 02 Επανεπίχωση

Διαβάστε περισσότερα

Κεφάλαιο 1 Χημικός δεσμός

Κεφάλαιο 1 Χημικός δεσμός Κεφάλαιο 1 Χημικός δεσμός 1.1 Άτομα, Ηλεκτρόνια, και Τροχιακά Τα άτομα αποτελούνται από + Πρωτόνια φορτισμένα θετικά μάζα = 1.6726 X 10-27 kg Νετρόνια ουδέτερα μάζα = 1.6750 X 10-27 kg Ηλεκτρόνια φορτισμένα

Διαβάστε περισσότερα

RAZLIKA U CIJENI RAZLIKE U CIJENI U TRGOVINI UKUPNA RAZLIKA U CIJENI UKUPNA RAZLIKA U CIJENI

RAZLIKA U CIJENI RAZLIKE U CIJENI U TRGOVINI UKUPNA RAZLIKA U CIJENI UKUPNA RAZLIKA U CIJENI RAZLIKA U CIJENI RAZLIKE U CIJENI U TRGOVINI Služi za pokriće troškova poslovanja i ostvarenje dobiti; Troškovi poslovanja: materijalni troškovi; amortizacija; troškovi rada; ostali troškovi; Razlikujemo

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΡΟΛΩΝ

ΟΛΟΚΛΗΡΩΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΡΟΛΩΝ ΟΛΟΚΛΗΡΩΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΡΟΛΩΝ Τα ολοκληρωμένα συστήματα ρολών ΛΥΓΝΌΣ χαρακτηρίζονται από την άψογη αισθητική, την τέλεια εφαρμογή και κυρίως τη μοναδική ποιότητα και λειτουργικότητα. ΜΙΑ ΜΕΓΆΛΗ ΓΚΆΜΑ ΠΡΟΪΌΝΤΩΝ

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

IKAIΩΣH ΣTAΘMOΣ KYΠPIOY ΓIA TIΣ ΠEPIOYΣIEΣ ΣTA KATEXOMENA / ΣΕΛ. 3. Aνησυχεί η κυβέρνηση Yπουργικό σήµερα Φωνές από βουλευτές Συναγερμός για τα μπλόκα

IKAIΩΣH ΣTAΘMOΣ KYΠPIOY ΓIA TIΣ ΠEPIOYΣIEΣ ΣTA KATEXOMENA / ΣΕΛ. 3. Aνησυχεί η κυβέρνηση Yπουργικό σήµερα Φωνές από βουλευτές Συναγερμός για τα μπλόκα IKAIΩΣH ΣTAΘMOΣ KYΠPIOY ΓIA TIΣ ΠEPIOYΣIEΣ ΣTA KATEXOMENA / ΣΕΛ. 3 35Ô Ú. Ê ÏÏÔ 10.358 Àƒø 1,30 (Ì CD & DVD 3,00) TETAPTH 20 IANOYAPIOY 2010 www.enet.gr Aνησυχεί η κυβέρνηση Yπουργικό σήµερα Φωνές από

Διαβάστε περισσότερα

2-συστατικών θιξοτροπικό εποξειδικό συγκολλητικό

2-συστατικών θιξοτροπικό εποξειδικό συγκολλητικό Construction Φύλλο Ιδιοτήτων Προϊόντος Έκδοση 04/02/2014 (v1) Κωδικός: 10.01.010 Αριθμός Ταυτοποίησης: 010204030010000144 EN 1504-4:2004 13 0099 2-συστατικών θιξοτροπικό εποξειδικό συγκολλητικό Περιγραφή

Διαβάστε περισσότερα

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.

