1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..."

Transcript

1 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale (S) a 11 X 1 + a 12 X a 1n X n = b 1 a 21 X 1 + a 22 X a 2n X n = b 2, a ij, b i K. a m1 X 1 + a m2 X a mn X n = b m Dacă b 1 = = b n = 0, atunci spunem că (S) este un sistem omogen. 2) Un vector x = (x 1,..., x n ) K n este soluţie pentru (S) dacă înlocuind necunoscutele sistemului cu componentele vectorului X i := x i toate egalităţile ce se obţin sunt adevărate. 3) Sistemul (S) este compatibil dacă are cel puţin o soluţie şi este incompatibil dacă nu are soluţii. (S) este compatibil determinat dacă are exact o soluţie, iar dacă are cel puţin două suluţii, atunci spunem că este compatibil nedeterminat. Definiţia 1.2. Fiind dat un sistem (S), matricea A = (a ij ) s.n. a a 1n b 1 matricea sitemului (S). Matricea A e =.... s.n. a m1... a mn b m matricea extinsă ataşată lui (S). Observaţia 1.3. (Forma matriceală) Dacă A = [a ij ] este matricea sistemului (S), atunci sistemul poate fi scris sub forma: (S) AX t = b t, unde X = (X 1,... X n ) şi b = (b 1,..., b m ). Observaţia 1.4. (Forma vectorială) Dacă privim coloanele matricii A ca vectori coloană din K-spaţiul vectorial K n, atunci sistemul poate fi pus sub forma: (S)X 1 c A X n c A n = b t. Teorema 1.5. (Kroneker-Capelli) Sistemul de ecutaţii liniare (S) este compatibil dacă şi numai dacă rang(a) = rang(a e ). Demonstraţie.. Presupunem că sistemul (S) este compatibil. Există, deci, (α 1,..., α n ) K n astfel încât α 1 c A α n c A n = b t 1

2 2 Dar, de aici, rezultă că b t c A 1,..., c A n, adică c A 1,..., c A n = c A 1,..., c A n, b t rang[c A 1,..., c A n ] = rang[c A 1,..., c A n, b t ] rang(a) = rang(a e ).. Presupunem acum că rang(a) = rang(a e ), adică rang[c A 1,..., c A n ] = rang[c A 1,..., c A n, b t ]. Conform definiţiei rangului unui sistem de vectori, avem dim K c A 1,..., c A n = dim K c A 1,..., c A n, b t, iar ţinând cont de faptul că c A 1,..., c A n este un subspaţiu a lui c A 1,..., c A n, b t, deducem că c A 1,..., c A n = c A 1,..., c A n, b t. Vectorul b t c A 1,..., c A n, există deci (α 1,..., α n ) K n astfel încât α 1 c A α n c A n = b t, adică, sistemul (S) este compatibil. Observaţia 1.6. Criteriul lui Rouché, studiat în liceu este o consecinţă a teoremei Kroneker-Capelli. Teorema 1.7. Soluţiile unui sistem omogen (S) cu n necunoscute formează un subspaţiu al K-spaţiului vectorial K n, de dimensiune n rang(a). Demonstraţie. Fie (S) un sistem cu m ecuaţii şi n necunoscute, cu forma matriceala A X t = 0 t. Trecând la transpuse, în identitatea matriceală anterioară, obţinem (X 1,..., X n )A t = (0,..., 0). Considerăm aplicaţia liniară f A : K n K m, cu [f A ] bb = A t, unde e este baza canonică lui K n, iar e este baza canonică lui K m. Dacă (X 1,..., X n ) K n, avem f A (X 1,..., X n ) = (X 1,..., X n )[f A ] ee e t = (X 1,..., X n )A t e t. Deducem că (α 1,..., α n ) K n este soluţie a sistemului (S), dacă, şi numai dacă, (α 1,..., α n ) Ker(f A ). Mulţimea soluţiilor sistemului (S) coincide deci cu Ker(f A ). Dar Ker(f A ) este subspaţiu a lui K n, de dimensiune def(f A ) = n rang(f A ) = n rang(a t ) = n rang(a).

