1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..."

Transcript

1 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale (S) a 11 X 1 + a 12 X a 1n X n = b 1 a 21 X 1 + a 22 X a 2n X n = b 2, a ij, b i K. a m1 X 1 + a m2 X a mn X n = b m Dacă b 1 = = b n = 0, atunci spunem că (S) este un sistem omogen. 2) Un vector x = (x 1,..., x n ) K n este soluţie pentru (S) dacă înlocuind necunoscutele sistemului cu componentele vectorului X i := x i toate egalităţile ce se obţin sunt adevărate. 3) Sistemul (S) este compatibil dacă are cel puţin o soluţie şi este incompatibil dacă nu are soluţii. (S) este compatibil determinat dacă are exact o soluţie, iar dacă are cel puţin două suluţii, atunci spunem că este compatibil nedeterminat. Definiţia 1.2. Fiind dat un sistem (S), matricea A = (a ij ) s.n. a a 1n b 1 matricea sitemului (S). Matricea A e =.... s.n. a m1... a mn b m matricea extinsă ataşată lui (S). Observaţia 1.3. (Forma matriceală) Dacă A = [a ij ] este matricea sistemului (S), atunci sistemul poate fi scris sub forma: (S) AX t = b t, unde X = (X 1,... X n ) şi b = (b 1,..., b m ). Observaţia 1.4. (Forma vectorială) Dacă privim coloanele matricii A ca vectori coloană din K-spaţiul vectorial K n, atunci sistemul poate fi pus sub forma: (S)X 1 c A X n c A n = b t. Teorema 1.5. (Kroneker-Capelli) Sistemul de ecutaţii liniare (S) este compatibil dacă şi numai dacă rang(a) = rang(a e ). Demonstraţie.. Presupunem că sistemul (S) este compatibil. Există, deci, (α 1,..., α n ) K n astfel încât α 1 c A α n c A n = b t 1

2 2 Dar, de aici, rezultă că b t c A 1,..., c A n, adică c A 1,..., c A n = c A 1,..., c A n, b t rang[c A 1,..., c A n ] = rang[c A 1,..., c A n, b t ] rang(a) = rang(a e ).. Presupunem acum că rang(a) = rang(a e ), adică rang[c A 1,..., c A n ] = rang[c A 1,..., c A n, b t ]. Conform definiţiei rangului unui sistem de vectori, avem dim K c A 1,..., c A n = dim K c A 1,..., c A n, b t, iar ţinând cont de faptul că c A 1,..., c A n este un subspaţiu a lui c A 1,..., c A n, b t, deducem că c A 1,..., c A n = c A 1,..., c A n, b t. Vectorul b t c A 1,..., c A n, există deci (α 1,..., α n ) K n astfel încât α 1 c A α n c A n = b t, adică, sistemul (S) este compatibil. Observaţia 1.6. Criteriul lui Rouché, studiat în liceu este o consecinţă a teoremei Kroneker-Capelli. Teorema 1.7. Soluţiile unui sistem omogen (S) cu n necunoscute formează un subspaţiu al K-spaţiului vectorial K n, de dimensiune n rang(a). Demonstraţie. Fie (S) un sistem cu m ecuaţii şi n necunoscute, cu forma matriceala A X t = 0 t. Trecând la transpuse, în identitatea matriceală anterioară, obţinem (X 1,..., X n )A t = (0,..., 0). Considerăm aplicaţia liniară f A : K n K m, cu [f A ] bb = A t, unde e este baza canonică lui K n, iar e este baza canonică lui K m. Dacă (X 1,..., X n ) K n, avem f A (X 1,..., X n ) = (X 1,..., X n )[f A ] ee e t = (X 1,..., X n )A t e t. Deducem că (α 1,..., α n ) K n este soluţie a sistemului (S), dacă, şi numai dacă, (α 1,..., α n ) Ker(f A ). Mulţimea soluţiilor sistemului (S) coincide deci cu Ker(f A ). Dar Ker(f A ) este subspaţiu a lui K n, de dimensiune def(f A ) = n rang(f A ) = n rang(a t ) = n rang(a).