Διαβάστε περισσότερα

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 2011. Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 2011. Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής Θερ ικοί Αισθητήρες Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 011 Θερμικοί αισθητήρες 1. Αισθητήρας Μέτρησης Ροής Θερ ικοί Αισθητήρες Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 011 Συγκεντρωτικά Εφαρμογές

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ - ΔΕΣΜΟΙ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ - ΔΕΣΜΟΙ 2 ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ - ΔΕΣΜΟΙ ΠΕΡΙΕΧΟΜΕΝΑ 2.1 Ηλεκτρονική δομή των ατόμων 2.2 Κατάταξη των στοιχείων (Περιοδικός Πίνακας). Χρησιμότητα του Περιοδικού Πίνακα 2.3 Γενικά για το χημικό δεσμό- Παράγοντες που

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ FIZIKE Srednje škole 1. skupina

ŽUPANIJSKO NATJECANJE IZ FIZIKE Srednje škole 1. skupina ŽUPANIJSKO NATJECANJE IZ FIZIKE 6..9. Srednje škole. skupina. zadatak ( bodova) Tramvaj vozi između dvije stanice udaljene 6 m tako da polazi sa prve stanice iz mirovanja i ubrzava ubrzanjem m/s dok ne

Διαβάστε περισσότερα

0. Επαναληπτικά θέµατα. Οµάδα Β.

0. Επαναληπτικά θέµατα. Οµάδα Β. 1) Απώλεια µηχανικής ενέργειας σε κρούση. 0. Επαναληπτικά θέµατα. Οµάδα Β. Ένα βλήµα µάζας 0,1kg που κινείται οριζόντια µε ταχύτητα υ=100m/s σφηνώνεται σε ακίνητο ξύλο µάζας 1,9kg. Να βρεθεί η απώλεια

Διαβάστε περισσότερα

ΕΤΙΚΕΤΟΓΡΑΦΟΙ ΕΤΙΚΕΤΟΓΡΑΦΟΣ PLM 979 ΕΤΙΚΕΤΕΣ ΓΙΑ ΕΤΙΚΕΤΟΓΡΑΦΟ. Κωδ. ZA.01.131. Κωδ. ZA.01.124

ΕΤΙΚΕΤΟΓΡΑΦΟΙ ΕΤΙΚΕΤΟΓΡΑΦΟΣ PLM 979 ΕΤΙΚΕΤΕΣ ΓΙΑ ΕΤΙΚΕΤΟΓΡΑΦΟ. Κωδ. ZA.01.131. Κωδ. ZA.01.124 KOYTIA TAMEIOY - ΚΑΛΑΘΙΑ ΚΟΥΤΙΑ ΤΑΜΕΙΟΥ Ατσάλινη κατασκευή με διπλή υποδοχή και κλειδαριά Κατάλληλα για το γραφείο, το κατάστημα, το σπίτι Με αποσπώμενη θήκη για κέρματα Χρώματα: Mαύρο, μπλέ, πράσινο,

Διαβάστε περισσότερα

ZADACI IZ VEROVATNO E I STATISTIKE ZA I SMER

ZADACI IZ VEROVATNO E I STATISTIKE ZA I SMER ZADACI IZ VEROVATNO E I STATISTIKE ZA I SMER Zadatak. Dato je 0 kuglica numerisanih brojevima od do 0. Sluqajno se biraju 3 kuglice odjednom. Kolika je verovatno a događaja da je taqno jedna od izabranih

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ: 1. Τι είναι ατομικό και τί μοριακό βάρος; Ατομικό βάρος είναι ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη η μάζα του ατόμου από το 1/12 της