3 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 3 Corolarul 1.8. Un sistem omogen (S) are doar soluţia banală (0,..., 0) dacă şi numai dacă n = rang(a). Observaţia 1.9. Din demonstraţia teoremei se deduce că subspaţiul soluţiilor unui sistem omogen coincide cu nucleul aplicaţiei liniare f : K n K m cu [f] ee = A t, unde e şi e sunt bazele canonice. Prin urmare, pentru determinarea solţiilor unui sistem omogen se pot aplica metodele prezentate pentru determinarea nucleelor de aplicaţii liniare. Teorema Fie (S) AX t = b t un sistem de ecuaţii liniare şi (S 0 ) sistemul omogen AX t = 0 (obţinut prin înlocuirea coloanei b cu 0). Dacă x 0 este o soluţie particulară a lui (S) şi S 0 este mulţimea soluţiilor lui (S 0 ), atunci mulţimea soluţiilor sistemului (S) este S = x 0 + S 0 = x 0 + y y S 0 }. Demonstraţie. Fie (S) un sistem de m ecuaţii, cu n necunsocute. Considerăm aplicaţia liniară f A : K n K m cu [f A ] ee = A t, unde A M m,n (K) este matricea sistemului (S). Am notat cu e şi e baza canonică din K n, respectiv K m. Dacă x = (x 1,..., x n ) K n, avem f A (x 1,..., x n ) = (x 1,..., x n )A t K m. Vectorul x este o soluţie a lui (S) dacă şi numai dacă Ax t = b t xa t = b f(x) = b. Deci, x 0, fiind o soluţie pariculară a lui (S) avem f(x 0 ) = b şi x S f(x) = f(x 0 ) f(x) f(x 0 ) = 0 f(x x 0 ) = 0. Un vector y K n este soluţie a sistemului (S 0 ), dacă şi numai dacă f(y) = 0, deci f(x x 0 ) = 0 x x 0 S 0 y S 0 a.i. x x 0 = y y S 0 a.i. x = x 0 + y x x 0 + S Rezolvarea sistemelor de ecuaţii liniare Teorema 2.1. (Regula lui Cramer) Un sistem (S) AX t = b t cu n ecuaţii şi n necunoscute (adică A M n (K)) este compatibil determinat dacă şi numai dacă det(a) 0. În aceste condiţii soluţia este x = (x 1,..., x n ) cu x i = (det(a)) 1 det[c A 1,..., c A i 1, b t, c A i+1,..., c A n ], i 1,..., n}.

4 4 Demonstraţie.. Presupunem că sistemul (S) este compatibl determinat. Mulţimea soluţiilor lui (S), S, are deci un singur element. Conform Teoremei 1.10 avem S = x 0 + S 0 = x 0 + y y S 0 }. În consecinţă, mulţimea S 0 nu poate avea decât un singur element. Dar, S 0 fiind un K-subspaţiu a lui K n, nu poate fi egal decât cu 0}. Conform Corolarului 1.8, rang(a) = n, deci det(a) 0.. Presupunem că det(a) 0. Sistemul omogen ataşat, (S 0 ), are deci doar soluţia banală, adică S 0 = 0}. Conform Teoremei 1.10, mulţimea S are cel mult un elemet. Nu ne rămâne să demonstrăm, decât existenţa unei soluţii particulare a sistemului (S). Considerăm scalarii x i K, definiţi astfel x i = (det(a)) 1 det[c A 1,..., c A i 1, b t, c A i+1,..., c A n ], i 1,..., n}. Pentru a ajunge la concluzia că x 0 = (x 1,..., x n ) este o soluţie a lui (S) e suficient să arătăm că Ax t 0 = b t x t 0 = A 1 b t x t 0 = (det(a)) 1 A b t, unde A este adjuncta matricii A. Avem deci Ax t 0 = b t x i = (det(a) 1 (Γ 1i Γ 2i... Γ ni ) b 1. b n = (det(a)) 1 n b j Γ ji, unde Γ ji sunt complemenţii algebrici corespunzători. Dar, n j=1 b jγ ji nu reprezintă altceva decât dezvoltarea după coloana a i-a a determinantului det[c A 1,..., c A i 1, b t, c A i+1,..., c A n ] i 1,..., n}. Aşadar, x 0 reprezintă unica soluţie a sistemului (S). Metode de rezolvare I. Metoda lui Cramer Example 2.2. Să se rezolve sistemul x 1 + x 2 x 3 = 0 3x 1 2x 2 + 2x 3 = 5 2x 1 + 3x 2 2x 3 = 2. Calculând determinantul matricii sistemului det(a) = = 5, j=1

5 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 5 deducem că sistemul este compatibil determinat. soluţia calculăm determinaţii d 1 = = 5, d 2 = = 10, d 3 = = 5. Pentru a obţine d i este determinantul matricii obţinute din A prin înlocuirea coloanei a i-a cu coloana termenilor liberi. Componenetele soluţiei sunt x 1 = d 1 det(a) = 5 5 = 1, x 2 = d 2 det(a) = 10 5 = 2, x 3 = d 3 det(a) = 15 5 = 3. II. Folosind lema substituţiei Observaţia 2.3. Este suficient să găsim o bază pentru spaţiul soluţiilor sistemului omogen (numit sistem fundamental de soluţii) şi o soluţie particulară. Considerăm sistemul (S) Ax t = b t, cu m ecuaţii şi n necunoscute. Aplicăm lema substituţiei pentru a calcula rang(a), adică rangul sistemului de vectori [c A 1,..., c n ], format din coloanele lui A. Tabelul ini ţial va arăta astfel c A 1 c A 2... c A n b t e 1 b 1 e 2 A b 2. e m Presupunem că după un număr de r paşi ajungem la următoarea situaţie. b m