3 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 3 Corolarul 1.8. Un sistem omogen (S) are doar soluţia banală (0,..., 0) dacă şi numai dacă n = rang(a). Observaţia 1.9. Din demonstraţia teoremei se deduce că subspaţiul soluţiilor unui sistem omogen coincide cu nucleul aplicaţiei liniare f : K n K m cu [f] ee = A t, unde e şi e sunt bazele canonice. Prin urmare, pentru determinarea solţiilor unui sistem omogen se pot aplica metodele prezentate pentru determinarea nucleelor de aplicaţii liniare. Teorema Fie (S) AX t = b t un sistem de ecuaţii liniare şi (S 0 ) sistemul omogen AX t = 0 (obţinut prin înlocuirea coloanei b cu 0). Dacă x 0 este o soluţie particulară a lui (S) şi S 0 este mulţimea soluţiilor lui (S 0 ), atunci mulţimea soluţiilor sistemului (S) este S = x 0 + S 0 = x 0 + y y S 0 }. Demonstraţie. Fie (S) un sistem de m ecuaţii, cu n necunsocute. Considerăm aplicaţia liniară f A : K n K m cu [f A ] ee = A t, unde A M m,n (K) este matricea sistemului (S). Am notat cu e şi e baza canonică din K n, respectiv K m. Dacă x = (x 1,..., x n ) K n, avem f A (x 1,..., x n ) = (x 1,..., x n )A t K m. Vectorul x este o soluţie a lui (S) dacă şi numai dacă Ax t = b t xa t = b f(x) = b. Deci, x 0, fiind o soluţie pariculară a lui (S) avem f(x 0 ) = b şi x S f(x) = f(x 0 ) f(x) f(x 0 ) = 0 f(x x 0 ) = 0. Un vector y K n este soluţie a sistemului (S 0 ), dacă şi numai dacă f(y) = 0, deci f(x x 0 ) = 0 x x 0 S 0 y S 0 a.i. x x 0 = y y S 0 a.i. x = x 0 + y x x 0 + S Rezolvarea sistemelor de ecuaţii liniare Teorema 2.1. (Regula lui Cramer) Un sistem (S) AX t = b t cu n ecuaţii şi n necunoscute (adică A M n (K)) este compatibil determinat dacă şi numai dacă det(a) 0. În aceste condiţii soluţia este x = (x 1,..., x n ) cu x i = (det(a)) 1 det[c A 1,..., c A i 1, b t, c A i+1,..., c A n ], i 1,..., n}.

4 4 Demonstraţie.. Presupunem că sistemul (S) este compatibl determinat. Mulţimea soluţiilor lui (S), S, are deci un singur element. Conform Teoremei 1.10 avem S = x 0 + S 0 = x 0 + y y S 0 }. În consecinţă, mulţimea S 0 nu poate avea decât un singur element. Dar, S 0 fiind un K-subspaţiu a lui K n, nu poate fi egal decât cu 0}. Conform Corolarului 1.8, rang(a) = n, deci det(a) 0.. Presupunem că det(a) 0. Sistemul omogen ataşat, (S 0 ), are deci doar soluţia banală, adică S 0 = 0}. Conform Teoremei 1.10, mulţimea S are cel mult un elemet. Nu ne rămâne să demonstrăm, decât existenţa unei soluţii particulare a sistemului (S). Considerăm scalarii x i K, definiţi astfel x i = (det(a)) 1 det[c A 1,..., c A i 1, b t, c A i+1,..., c A n ], i 1,..., n}. Pentru a ajunge la concluzia că x 0 = (x 1,..., x n ) este o soluţie a lui (S) e suficient să arătăm că Ax t 0 = b t x t 0 = A 1 b t x t 0 = (det(a)) 1 A b t, unde A este adjuncta matricii A. Avem deci Ax t 0 = b t x i = (det(a) 1 (Γ 1i Γ 2i... Γ ni ) b 1. b n = (det(a)) 1 n b j Γ ji, unde Γ ji sunt complemenţii algebrici corespunzători. Dar, n j=1 b jγ ji nu reprezintă altceva decât dezvoltarea după coloana a i-a a determinantului det[c A 1,..., c A i 1, b t, c A i+1,..., c A n ] i 1,..., n}. Aşadar, x 0 reprezintă unica soluţie a sistemului (S). Metode de rezolvare I. Metoda lui Cramer Example 2.2. Să se rezolve sistemul x 1 + x 2 x 3 = 0 3x 1 2x 2 + 2x 3 = 5 2x 1 + 3x 2 2x 3 = 2. Calculând determinantul matricii sistemului det(a) = = 5, j=1