Διαβάστε περισσότερα

Τ Ι Μ Ο Κ Α Τ Α Λ Ο Γ Ο Σ ΣΥΝΘΕΤΙΚΩΝ ΚΟΥΦΩΜΑΤΩΝ ΣΥΣΤΗΜΑ KBE

Τ Ι Μ Ο Κ Α Τ Α Λ Ο Γ Ο Σ ΣΥΝΘΕΤΙΚΩΝ ΚΟΥΦΩΜΑΤΩΝ ΣΥΣΤΗΜΑ KBE Τ Ι Μ Ο Κ Α Τ Α Λ Ο Γ Ο Σ ΣΥΝΘΕΤΙΚΩΝ ΚΟΥΦΩΜΑΤΩΝ ΣΥΣΤΗΜΑ KBE ΠΕΡΙΓΡΑΦΗ KBE ΛΕΥΚΟ ΜΟΝΟΦΥΛΛΟ KBE ΛΕΥΚΟ ΔΥΦΥΛΛΟ KBE ΛΕΥΚΟ KIPPEN KBE ΕΙΣΟΔΟΣ ΛΕΥΚΗ ΜΟΝΟΦΥΛΛΗ KBE ΕΙΣΟΔΟΣ ΛΕΥΚΗ ΜΟΝΟΦΥΛΛΗ ΜΕ ΣΤΑΘΕΡΟ KBE ΕΙΣΟΔΟΣ

Διαβάστε περισσότερα

ΤΙΜΟΛΟΓΙΟ ΠΡΟΣΦΟΡΑΣ ΙΙ. ΤΙΜΕΣ ΕΦΑΡΜΟΓΗΣ. Αρθρο. Αρθρο. Αρθρο. Αρθρο. Μονάδα μέτρησης : Τεμάχια. Αναθεωρείται με : ΟΔΝ 2151: 100,00%

ΤΙΜΟΛΟΓΙΟ ΠΡΟΣΦΟΡΑΣ ΙΙ. ΤΙΜΕΣ ΕΦΑΡΜΟΓΗΣ. Αρθρο. Αρθρο. Αρθρο. Αρθρο. Μονάδα μέτρησης : Τεμάχια. Αναθεωρείται με : ΟΔΝ 2151: 100,00% Σελί δα 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ Φ ΙΛΑΔΕΛΦ ΕΙΑΣ-ΧΑΛΚΗΔΟΝΟΣ Δ/ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΕΡΓΟ :ΕΠΙΣΚΕΥΗ ΒΕΛΤΙΩΣΗ ΠΑΙΔΙΚΩΝ ΧΑΡΩΝ Α.Μ. : 119/2015 ΠΡΟΥΠΟΛΟΓΙΣΜΟΣ:147.000 ευρώ (ΜΕ Φ ΠΑ) ΤΙΜΟΛΟΓΙΟ

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2015 Πανεπιστήμιο Αθηνών, Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2015 Πανεπιστήμιο Αθηνών, Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Β Γυμνασίου 7 Μαρτίου 2015 Θεωρητικό Μέρος Θέμα 1 ο Α1.Εκτοξεύουμε μια μπάλα του μπάσκετ προς τα πάνω. Η μπάλα μετατοπίζεται από τη θέση Α στη θέση Β, όπως φαίνεται στο σχήμα. Θεωρώντας αμελητέα οποιαδήποτε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΓΥΜΝΑΣΙΟΥ Σε ποιες κατηγορίες αριθμών χωρίζονται οι φυσικοί αριθμοί; Χωρίζονται στους άρτιους (ζυγούς) και τους περιττούς (μονούς). Άρτιοι λέγονται οι φυσικοί αριθμοί που

Διαβάστε περισσότερα

Ασκήσεις Προβλήματα. Μετρήσεις Μονάδες Γνωρίσματα της Ύλης

Ασκήσεις Προβλήματα. Μετρήσεις Μονάδες Γνωρίσματα της Ύλης Ασκήσεις Προβλήματα Μετρήσεις Μονάδες Γνωρίσματα της Ύλης 19. Ποιες μονάδες χρησιμοποιούν συνήθως οι χημικοί για την πυκνότητα των: α) στερεού, β) υγρού και γ) αερίου σώματος; Να εξηγήσετε τη διαφορά.