6 6 c A 1 c A r c A r+1 c A n b t c A β 1,r+1 β 1,n b c A r 0 1 β r,r+1 β r,n b r c A r b r c A m b m Observăm că rang(a) = r. Ca sistemul (S) să fie compatibil rangul matricii extinse, A e, trebuie să fie tot r. Această condiţie este echivalentă cu În aceste condiţii avem b r+1 = = b m = 0. b t = b 1 c A b r c A r + 0 c A r c A n, adică x 0 = (b 1,..., b r, 0,..., 0) este o soluţie particulară a sistemului (S). Dimensiunea subspaţiului soluţiilor sistemului omogen ataşat, S 0 este n rang(a), adică n r. Pentru a determina o bază a lui S 0 este suficient să găsim n r vectori liniari independenţi. Din ultimul tabel avem c A r+1 = β 1,r+1 c A β r,r+1 c A r, c A n = β 1,n c A β r,n c A r adică β 1,r+1 c A β r,r+1 c A r + ( 1) c A r c A r c A n = 0 β 1,n c A β r,n c A r + 0 c A r c A r ( 1) c A n = 0. Obţinem astfel următoarele soluţii ale sistemului omogen y 1 = (β 1,r+1,..., β r,r+1, 1, 0,..., 0) S 0. y n r = (β 1,n,..., β r,n, 0, 0,..., 1) S 0 Vectorii y 1,..., y n r, fiind liniari independenţi, formează o bază în S 0. Cunoscând soluţia particulară x 0 şi o bază a lui S 0 putem determina soluţiile lui (S).

7 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 7 Example 2.4. a) Să se rezolve sistemul x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 1 x 2 + x 3 + x 4 + x 5 = 1 3x 1 + 2x 2 + x 3 4x 4 + 4x 5 = 3 Folosind lema substituţiei avem tabelul c A 1 c A 2 c A 3 c A 4 c A 5 b t e e e c A e e c A c A e c A c A c A Observăm că rang(a) = rang(a e ) = 3, deci sistemul este compatibil. Coloana termeilor liberi se poate exprima astfel b t = 4c A 1 + 1c A 3 + 4c A 2 = 4c A 1 + 4c A 2 + 1c A 3 + 0c A 4 + 0c A 5, de unde deducem că x 0 = (4, 1, 1, 0, 0) este o soluţie a lui (S). Conform ultimului tabel avem c A 4 = 2c A 1 + c A 2 c 5 = 2c A 3 + c A 2, adică 2c A 1 + c A 2 + 0c A 3 + ( 1)c a 4 + 0c A 5 = 0 0c A 1 + c A 2 + 2c A 3 + 0c a 4 + ( 1)c A 5 = 0. Obţinem astfel următoarele soluţii ale sistemului omogen ataşat y 1 = (2, 1, 0, 1, 0) S 0 y 2 = (0, 1, 2, 0, 1) S 0. Ştim că dim R S 0 = 5 rang(a) = 5 3 = 2. Vectorii y 1, y 2, fiind liniar independenţi, formează o bază în S 0. Aşadar S 0 = y 1, y 2 = αy 1 + βy 2 α, β R} = (2α, α + β, 2β, α, β) α, β R},.

8 8 de unde deducem că multimea soluţiilor sistemului (S) este S = x 0 + S 0 = (4 + 2α, 4 + α + β, 1 + 2β, α, β) α, β R}. b) Să se rezolve sistemul x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 1 x 2 + x 3 + x 4 + x 5 = 1 2x 1 2x 2 + 3x 3 + 2x 4 + 4x 5 = 3 Folosind lema substituţiei avem tabelul c A 1 c A 2 c A 3 c A 4 c A 5 b t e e e c A e e c A c A e Sistemul este incompatibil pentru că rang(a) = 2 3 = rang(a e ). III. Metoda lui Gauss Definiţia 2.5. Spunem că două sisteme de ecuaţii liniare sunt echivalente dacă ambele sunt compatbile şi au aceleaşi soluţii sau dacă ambele sunt incompatibile. Teorema 2.6. Dacă sistemele (S) şi (S ) au matricile extinse echivalente pe linii, atunci ele sunt echivalente. Metoda lui Gauss constă în aducerea matricii extinse la o fomă eşalon şi rezolvarea sistemului care are ca matrice extinsă matricea eşalon obţinută. Example 2.7. a) Să se rezolve folosind metoda lui Gauss sistemul x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 1 x 2 + x 3 + x 4 + x 5 = 1 3x 1 + 2x 2 + x 3 4x 4 + 4x 5 = 3 Aducem matricea extinsă a asistemului la o matrice eşalon l 2 =l 2 l 1 l =l 3 +3l