5 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 5 deducem că sistemul este compatibil determinat. soluţia calculăm determinaţii d 1 = = 5, d 2 = = 10, d 3 = = 5. Pentru a obţine d i este determinantul matricii obţinute din A prin înlocuirea coloanei a i-a cu coloana termenilor liberi. Componenetele soluţiei sunt x 1 = d 1 det(a) = 5 5 = 1, x 2 = d 2 det(a) = 10 5 = 2, x 3 = d 3 det(a) = 15 5 = 3. II. Folosind lema substituţiei Observaţia 2.3. Este suficient să găsim o bază pentru spaţiul soluţiilor sistemului omogen (numit sistem fundamental de soluţii) şi o soluţie particulară. Considerăm sistemul (S) Ax t = b t, cu m ecuaţii şi n necunoscute. Aplicăm lema substituţiei pentru a calcula rang(a), adică rangul sistemului de vectori [c A 1,..., c n ], format din coloanele lui A. Tabelul ini ţial va arăta astfel c A 1 c A 2... c A n b t e 1 b 1 e 2 A b 2. e m Presupunem că după un număr de r paşi ajungem la următoarea situaţie. b m

6 6 c A 1 c A r c A r+1 c A n b t c A β 1,r+1 β 1,n b c A r 0 1 β r,r+1 β r,n b r c A r b r c A m b m Observăm că rang(a) = r. Ca sistemul (S) să fie compatibil rangul matricii extinse, A e, trebuie să fie tot r. Această condiţie este echivalentă cu În aceste condiţii avem b r+1 = = b m = 0. b t = b 1 c A b r c A r + 0 c A r c A n, adică x 0 = (b 1,..., b r, 0,..., 0) este o soluţie particulară a sistemului (S). Dimensiunea subspaţiului soluţiilor sistemului omogen ataşat, S 0 este n rang(a), adică n r. Pentru a determina o bază a lui S 0 este suficient să găsim n r vectori liniari independenţi. Din ultimul tabel avem c A r+1 = β 1,r+1 c A β r,r+1 c A r, c A n = β 1,n c A β r,n c A r adică β 1,r+1 c A β r,r+1 c A r + ( 1) c A r c A r c A n = 0 β 1,n c A β r,n c A r + 0 c A r c A r ( 1) c A n = 0. Obţinem astfel următoarele soluţii ale sistemului omogen y 1 = (β 1,r+1,..., β r,r+1, 1, 0,..., 0) S 0. y n r = (β 1,n,..., β r,n, 0, 0,..., 1) S 0 Vectorii y 1,..., y n r, fiind liniari independenţi, formează o bază în S 0. Cunoscând soluţia particulară x 0 şi o bază a lui S 0 putem determina soluţiile lui (S).