Διαβάστε περισσότερα

Σετ τροχών σύσφιξης B

Σετ τροχών σύσφιξης B 01/2011 Πρωτότυπο οδηγιών χειρισμού 999285509 gr Πρέπει να φυλάσσονται για μελλοντική χρήση Σετ τροχών σύσφιξης B Αρ. προϊόντος 586168000 από έτος κατασκευής 2008 Περιγραφή προϊόντος Περιγραφή προϊόντος

Διαβάστε περισσότερα

HEATING BOILERS. Astra G-25 Astra G-31.5 Astra G-50 Astra G-80 PASSPORT G-25.00.000 P

HEATING BOILERS. Astra G-25 Astra G-31.5 Astra G-50 Astra G-80 PASSPORT G-25.00.000 P AB MACHINERY FACTORY ASTRA 4580 Alytus, Ulonų 33, tel. (37035) 73212, 75612 fax. (37035) 75352 SPSŽ-01 HEATING BOILERS Astra G-25 Astra G-31.5 Astra G-50 Astra G-80 PASSPORT G-25.00.000 P Οη ιέβεηεο παξαδίδνληαη

Διαβάστε περισσότερα

Rad, snaga i energija zadatci

Rad, snaga i energija zadatci Rad, snaga i energija zadatci 1. Tijelo mase 400 g klizi niz glatku kosinu visine 50 cm i duljine 1 m. a) Koliki rad na tijelu obavi komponenta težine paralelna kosini kada tijelo s vrha kosine stigne

Διαβάστε περισσότερα

ÑÏÕËÁ ÌÁÊÑÇ. Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ÑÏÕËÁ ÌÁÊÑÇ. Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Θέµα ο Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα

Διαβάστε περισσότερα

Φασματοσκοπία υπεριώδους-ορατού (UV-Vis)

Φασματοσκοπία υπεριώδους-ορατού (UV-Vis) Καλαϊτζίδου Κυριακή Φασματοσκοπία υπεριώδους-ορατού (UV-Vis) Μέθοδος κυανού του μολυβδαινίου Προσθήκη SnCl 2 και (NH 4 ) 6 Mo 7 O 24 4H 2 O στο δείγμα Μέτρηση στα 690nm Μέτρηση 10-12min μετά από την προσθήκη

Διαβάστε περισσότερα

UREĐAJU NA SKUPU REALNIH BROJEVA

UREĐAJU NA SKUPU REALNIH BROJEVA **** MLADEN SRAGA **** 00. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE UREĐAJU NA SKUPU REALNIH BROJEVA JEDNADŽBE NEJEDNADŽBE APSOLUTNE JEDNADŽBE APSOLUTNE NEJEDNADŽBE

Διαβάστε περισσότερα

EN 1504-2 08 0921. Αγώγιμο πολυστρωματικό σύστημα βινυλεστερικής ρητίνης

EN 1504-2 08 0921. Αγώγιμο πολυστρωματικό σύστημα βινυλεστερικής ρητίνης Construction Φύλλο Ιδιοτήτων Προϊόντος Έκδοση: 21/02/2014 (v1) Κωδικός: 07.09.040 Αριθμός Ταυτοποίησης: 010602000310000048 EN 1504-2 08 0921 Αγώγιμο πολυστρωματικό σύστημα βινυλεστερικής ρητίνης Περιγραφή

Διαβάστε περισσότερα

Διάλεξη 7: Αλληλεπιδράσεις νετρονίων & πυρηνική σχάση

Διάλεξη 7: Αλληλεπιδράσεις νετρονίων & πυρηνική σχάση Διάλεξη 7: Αλληλεπιδράσεις νετρονίων & πυρηνική σχάση Αλληλεπιδράσεις νετρονίων Το νετρόνιο ως αφόρτιστο νουκλεόνιο παίζει σημαντικό ρόλο στην πυρηνική φυσική και στην κατανόηση των πυρηνικών αλληλεπιδράσεων.