9 Obţinem sistemul 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 9 l 2 =l 3 l 3 = l x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 2 + 7x 3 x x 5 = 3 x 3 + 2x 5 = 1, echivalent cu cel iniţial, iar rezolvându-l obţinem S = (4 2α, 4 α β, 1 2β, α, β) α, β R}. b) Să se rezolve folosind metoda lui Gauss sistemul x 1 x 2 + 2x 3 + x 4 + 3x 5 = 2 x 1 x 2 + x 3 + x 4 + x 5 = 1 2x 1 2x 2 + 3x 3 + 2x 4 + 4x 5 = 3 Aducem matricea extinsă a sistemului la o matrice eşalon l 2 =l 2 l 1 l =l 3 2l l 3 l Observăm că rang(a) = 2 3 = rang(a e ), deci sistemul este incompatibil. c) Să se rezolve folosind metoda lui Gauss sistemul x + y + z = 0 x + 4y + 10z = 3 2x + 3y + 5z = 1. Aducând matricea extinsă a sistemului la o matrice eşalon l 2 =l 2 l 1 l =l 3 2l l 3=l 3 l observăm că rang(a) = 2 = rang(a e ). Sistemul este deci compatibil nedeterminat. Sistemul echivalent este x + y + z = 0 iar rezolvându-l obţinem y + 3z = 1,. S = (2α 1, 1 3α, α) α R}.,

10 10 Metoda lui Gauss-Jordan se bazează pa acelaşi principiu ca şi metda lui Gauss, cu diferenţa că se aduce matricea la o formă care este diagonală pe primele n coloane (corespunzătoare matricii sistemlui). Example 2.8. a) Considerând sistemul din Exemplul 2.7 a), am văzut că A e Aplicând succesiv transformări elementare pe linii avem l 2 =l 2 7l l 1 =l 1 l 2 A e l 1 =l 1 2l 3 l = l Obţinem sistemul echivalent cu cel iniţial. x 1 + 2x 4 = 4 x 2 + x 4 + x 5 = 4 x 3 + 2x 5 = 1, Example 2.9. Să se rezolve cu toate metodele studiate sistemele: 3x 1 + 4x 2 + x 3 + 2x 4 = 3 a) 6x 1 + 8x 2 + 2x 3 + 5x 4 = 7 9x x 2 + 3x x 4 = 13 3x 1 + 4x 2 + x 3 + 2x 4 = 3 b) 6x 1 + 8x 2 + 2x 3 + 5x 4 = 7 9x x 2 + 3x x 4 = 14 a) I. Folosind lema substituţiei avem tabelul. c A 1 c A 2 c A 3 c A 4 b t e e e c e e c c e

11 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 11 Observăm că rang(a) = rang(a e ) = 2, deci sistemul este compatibil. Coloana termeilor liberi se poate exprima astfel b t = c A 3 + c A 4 = 0c A 1 + 0c A 2 + 1c A 3 + 1c A 4, de unde deducem că x 0 = (0, 0, 1, 1) este o soluţie a sistemului. Conform ultimului tabel avem c A 1 = 3c A 3 c 2 = 4c A 3, adică c A 1 3c A 3 = 0 c 2 4c A 3 = 0, Obţinem astfel următoarele soluţii ale sistemului omogen ataşat y 1 = (1, 0, 3, 0) S 0 y 2 = (0, 1, 4, 0) S 0. Ştim că dim R S 0 = 4 rang(a) = 4 2 = 2. Vectorii y 1, y 2, fiind liniar independenţi, formează o bază în S 0. Aşadar S 0 = y 1, y 2 = αy 1 + βy 2 α, β R} = (α, β, 3α 4β, 0) α, β R}, de unde deducem că multimea soluţiilor sistemului (S) este S = x 0 + S 0 = (α, β, 1 3α 4β, 1) α, β R}. II. Aplicăm metoda Gauss şi aducem matricea extinsă a sistemului la o matrice eşalon astfel A e l 2 =l 2 2l 1 l =l 3 3l l 3 =l 3 4l Observăm că rang(a) = 2 = rang(a e ). Sistemul este deci compatibil nedeterminat. Sistemul echivalent este 3x1 + 4x 2 + x 3 + 2x 2 = 3 x 4 = 1,.