7 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 7 Example 2.4. a) Să se rezolve sistemul x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 1 x 2 + x 3 + x 4 + x 5 = 1 3x 1 + 2x 2 + x 3 4x 4 + 4x 5 = 3 Folosind lema substituţiei avem tabelul c A 1 c A 2 c A 3 c A 4 c A 5 b t e e e c A e e c A c A e c A c A c A Observăm că rang(a) = rang(a e ) = 3, deci sistemul este compatibil. Coloana termeilor liberi se poate exprima astfel b t = 4c A 1 + 1c A 3 + 4c A 2 = 4c A 1 + 4c A 2 + 1c A 3 + 0c A 4 + 0c A 5, de unde deducem că x 0 = (4, 1, 1, 0, 0) este o soluţie a lui (S). Conform ultimului tabel avem c A 4 = 2c A 1 + c A 2 c 5 = 2c A 3 + c A 2, adică 2c A 1 + c A 2 + 0c A 3 + ( 1)c a 4 + 0c A 5 = 0 0c A 1 + c A 2 + 2c A 3 + 0c a 4 + ( 1)c A 5 = 0. Obţinem astfel următoarele soluţii ale sistemului omogen ataşat y 1 = (2, 1, 0, 1, 0) S 0 y 2 = (0, 1, 2, 0, 1) S 0. Ştim că dim R S 0 = 5 rang(a) = 5 3 = 2. Vectorii y 1, y 2, fiind liniar independenţi, formează o bază în S 0. Aşadar S 0 = y 1, y 2 = αy 1 + βy 2 α, β R} = (2α, α + β, 2β, α, β) α, β R},.

8 8 de unde deducem că multimea soluţiilor sistemului (S) este S = x 0 + S 0 = (4 + 2α, 4 + α + β, 1 + 2β, α, β) α, β R}. b) Să se rezolve sistemul x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 1 x 2 + x 3 + x 4 + x 5 = 1 2x 1 2x 2 + 3x 3 + 2x 4 + 4x 5 = 3 Folosind lema substituţiei avem tabelul c A 1 c A 2 c A 3 c A 4 c A 5 b t e e e c A e e c A c A e Sistemul este incompatibil pentru că rang(a) = 2 3 = rang(a e ). III. Metoda lui Gauss Definiţia 2.5. Spunem că două sisteme de ecuaţii liniare sunt echivalente dacă ambele sunt compatbile şi au aceleaşi soluţii sau dacă ambele sunt incompatibile. Teorema 2.6. Dacă sistemele (S) şi (S ) au matricile extinse echivalente pe linii, atunci ele sunt echivalente. Metoda lui Gauss constă în aducerea matricii extinse la o fomă eşalon şi rezolvarea sistemului care are ca matrice extinsă matricea eşalon obţinută. Example 2.7. a) Să se rezolve folosind metoda lui Gauss sistemul x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 1 x 2 + x 3 + x 4 + x 5 = 1 3x 1 + 2x 2 + x 3 4x 4 + 4x 5 = 3 Aducem matricea extinsă a asistemului la o matrice eşalon l 2 =l 2 l 1 l =l 3 +3l

9 Obţinem sistemul 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 9 l 2 =l 3 l 3 = l x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 2 + 7x 3 x x 5 = 3 x 3 + 2x 5 = 1, echivalent cu cel iniţial, iar rezolvându-l obţinem S = (4 2α, 4 α β, 1 2β, α, β) α, β R}. b) Să se rezolve folosind metoda lui Gauss sistemul x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 1 x 2 + x 3 + x 4 + x 5 = 1 2x 1 2x 2 + 3x 3 + 2x 4 + 4x 5 = 3 Aducem matricea extinsă a sistemului la o matrice eşalon l 2 =l 2 l 1 l =l 3 2l l 3 l Observăm că rang(a) = 2 3 = rang(a e ), deci sistemul este incompatibil. c) Să se rezolve folosind metoda lui Gauss sistemul x + y + z = 0 x + 4y + 10z = 3 2x + 3y + 5z = 1. Aducând matricea extinsă a sistemului la o matrice eşalon l 2 =l 2 l 1 l =l 3 2l l 3=l 3 l observăm că rang(a) = 2 = rang(a e ). Sistemul este deci compatibil nedeterminat. Sistemul echivalent este x + y + z = 0 iar rezolvându-l obţinem y + 3z = 1,. S = (2α 1, 1 3α, α) α R}.,