Διαβάστε περισσότερα

Μαγνητικό Πεδίο. Ιωάννης Γκιάλας 4 Απριλίου 2014

Μαγνητικό Πεδίο. Ιωάννης Γκιάλας 4 Απριλίου 2014 Μαγνητικό Πεδίο Ιωάννης Γκιάλας 4 Απριλίου 2014 Ο φοιτητής να μάθει: Στόχοι διάλεξης περιγράφει ένα μαγνητικό πεδίο και την κίνηση ενός φορτίου μέσα σε αυτό. αναγνωρίζει σημαντικά φαινόμενα και τεχνολογικές

Διαβάστε περισσότερα

«Βασικές Αρχές της SPECT και PET Απεικόνισης»

«Βασικές Αρχές της SPECT και PET Απεικόνισης» Βασικές Αρχές Πυρηνικής Ιατρικής «Βασικές Αρχές της SPECT και PET Απεικόνισης» Ι. Τσούγκος Εργαστήριο Ιατρικής Φυσικής, Παν/μιο Θεσσαλίας ΙΣΤΟΡΙΚΗ ΑΝΑΔΡΟΜΗ 1896: Henry Becquerel και το ζεύγος Curie ήταν

Διαβάστε περισσότερα

ΠΡΟΜΕΤΡΗΣΗ «ΣΥΝΔΕΣΗ ΝΕΟΥ ΚΤΙΡΙΟΥ ΙΧΘΥΟΣΚΑΛΑΣ ΒΟΛΟΥ ΜΕ ΔΙΚΤΥΑ ΥΔΡΕΥΣΗΣ ΚΑΙ ΑΠΟΧΕΤΕΥΣΗΣ ΔΕΥΑΜΒ»

ΠΡΟΜΕΤΡΗΣΗ «ΣΥΝΔΕΣΗ ΝΕΟΥ ΚΤΙΡΙΟΥ ΙΧΘΥΟΣΚΑΛΑΣ ΒΟΛΟΥ ΜΕ ΔΙΚΤΥΑ ΥΔΡΕΥΣΗΣ ΚΑΙ ΑΠΟΧΕΤΕΥΣΗΣ ΔΕΥΑΜΒ» Δ/ΝΣΗ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ & ΝΕΩΝ ΥΠΟΔΟΜΩΝ ΤΜΗΜΑ ΜΕΛΕΤΩΝ-ΚΑΤΑΣΚΕΥΩΝ ΝΕΩΝ ΥΠΟΔΟΜΩΝ ΕΡΓΟ: ΧΡΗΜΑΤΟΔΟΤΗΣΗ: ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ: «ΣΥΝΔΕΣΗ ΝΕΟΥ ΚΤΙΡΙΟΥ ΙΧΘΥΟΣΚΑΛΑΣ ΒΟΛΟΥ ΜΕ ΔΙΚΤΥΑ ΥΔΡΕΥΣΗΣ ΚΑΙ ΑΠΟΧΕΤΕΥΣΗΣ ΔΕΥΑΜΒ» 133.000,00

Διαβάστε περισσότερα

Επιτραπέζια μίξερ C LINE 10 C LINE 20

Επιτραπέζια μίξερ C LINE 10 C LINE 20 Επιτραπέζια μίξερ C LINE 10 Χωρητικότητα κάδου : 10 lt Ναί Βάρος: 100 Kg Ισχύς: 0,5 Kw C LINE 20 Χωρητικότητα κάδου : 20 lt Βάρος: 105 Kg Ισχύς: 0,7 Kw Ναί Επιδαπέδια μίξερ σειρά C LINE C LINE 10 Χωρητικότητα

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Vjerojatnost. 1. Novčić bacamo 5 puta. Kolika je vjerojatnost da ćemo pritom ostvariti 3 puta pismo i 2 puta glava? (R: P = 5

Vjerojatnost. 1. Novčić bacamo 5 puta. Kolika je vjerojatnost da ćemo pritom ostvariti 3 puta pismo i 2 puta glava? (R: P = 5 ZADACI SA VJEŽBI IZ KOLEGIJA STATISTIKA I OSNOVE FIZIKALNIH MJERENJA Vjerojatnost 1. Novčić bacamo 5 puta. Kolika je vjerojatnost da ćemo pritom ostvariti 3 puta pismo i 2 puta glava? (R: P = 5 16.) 2.

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ: ΜΕΤΡΗΣΕΙΣ ΠΟΣΟΤΗΤΩΝ ΛΥΣΗ ΔΟΚΙΜΙΟΥ

Διαβάστε περισσότερα