12 12 iar rezolvându-l obţinem x 1 = α, x 2 = β, x 3 = 1 3α 4β x 4 = 1, α, β R. III. Putem aplica şi metoda Gauss-Jordan. Avem A e l 1=l 1 2l Sistemul obţinut astfel este 3x1 + 4x 2 + x 3 = 1 x 4 = 1, iar rezolvându-l ajungem la aceeaşi soluţie. b) Folosind lema substituţiei avem tabelul. c A 1 c A 2 c A 3 c A 4 b t e e e c e e c c e Sistemul este incompatibil pentru că rang(a) = 2 3 = rang(a e ). II. Aplicăm metoda Gauss şi aducem matricea extinsă a sistemului la o matrice eşalon astfel A e l 3 =l 3 4l 2 l 2 =l 2 2l 1 l 3 =l 3 3l

13 2. REZOLVAREA SISTEMELOR DE ECUAŢII LINIARE 13 Observăm că rang(a) = 2 3 = rang(a e ). Ajungem la aceeaşi concluzie.

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A =

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A = Matrice, determinanti Un punct de vedere liniar independent "A judeca matematic nu înseamn a gândi losoc, a judeca losoc nu înseamn a liber, a gândi liber nu înseamn a losof " Blaise Pascal Liniar independenta:

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n 1 Preliminarii Fie M, A mulţimi nevide şi n N. Se muneşte operaţie n ară (sau lege de compoziţie n-ară) definită pe M orice aplicaţie τ : M n M (M n = } M {{... M } ). In cazul n = 2, obţinem operaţiile

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber Algebră liniară CAPITOLUL VECTORI LIBERI. Segment orientat. Vector liber Acest capitol este dedicat în totalitate studierii spaţiului vectorilor liberi, spaţiu cu foarte multe aplicaţii în geometrie, fizică

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

1Reziduuri şi aplicaţii

1Reziduuri şi aplicaţii Reziduuri şi aplicaţii În acest curs vom prezenta noţiunea de reziduu, modul de calcul al reziduurilor, teorema reziduurilor şi câteva aplicaţii ale teoremei reziduurilor, în special la calculul unor tipuri

Διαβάστε περισσότερα

3. Vectori şi valori proprii

3. Vectori şi valori proprii Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

ALGEBRĂ LINIARĂ, GEOMETRIE. Culegeredeprobleme. Emil STOICA şi Mircea NEAGU

ALGEBRĂ LINIARĂ, GEOMETRIE. Culegeredeprobleme. Emil STOICA şi Mircea NEAGU ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Culegeredeprobleme Emil STOICA şi Mircea NEAGU Cuprins 1 Spaţii vectoriale. Spaţii euclidiene 1 1.1 Elementeteoreticefundamentale................ 1

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M2 CLASA A XI-A

Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M2 CLASA A XI-A Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M CLASA A XI-A Filiera teoretic`, profilul real, specializarea ]tiin\ele naturii (TC + CD) Filiera tehnologic`, toate calific`rile

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

Vectori liberi-seminar 1

Vectori liberi-seminar 1 Vectori liberi-seminar ) Determinati α R astfel incat vectorii ā = m+ n si b = m+α n sa fie coliniari, unde m, n sunt necoliniari. ) Demonstrati ca urmatorii trei vectori liberi sunt coplanari: ā = ī j

Διαβάστε περισσότερα

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y).

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y). Ecuaţii diferenţiale Ecuaţii diferenţiale ordinare Ecuaţii cu derivate parţiale Ordinul unei ecuaţii Soluţia unei ecuaţii diferenţiale ordinare Fie I R un interval deschis, G R n, n 1, un domeniu şi f

Διαβάστε περισσότερα

MATEMATICI APLICATE ECONOMIE - NOTE DE CURS - PENTRU - ÎNVǍŢǍMÂNTUL LA DISTANŢǍ-

MATEMATICI APLICATE ECONOMIE - NOTE DE CURS - PENTRU - ÎNVǍŢǍMÂNTUL LA DISTANŢǍ- UNIVERSITATEA "LUCIAN BLAGA" DIN SIBIU Dumitru Acu Petrică Dicu Mugur Acu Ana Maria Acu MATEMATICI APLICATE ÎN ECONOMIE - NOTE DE CURS - PENTRU - ÎNVǍŢǍMÂNTUL LA DISTANŢǍ- Cuprins Introducere 6. Necesitatea

Διαβάστε περισσότερα

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X Prelegerea 13 Coduri Reed - Solomon 13.1 Definirea codurilor RS O clasă foarte interesantă de coduri ciclice a fost definită în 1960 de Reed şi Solomon. Numite în articolul iniţial coduri polinomiale,