10 10 Metoda lui Gauss-Jordan se bazează pa acelaşi principiu ca şi metda lui Gauss, cu diferenţa că se aduce matricea la o formă care este diagonală pe primele n coloane (corespunzătoare matricii sistemlui). Example 2.8. a) Considerând sistemul din Exemplul 2.7 a), am văzut că A e Aplicând succesiv transformări elementare pe linii avem l 2 =l 2 7l l 1 =l 1 l 2 A e l 1 =l 1 2l 3 l = l Obţinem sistemul echivalent cu cel iniţial. x 1 + 2x 4 = 4 x 2 + x 4 + x 5 = 4 x 3 + 2x 5 = 1, Example 2.9. Să se rezolve cu toate metodele studiate sistemele: 3x 1 + 4x 2 + x 3 + 2x 4 = 3 a) 6x 1 + 8x 2 + 2x 3 + 5x 4 = 7 9x x 2 + 3x x 4 = 13 3x 1 + 4x 2 + x 3 + 2x 4 = 3 b) 6x 1 + 8x 2 + 2x 3 + 5x 4 = 7 9x x 2 + 3x x 4 = 14 a) I. Folosind lema substituţiei avem tabelul. c A 1 c A 2 c A 3 c A 4 b t e e e c e e c c e

11 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 11 Observăm că rang(a) = rang(a e ) = 2, deci sistemul este compatibil. Coloana termeilor liberi se poate exprima astfel b t = c A 3 + c A 4 = 0c A 1 + 0c A 2 + 1c A 3 + 1c A 4, de unde deducem că x 0 = (0, 0, 1, 1) este o soluţie a sistemului. Conform ultimului tabel avem c A 1 = 3c A 3 c 2 = 4c A 3, adică c A 1 3c A 3 = 0 c 2 4c A 3 = 0, Obţinem astfel următoarele soluţii ale sistemului omogen ataşat y 1 = (1, 0, 3, 0) S 0 y 2 = (0, 1, 4, 0) S 0. Ştim că dim R S 0 = 4 rang(a) = 4 2 = 2. Vectorii y 1, y 2, fiind liniar independenţi, formează o bază în S 0. Aşadar S 0 = y 1, y 2 = αy 1 + βy 2 α, β R} = (α, β, 3α 4β, 0) α, β R}, de unde deducem că multimea soluţiilor sistemului (S) este S = x 0 + S 0 = (α, β, 1 3α 4β, 1) α, β R}. II. Aplicăm metoda Gauss şi aducem matricea extinsă a sistemului la o matrice eşalon astfel A e l 2 =l 2 2l 1 l =l 3 3l l 3 =l 3 4l Observăm că rang(a) = 2 = rang(a e ). Sistemul este deci compatibil nedeterminat. Sistemul echivalent este 3x1 + 4x 2 + x 3 + 2x 2 = 3 x 4 = 1,.

12 12 iar rezolvându-l obţinem x 1 = α, x 2 = β, x 3 = 1 3α 4β x 4 = 1, α, β R. III. Putem aplica şi metoda Gauss-Jordan. Avem A e l 1=l 1 2l Sistemul obţinut astfel este 3x1 + 4x 2 + x 3 = 1 x 4 = 1, iar rezolvându-l ajungem la aceeaşi soluţie. b) Folosind lema substituţiei avem tabelul. c A 1 c A 2 c A 3 c A 4 b t e e e c e e c c e Sistemul este incompatibil pentru că rang(a) = 2 3 = rang(a e ). II. Aplicăm metoda Gauss şi aducem matricea extinsă a sistemului la o matrice eşalon astfel A e l 3 =l 3 4l 2 l 2 =l 2 2l 1 l 3 =l 3 3l

13 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 13 Observăm că rang(a) = 2 3 = rang(a e ). Ajungem la aceeaşi concluzie.

