8 Intervale de încredere

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "8 Intervale de încredere"

Transcript

1 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată ˆ ( 1 ) aluiˆ ( 1 ) folosind valorile observate 1 ale selecţiei 1 nu coincide aproape niciodată cu valoarea reală a parametrului necunoscut. Ne punem problema cât de apropiată esteˆ de valoarea reală alui, în sensul determinării unui interval ( ) ( = ( 1 ) şi = ( 1 ) sunt variabile aleatoare ce depind de variabilele aleatoare 1 ale selecţiei) astfel încât ( ) cu o probabilitate dată, adică ( )=1 pentru o valoare (0 1) fixată. Înlocuind variabilele aleatoare 1 prin valorile observate 1 obţinem = ( 1 ) şi = ( 1 ),şi numim intervalul ( ) un interval de 100 (1 )% încredere pentru parametrul necunoscut. În general, se poate determina un interval de încredere pentru parametrul necunoscut dacă existăovariabilă aleatoare Θ = ( 1 ) cu proprietăţile: 1. Funcţia depinde netrivial de selecţia 1 şi ;. Distribuţia lui Θ nu depinde de sau de alţi parametrii necunoscuţi. În aceste ipoteze, determinarea unui interval de 100 (1 )% încredere pentru se face astfel: se determină constantele şi astfel încât ( ( 1 ) )=1 şi se rezolvă dubla inegalitate în raport cu pentru a obţine ( ( 1 ) ( 1 )) = 1 Variabilele aleatoare şi astfel obţinute dau valorile şi ale intervalului ( ) de 100 (1 )% încredere pentru parametrul necunoscut. 8.1 Intervale de încredere pentru media unei populaţii normale cu dispersie cunoscută Propoziţia 8.1 Dacă 1 sunt valorile observate ale unei selecţii 1 dintr-o populaţie normală N cu dispersie cunoscută, atunci un interval de 100 (1 )% încredere pentru media apopulaţiei este ( ) = µ + unde = 1++ R (Φ () = 1 şi ). este media valorilor observate ale selecţiei iar este determinat astfel încât Φ =1 este funcţia de distribuţie a variabilei aleatoare normale standard - a se vedea Anexele 1 Observaţia 8. (Alegerea volumului al selecţiei) Dacă sedoreşte ca eroarea de estimare să nu depăşească ovaloarelimită cu probabilitate (1 ), adică =1 comparând cu intervalul de (1 )% încredere pentru media obţinem de unde obţinem că volumul al selecţiei trebuie ales astfel încât ³ 55

2 Observaţia 8.3 În practică, este uneori util ca în loc de intervale simetrice pentru media să avem intervale de mărginire inferioară sau superioară pentru. Procedând în mod similar, se pot obţine următoarele intervale de 100 (1 )% încredere pentru media : ³ -intervaledemărginire inferioară pentru : ( ) = -intervaledemărginire superioară pentru: ( )= ³ + 8. Intervale de încredere pentru medie în cazul selecţiilor mari Reamintim teorema limită centrală: dacă 1 este un şir de variabile aleatoare independente şi identic distribuite, atunci variabila aleatoare = 1 ++ = tinde în distribuţie către o variabilă aleatoare normală standard, adică Ã! Φ () = 1 Z oricare ar fi R. Dacă abatereapătratică medie apopulaţiei este necunoscută, atunci înlocuind pe prin estimatorul s P =1 = 1 se poate arăta că pentru suficient de mare ( 40), variabila aleatoare obţinută = N (0 1) este aproximativ o variabilă aleatoare normală standard. Repetând calculul din secţiunea anterioară obţinem deci următoarea. Propoziţia 8.4 Pentru un volum al selecţiei suficient de mare, un interval de 100 (1 )% încredere pentru media apopulaţiei este µ ( ) = + =1 unde = 1++ ( este media valorilor observate ale selecţiei, = ) 1 este o estimare a abaterii pătratice medii, iar este determinat astfel încât Φ =1 a variabilei aleatoare normale standard). R 1 (Φ () = este funcţia de distribuţie 8.3 Intervale de încredere pentru media unei populaţii normale cu dispersie necunoscută Pentru a construi intervalele de încredere în acest caz, avem nevoie de două tipuri de distribuţii continue, şi anume distribuţia şi distribuţia Student. Dacă 1 N (0 1) sunt variabile aleatoare normale standard independente, atunci distribuţia variabilei aleatoare = se numeşte distribuţie ( chi pătrat ) cu grade de libertate. Se poate arăta că densitatea acestui tip de variabilă aleatoare este ½ 0 0 () = unde = Γ( ) este o constantă de normare (aleasă astfelîncâtr () =1). 56