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare

Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare Capitolul 1 Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare Definiţia 1.0.1 O ecuaţie diferenţialǎ de ordinul întâi este o relaţie de dependenţǎ funcţionalǎ de forma g(t, x, ẋ)

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

Geometria diferenţială a curbelor în spaţiu

Geometria diferenţială a curbelor în spaţiu Geometria diferenţială a curbelor în spaţiu A. U. Thor 0.1 Generalităţi Definitia 1.1 Se numeşte curbă înspaţiu dată parametric mulţimea punctelor M (x, y, z) din spaţiuacăror coordonate sunt date de x

Διαβάστε περισσότερα

Calculul valorilor şi vectorilor proprii

Calculul valorilor şi vectorilor proprii Capitolul 4 Calculul valorilor şi vectorilor proprii Valorile şi vectorii proprii joacă un rol fundamental în descrierea matematică a unor categorii foarte largi de procese tehnice, economice, biologice

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

1. Mulţimi. Definiţia mulţimii.

1. Mulţimi. Definiţia mulţimii. Definiţia mulţimii. 1. Mulţimi Definiţia 1.1. (Cantor) Prin mulţime înţelegem o colecţie de obiecte bine determinate şi distincte. Obiectele din care este constituită mulţimea se numesc elementele mulţimii.

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

4. Ecuatia asimptotei orizontale la + a graficului functiei f : R R, 7 9x + 8x2 f(x) = 3x 2 + 2x + 5 este.

4. Ecuatia asimptotei orizontale la + a graficului functiei f : R R, 7 9x + 8x2 f(x) = 3x 2 + 2x + 5 este. Copyright c 007 ONG TCV Scoala Virtuala a Tanarului atematician 1 inisterul Educatiei si Tineretului Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 14 iunie 007 Profilul real Timp

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

Coduri detectoare şi corectoare de erori

Coduri detectoare şi corectoare de erori Coduri detectoare şi corectoare de erori Adrian Atanasiu Editura Universităţii BUCUREŞTI Prefaţă Vă uitaţi la televizor care transmite imagini prin satelit? Vorbiţi la telefon (celular)? Folosiţi Internetul?

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

ALGEBRĂ LINEARĂ, GEOMETRIE. Valeriu Zevedei, Ionela Oancea

ALGEBRĂ LINEARĂ, GEOMETRIE. Valeriu Zevedei, Ionela Oancea ALGEBRĂ LINEARĂ, GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Valeriu Zevedei, Ionela Oancea April 9, 005 CUPRINS 1 CALCUL VECTORIAL 7 1.1 Vectori legaţi,vectori liberi... 7 1. Operaţiilinearecuvectori... 9 1..1

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs Aritmetică în domenii de integritate şi teoria modulelor Note de curs În prima parte a cursului, vom prezenta câteva clase remarcabile de domenii de integritate şi legăturile dintre acestea A doua parte

Διαβάστε περισσότερα

A1. Valori standardizate de rezistenţe

A1. Valori standardizate de rezistenţe 30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

Grupul ortogonal. Mircea Crasmareanu. Facultatea de Matematică Universitatea Al. I. Cuza Iaşi,

Grupul ortogonal. Mircea Crasmareanu. Facultatea de Matematică Universitatea Al. I. Cuza Iaşi, Grupul ortogonal Mircea Crasmareanu Facultatea de Matematică Universitatea Al. I. Cuza Iaşi, 700506 România mcrasm@uaic.ro http://www.math.uaic.ro/ mcrasm Curs de Perfecţionare 2007 9 Figuri Abstract However

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

Cuprins. I Geometrie Analitică 9

Cuprins. I Geometrie Analitică 9 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului POSDRU/56/1.2/S/32768, Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predareînvăţare-evaluare

Διαβάστε περισσότερα

Grupuri de simetrii. Oana Constantinescu

Grupuri de simetrii. Oana Constantinescu Rolul grupurilor de transformari in denirea unei geometrii Felix Klein (1849-1925) a dorit sa aplice conceptul de grup pentru a caracteriza diferitele geometrii ale timpului. In discursul inaugural de

Διαβάστε περισσότερα

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1 CURS 2 SISTEME DE FORŢE CUPRINS 2. Sisteme de forţe.... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 2.1. Forţa...2 Test de autoevaluare 1...3 2.2. Proiecţia forţei pe o axă. Componenta forţei

Διαβάστε περισσότερα

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate. Copyright c 009 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 15 iunie

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

Algoritmi genetici. 1.1 Generalităţi

Algoritmi genetici. 1.1 Generalităţi 1.1 Generalităţi Algoritmii genetici fac parte din categoria algoritmilor de calcul evoluţionist şi sunt inspiraţi de teoria lui Darwin asupra evoluţiei. Idea calculului evoluţionist a fost introdusă în