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n 1 Preliminarii Fie M, A mulţimi nevide şi n N. Se muneşte operaţie n ară (sau lege de compoziţie n-ară) definită pe M orice aplicaţie τ : M n M (M n = } M {{... M } ). In cazul n = 2, obţinem operaţiile

Διαβάστε περισσότερα

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A =

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A = Matrice, determinanti Un punct de vedere liniar independent "A judeca matematic nu înseamn a gândi losoc, a judeca losoc nu înseamn a liber, a gândi liber nu înseamn a losof " Blaise Pascal Liniar independenta:

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber Algebră liniară CAPITOLUL VECTORI LIBERI. Segment orientat. Vector liber Acest capitol este dedicat în totalitate studierii spaţiului vectorilor liberi, spaţiu cu foarte multe aplicaţii în geometrie, fizică

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

1Reziduuri şi aplicaţii

1Reziduuri şi aplicaţii Reziduuri şi aplicaţii În acest curs vom prezenta noţiunea de reziduu, modul de calcul al reziduurilor, teorema reziduurilor şi câteva aplicaţii ale teoremei reziduurilor, în special la calculul unor tipuri

Διαβάστε περισσότερα

Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ. Simina Mariş Simona Epure Ioan Rodilǎ

Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ. Simina Mariş Simona Epure Ioan Rodilǎ Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ Liliana Brǎescu Eva Kaslik Simina Mariş Simona Epure Ioan Rodilǎ CURS DE GEOMETRIE Timişoara 2007

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

3. Vectori şi valori proprii

3. Vectori şi valori proprii Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau

Διαβάστε περισσότερα

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Fişier template preliminar

Fişier template preliminar logo.png Contract POSDRU/86/1.2/S/62485 Fişier template preliminar Universitatea Tehnica din Iaşi (front-hyperlinks-colors * 29 iulie 212) UTC.png UTI.png Universitatea Tehnică Gheorghe Asachi din Iaşi

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

PROBLEME DE VALORI ŞI VECTORI PROPRII

PROBLEME DE VALORI ŞI VECTORI PROPRII 9 PROBLEME DE VALORI ŞI VECTORI PROPRII 81 Introducere Problema de valori proprii a unui operator liniar A: Ax = λx x vector propriu, λ valoare proprie În reprezentarea unei baze din < n problemă matricială

Διαβάστε περισσότερα

ALGEBRĂ LINIARĂ, GEOMETRIE. Culegeredeprobleme. Emil STOICA şi Mircea NEAGU

ALGEBRĂ LINIARĂ, GEOMETRIE. Culegeredeprobleme. Emil STOICA şi Mircea NEAGU ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Culegeredeprobleme Emil STOICA şi Mircea NEAGU Cuprins 1 Spaţii vectoriale. Spaţii euclidiene 1 1.1 Elementeteoreticefundamentale................ 1

Διαβάστε περισσότερα

Vectori liberi-seminar 1

Vectori liberi-seminar 1 Vectori liberi-seminar ) Determinati α R astfel incat vectorii ā = m+ n si b = m+α n sa fie coliniari, unde m, n sunt necoliniari. ) Demonstrati ca urmatorii trei vectori liberi sunt coplanari: ā = ī j

Διαβάστε περισσότερα

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală

Διαβάστε περισσότερα

CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene

CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene Geometrie liniară în spaţiu CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU 6.. Sisteme de coordonate în plan şi în spaţiu I. Coordonate carteziene În cele ce urmează, notăm cu E 3 spaţiul punctual tridimensional

Διαβάστε περισσότερα

Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M2 CLASA A XI-A

Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M2 CLASA A XI-A Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M CLASA A XI-A Filiera teoretic`, profilul real, specializarea ]tiin\ele naturii (TC + CD) Filiera tehnologic`, toate calific`rile

Διαβάστε περισσότερα

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y).

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y). Ecuaţii diferenţiale Ecuaţii diferenţiale ordinare Ecuaţii cu derivate parţiale Ordinul unei ecuaţii Soluţia unei ecuaţii diferenţiale ordinare Fie I R un interval deschis, G R n, n 1, un domeniu şi f

Διαβάστε περισσότερα

APLICAŢII ALE CALCULULUI DIFERENŢIAL. Material pentru uzul studenţilor de la FACULTATEA DE