Διαβάστε περισσότερα

Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, august 2015 Soluţii şi baremuri Clasa a IV-a

Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, august 2015 Soluţii şi baremuri Clasa a IV-a Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, 17-22 august 2015 Soluţii şi baremuri Clasa a IV-a Problema 1. Câte numere naturale de cinci cifre trebuie să scriem pentru

Διαβάστε περισσότερα

Capitolul 2 ECUAŢII CU DERIVATE PARŢIALE DE ORDINUL AL DOILEA

Capitolul 2 ECUAŢII CU DERIVATE PARŢIALE DE ORDINUL AL DOILEA Capitolul 2 ECUAŢII CU DERIVATE PARŢIALE DE ORDINUL AL DOILEA Studiul ecuaţiilor cu derivate parţiale îşi are originea în secolul al XVIII-lea şi a fost inspirat de modele concrete din mecanică (elasticitate,

Διαβάστε περισσότερα

Tehnici de Optimizare

Tehnici de Optimizare Tehnici de Optimizare Cristian OARA Facultatea de Automatica si Calculatoare Universitatea Politehnica Bucuresti Fax: + 40 1 3234 234 Email: oara@riccati.pub.ro URL: http://riccati.pub.ro Tehnici de Optimizare

Διαβάστε περισσότερα

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este

Διαβάστε περισσότερα

Prelegerea 11. Securitatea sistemului RSA Informaţii despre p şi q

Prelegerea 11. Securitatea sistemului RSA Informaţii despre p şi q Prelegerea 11 Securitatea sistemului RSA Vom trece în revistă câteva modalităţi de atac ale sistemelor de criptare RSA. Ca o primă observaţie, RSA nu rezistă la un atac de tipul meet-in-the middle, strategia

Διαβάστε περισσότερα

Proiectarea algoritmilor: Programare dinamică

Proiectarea algoritmilor: Programare dinamică Proiectarea algoritmilor: Programare dinamică Dorel Lucanu Faculty of Computer Science Alexandru Ioan Cuza University, Iaşi, Romania dlucanu@info.uaic.ro PA 2014/2015 D. Lucanu (FII - UAIC) Programare

Διαβάστε περισσότερα

Asist. Dr. Oana Captarencu. otto/pn.html.

Asist. Dr. Oana Captarencu.  otto/pn.html. Reţele Petri şi Aplicaţii p. 1/45 Reţele Petri şi Aplicaţii Asist. Dr. Oana Captarencu http://www.infoiasi.ro/ otto/pn.html otto@infoiasi.ro Reţele Petri şi Aplicaţii p. 2/45 Evaluare Nota finala: 40%

Διαβάστε περισσότερα

Aurelian Claudiu VOLF. Coduri. Universitatea Al. I Cuza Iaşi

Aurelian Claudiu VOLF. Coduri. Universitatea Al. I Cuza Iaşi Aurelian Claudiu VOLF Coduri Universitatea Al. I Cuza Iaşi 2011 Cuprins Cuprins... 2 Prefaţă... 3 Unele notaţii... 5 I. Coduri corectoare de erori... 6 II. Coduri liniare... 14 III. Corpuri finite... 26

Διαβάστε περισσότερα

页面

页面 订单 - 配售 Εξετάζουμε την αγορά...luăm în considerare posibi 正式, 试探性 Είμαστε στην ευχάριστη Suntem θέση να încântați δώσουμε την să plasăm παραγγελία μας στην εταιρεία comandă σας pentru... για... Θα θέλαμε

Διαβάστε περισσότερα

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui - Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex

Διαβάστε περισσότερα

Platformă de e learning și curriculă e content pentru învățământul superior tehnic

Platformă de e learning și curriculă e content pentru învățământul superior tehnic Platformă de e learning și curriculă e content pentru învățământul superior tehnic Proiectarea Logică 24. Echivalenta starilor STARILE ECHIVALENTE DIN CIRCUITELE SECVENTIALE Realizarea unui circuit secvenţial

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predare-învăţare-evaluare pentru

Διαβάστε περισσότερα

Numere complexe. a numerelor complexe z b b arg z.

Numere complexe. a numerelor complexe z b b arg z. Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea

Διαβάστε περισσότερα

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Subiecte : 1. Proprietăţile mulţimilor. Mulţimi numerice importante. 2. Relaţii binare. Relaţii de ordine. Relaţii de echivalenţă. 3. Imagini directe şi imagini inverse

Διαβάστε περισσότερα

MC. 13 ELEMENTE DE TEORIA

MC. 13 ELEMENTE DE TEORIA MC. 13 ELEMENTE DE TEORIA CÂMPURILOR Cuprins 15 MC. 13 Elemente de teoria câmpurilor 5 15.1 Câmpuri scalare. Curbe şi suprafeţe de nivel............................. 5 15.2 Derivata după o direcţie şi

Διαβάστε περισσότερα

Cursul 4. Matrice. Rangul unei matrice. Rezolvarea sistemelor de ecuaţii liniare. Metoda eliminării a lui Gauss

Cursul 4. Matrice. Rangul unei matrice. Rezolvarea sistemelor de ecuaţii liniare. Metoda eliminării a lui Gauss Lector univ dr Cristin Nrte Cursul 4 Mtrice Rngul unei mtrice Rezolvre sistemelor de ecuţii linire Metod eliminării lui Guss Definiţie O mtrice m n este o serie de mn intrări, numite elemente, rnjte în

Διαβάστε περισσότερα

Lucrarea nr. 4. Reţele de conexiune cu etaje multiple

Lucrarea nr. 4. Reţele de conexiune cu etaje multiple Lucrarea nr. 4 Reţele de conexiune cu etae multiple 4. Reţele Clos În anul 953 Charles Clos, cercetător în cadrul laboratoarelor Bell, a publicat o analiză a reţelelor cu 3 etae, denumite din această cauză

Διαβάστε περισσότερα

Forme normale pentru schemele de relaţie prof. dr. ing. Mircea Petrescu

Forme normale pentru schemele de relaţie prof. dr. ing. Mircea Petrescu Forme normale pentru schemele de relaţie prof. dr. ing. Mircea Petrescu Folosirea formelor normale conduce la eliminarea multora din problemele de redondanţe şi anomalii enunţate anterior. Fie o schemă

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

P A + P C + P E = P B + P D + P F.

P A + P C + P E = P B + P D + P F. Fie P un punct situat în interiorul cercului C. Prin punctul P se duc trei coarde care determină în jurul punctului P şase unghiuri de 60. Notăm A, B, C, D, E, F (în ordine) capetele acestor coarde. Arătaţi

Διαβάστε περισσότερα

Geometria curbelor şi suprafeţelor 27 Mai 2014

Geometria curbelor şi suprafeţelor 27 Mai 2014 Geometria curbelor şi suprafeţelor 7 Mai 04 Mircea Crâşmăreanu ii Cuprins Introducere v Noţiunea de curbă. Geometria unei curbe Reperul Frenet şi curburi 9 3 Teorema fundamentală a curbelor 7 4 Ecuaţiile

Διαβάστε περισσότερα

In cazul sistemelor G-L pentru care nu se aplica legile amintite ale echilibrului de faza, relatia y e = f(x) se determina numai experimental.

In cazul sistemelor G-L pentru care nu se aplica legile amintite ale echilibrului de faza, relatia y e = f(x) se determina numai experimental. ECHILIBRUL FAZELOR Este descris de: Legea repartitiei masice Legea fazelor Legea distributiei masice La echilibru, la temperatura constanta, raportul concentratiilor substantei dizolvate in doua faze aflate

Διαβάστε περισσότερα

Curs 7. Definiţia II Un grup G este o mulţime, împreună cu o operaţie binară

Curs 7. Definiţia II Un grup G este o mulţime, împreună cu o operaţie binară Curs 7 II.3 Grupuri II.3.1 Definiţie. Exemple Definiţia II.3.1.1. Un grup G este o mulţime, împreună cu o operaţie binară pe G, notată : G G G, (x, y) x y, astfel încât: (G1) (Asociativitate) (x y) z =

Διαβάστε περισσότερα

EUGEN RADU OVIDIU ŞONTEA MATEMATICĂ. Manual pentru clasa a 12-a

EUGEN RADU OVIDIU ŞONTEA MATEMATICĂ. Manual pentru clasa a 12-a EUGEN RADU OVIDIU ŞONTEA MATEMATICĂ M Manual pentru clasa a 1-a Cuprins ALGEBRÃ 1. Grupuri... 6 1.1. Legi de compoziþie... 6 1.. Proprietãþi ale legilor de compoziþie... 9 1.3. Grupuri... 1.4. Exemple

Διαβάστε περισσότερα

Al V-lea Congres internaţional. ale matematicienilor români.

Al V-lea Congres internaţional. ale matematicienilor români. Al V-lea Congres internaţional al matematicienilor români Piteşti, - 8 iunie, 00 Incepând cu anul 199, s-au organizat, până în prezent, cinci congrese internaţional ale matematicienilor români. Primul

Διαβάστε περισσότερα

Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență.

Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență. Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență. 1. Introducere...1 2. Stabilitatea sistemelor liniare...1 2.1 Stabilitatea internă...2 2.2 Stabilitatea externă...3 2.3. Exemple...4

Διαβάστε περισσότερα

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor 4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda

Διαβάστε περισσότερα