APLICAŢII ALE CALCULULUI DIFERENŢIAL. Material pentru uzul studenţilor de la FACULTATEA DE 1 APLICAŢII ALE CALCULULUI DIFERENŢIAL Material pentru uzul studenţilor de la FACULTATEA DE MECANICĂ 2 Contents 1 Aplicaţii ale calculului diferenţial 5 1.1 Extreme ale funcţiilor reale de mai multe variabile

Διαβάστε περισσότερα

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a)

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a) Universitatea "Dunărea de Jos" din Galaţi MODELE DE TESTE GRILĂ PENTRU ADMITEREA 01 DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a Testele sunt recomandate pentru următoarele domenii de licenţă şi facultăţi:

Διαβάστε περισσότερα

MATEMATICI APLICATE ECONOMIE - NOTE DE CURS - PENTRU - ÎNVǍŢǍMÂNTUL LA DISTANŢǍ-

MATEMATICI APLICATE ECONOMIE - NOTE DE CURS - PENTRU - ÎNVǍŢǍMÂNTUL LA DISTANŢǍ- UNIVERSITATEA "LUCIAN BLAGA" DIN SIBIU Dumitru Acu Petrică Dicu Mugur Acu Ana Maria Acu MATEMATICI APLICATE ÎN ECONOMIE - NOTE DE CURS - PENTRU - ÎNVǍŢǍMÂNTUL LA DISTANŢǍ- Cuprins Introducere 6. Necesitatea

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare

Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare Capitolul 1 Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare Definiţia 1.0.1 O ecuaţie diferenţialǎ de ordinul întâi este o relaţie de dependenţǎ funcţionalǎ de forma g(t, x, ẋ)

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

Geometria diferenţială a curbelor în spaţiu

Geometria diferenţială a curbelor în spaţiu Geometria diferenţială a curbelor în spaţiu A. U. Thor 0.1 Generalităţi Definitia 1.1 Se numeşte curbă înspaţiu dată parametric mulţimea punctelor M (x, y, z) din spaţiuacăror coordonate sunt date de x

Διαβάστε περισσότερα

Calculul valorilor şi vectorilor proprii

Calculul valorilor şi vectorilor proprii Capitolul 4 Calculul valorilor şi vectorilor proprii Valorile şi vectorii proprii joacă un rol fundamental în descrierea matematică a unor categorii foarte largi de procese tehnice, economice, biologice

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU 81 Curbe în plan I Definiţia analitică a curbelor plane În capitolul 7 am studiat deja câteva eemple de curbe plane, amintim aici conicele nedegenerate: elipsa, hiperbola

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X Prelegerea 13 Coduri Reed - Solomon 13.1 Definirea codurilor RS O clasă foarte interesantă de coduri ciclice a fost definită în 1960 de Reed şi Solomon. Numite în articolul iniţial coduri polinomiale,

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE Gabriel POPA, Paul GEORGESCU c August 0, 009, Iaşi Cuprins 1 SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ 4 SPAŢIUL VECTORILOR LIBERI.

Διαβάστε περισσότερα

I3: PROBABILITǍŢI - notiţe de curs

I3: PROBABILITǍŢI - notiţe de curs I3: PROBABILITǍŢI - notiţe de curs Ştefan Balint, Eva Kaslik, Simina Mariş Cuprins Experienţǎ şi evenimente aleatoare 3 2 Eveniment sigur. Eveniment imposibil 3 3 Evenimente contrare 4 4 Evenimente compatibile.

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

1. Mulţimi. Definiţia mulţimii.

1. Mulţimi. Definiţia mulţimii. Definiţia mulţimii. 1. Mulţimi Definiţia 1.1. (Cantor) Prin mulţime înţelegem o colecţie de obiecte bine determinate şi distincte. Obiectele din care este constituită mulţimea se numesc elementele mulţimii.

Διαβάστε περισσότερα

Ecuaţii şi sisteme diferenţiale. Teodor Stihi

Ecuaţii şi sisteme diferenţiale. Teodor Stihi Ecuaţii şi sisteme diferenţiale Teodor Stihi December 6, 204 2 Cuprins Noţiuni introductive 5 2 Ecuaţii diferenţiale liniare (EDL) 7 2. EDL cu coeficienţi constanţi................... 7 2.. Cazul omogen.......................

Διαβάστε περισσότερα

4. Ecuatia asimptotei orizontale la + a graficului functiei f : R R, 7 9x + 8x2 f(x) = 3x 2 + 2x + 5 este.

4. Ecuatia asimptotei orizontale la + a graficului functiei f : R R, 7 9x + 8x2 f(x) = 3x 2 + 2x + 5 este. Copyright c 007 ONG TCV Scoala Virtuala a Tanarului atematician 1 inisterul Educatiei si Tineretului Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 14 iunie 007 Profilul real Timp

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g. II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

POLINOAME ŞI ECUAŢII ALGEBRICE. Universitatea Babeş-Bolyai Facultatea de Matematică şi Informatică

POLINOAME ŞI ECUAŢII ALGEBRICE. Universitatea Babeş-Bolyai Facultatea de Matematică şi Informatică POLINOAME ŞI ECUAŢII ALGEBRICE Andrei Mărcuş Universitatea Babeş-Bolyai Facultatea de Matematică şi Informatică 6 martie 2015 Cuprins 1 Ecuaţii algebrice 1 1.1 Ecuaţii binome. Grupul rădăcinilor de ordin

Διαβάστε περισσότερα

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =. Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp

Διαβάστε περισσότερα

ALGEBRĂ LINEARĂ, GEOMETRIE. Valeriu Zevedei, Ionela Oancea

ALGEBRĂ LINEARĂ, GEOMETRIE. Valeriu Zevedei, Ionela Oancea ALGEBRĂ LINEARĂ, GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Valeriu Zevedei, Ionela Oancea April 9, 005 CUPRINS 1 CALCUL VECTORIAL 7 1.1 Vectori legaţi,vectori liberi... 7 1. Operaţiilinearecuvectori... 9 1..1

Διαβάστε περισσότερα

Coduri detectoare şi corectoare de erori

Coduri detectoare şi corectoare de erori Coduri detectoare şi corectoare de erori Adrian Atanasiu Editura Universităţii BUCUREŞTI Prefaţă Vă uitaţi la televizor care transmite imagini prin satelit? Vorbiţi la telefon (celular)? Folosiţi Internetul?

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs Aritmetică în domenii de integritate şi teoria modulelor Note de curs În prima parte a cursului, vom prezenta câteva clase remarcabile de domenii de integritate şi legăturile dintre acestea A doua parte

Διαβάστε περισσότερα

A1. Valori standardizate de rezistenţe

A1. Valori standardizate de rezistenţe 30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea

Διαβάστε περισσότερα

Sala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ

Sala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ Sala: 203 Decembrie 204 Cof. uiv. dr.: Dragoş-Pătru Covei CURS 0: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs u a fost supus uui proces riguros de recezare petru a fi oficial publicat. distribuit

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

Cuprins. I Geometrie Analitică 9

Cuprins. I Geometrie Analitică 9 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului POSDRU/56/1.2/S/32768, Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predareînvăţare-evaluare

Διαβάστε περισσότερα

Grupuri de simetrii. Oana Constantinescu

Grupuri de simetrii. Oana Constantinescu Rolul grupurilor de transformari in denirea unei geometrii Felix Klein (1849-1925) a dorit sa aplice conceptul de grup pentru a caracteriza diferitele geometrii ale timpului. In discursul inaugural de

Διαβάστε περισσότερα

Grupul ortogonal. Mircea Crasmareanu. Facultatea de Matematică Universitatea Al. I. Cuza Iaşi,

Grupul ortogonal. Mircea Crasmareanu. Facultatea de Matematică Universitatea Al. I. Cuza Iaşi, Grupul ortogonal Mircea Crasmareanu Facultatea de Matematică Universitatea Al. I. Cuza Iaşi, 700506 România mcrasm@uaic.ro http://www.math.uaic.ro/ mcrasm Curs de Perfecţionare 2007 9 Figuri Abstract However

Διαβάστε περισσότερα