3 Dacă () este o variabilă aleatoare cu grade de libertate şi N (0 1) este o variabilă aleatoare normală standard, atunci distribuţia variabilei aleatoare = se numeşte distribuţie Student (sau distribuţie T) cu grade de libertate. Se poate arăta că densitatea acestui tip de variabilă aleatoare este µ +1 () = 1+ unde = 1 Γ( +1 ) Γ( ) este o constantă de normare (aleasă astfelîncât R () =1). În secţiunile anterioare am observat că dacă populaţia N este normală, atunci variabila aleatoare este o variabilă aleatoare normală. Dacă abatereapătratică medie nu este cunoscută, atunci înlocuind pe prin estimatorul = obţinem unde = = = r ( 1) 1 = 1 N (0 1) este o variabilă aleatoare nromală standard, iar = P ( ) =1 r =1( ) 1, ( 1) este o variabilă aleatoare cu 1 grade de libertate. Rezultă deci că variabila aleatoare are o distribuţie Student cu 1 grade de libertate, şi alegând ca şi în cazul distribuţiei normale punctul 1 astfel încât aria de sub densitatea acestei distribuţii, aflată ladreapta acestui punct să fie egală cu, obţinem 1 1 =1 Înlocuind pe prin expresia anterioarăşi rezolvând dubla inegalitate în raport cu media, obţinem următoarea. Propoziţia 8.5 Dacă 1 sunt valorile observate ale unei selecţii 1 dintr-o populaţie normală N cu dispersie necunoscută, atunci un interval de 100 (1 )% încredere pentru media apopulaţiei este µ ( ) = =1 ( ) unde = 1++ este media şi = 1 este abaterea pătratică medie a valorilor observate ale selecţiei, iar 1 este determinat astfel încât 1 =1 ( () este funcţia de distribuţie a variabilei aleatoare Student cu 1 grade de libertate - a se vedea Anexa 3). 8.4 Intervale de încredere pentru dispersia unei populaţii normale Pentru a determina un interval de încredere pentru dispersia necunoscută a unei populaţii normale N vom folosi faptul că variabila aleatoare = ( 1) = are o distribuţie ( 1) cu 1 grade de libertate. X µ =1 57

4 Considerând în acest caz punctul 1 cu proprietate că aria la dreapta sa, sub densitatea ( 1) cu 1 grade de libertate este, avem ( 1) µ =1 de unde rezolvând în raport cu obţinem următoarea. Propoziţia 8.6 Dacă 1 sunt valorile observate ale unei selecţii 1 dintr-o populaţie normală N, atunci un interval de 100 (1 )% încredere pentru dispersia apopulaţiei este ( ) = =1 ( ) Ã! ( 1) ( 1) unde = 1++ este media şi = 1 este abaterea pătratică medie a valorilor observate ale selecţiei, iar 1 este determinat astfel încât 1 =1 ( () este funcţia de distribuţie a variabilei aleatoare cu 1 grade de libertate - a se vedea Anexa 4). Observaţia 8.7 În mod similar se pot determina intervale de încredere de mărginire inferioară sausuperioară pentru dispersie: ³ -intervaledemărginire inferioară pentru : ( ) = ( 1) 1 -intervaledemărginire superioară pentru: ( )= ³ ( 1) Intervale de încredere pentru proporţia unei populaţii Considerăm că sunteminteresaţi de proporţia membrilor unei populaţii ce verifică oanumită caracteristică de interes (membrii populaţiei pot verifica saunuaceastă caracteristică, spre exemplu dacă preferă un anumit candidat electoral, daca sunt sau nu angajaţi, etc). Vom considera deci că populaţia urmează o distribuţie Bernoulli cu parametrul necunoscut ( este probabilitatea ca un membru al populaţiei să verifice caracteristica de interes). Reamintim că media populaţiei (distribuţie Bernoulli cu parametrul ) este = () =1 +0 (1 ) = şi coincide deci cu parametrul necunoscut, iar dispersie este = ³( ) =(1 ) +(0 ) (1 ) = (1 ). Considerăm o selecţie 1 de volum din populaţia, şi deci =1(succes) dacă observaţia verifică acea caracteristică de care suntem interesaţi, şi =0în caz contrar. Media selecţiei ˆ = = 1 ++ este un estimator corect al proporţiei apopulaţiei ce verifică respectiva caracteristică deinteres: ³ µ ˆ = = 1 X ( )= 1 X = Deoarece parametrul necunoscut coincide cu media a populaţiei, pentru a determina un interval de încredere pentru parametrul necunoscut procedăm ca şi în cazul determinării unui interval de încredere pentru media unei populaţii cu dispersie necunoscută (în cazul selecţiilor de volum mare, Secţiunea 8.). Din Teorema limită centrală, rezultă căpentru suficient de mare, variabila aleatoare p (1 ) = = (1 ) =1 = ˆ (1 ) are aproximativ o distribuíe normală. Cum dispersia = (1 ) este necunoscută, o înlocuim prin estimatorul c = ˆ ³ 1 ˆ şi obţinem că pentru valori suficient de mari ale lui, variabila aleatoare = N (0 1) are aproximativ o distribuţie normală. ˆ (1 ) Observaţia 8.8 În practică, valori suficient de mari pentru volumul al selecţiei înseamnă că ˆ 15 şi (1 ˆ)

5 Alegând ca şi în cazul estimării mediei punctul cu proprietatea că aria de sub densitatea normală standard, la dreapta acestui punct, este egală cu, obţinem ˆ =1 (56) (1 ) Rezolvând dubla inegalitate în raport cu obţinem următoarea. =1 Propoziţia 8.9 Pentru un volum suficientdemarealselecţiei, dacă ˆ = este proporţia observată aa datelor selecţiei populaţiei ce îndeplinesc un anumit criteriu, atunci un interval de 100 (1 )% încredere pentru proporţia a populaţiei ce verifică acest criteriu este à r r! ˆ (1 ˆ) ˆ (1 ˆ) ( ) = ˆ ˆ + unde este determinat astfel încât Φ R =1 1 (Φ () = este funcţia de distribuţie a variabilei aleatoare normale standard - a se vedea Anexele 1 şi ). Observaţia 8.10 (Alegerea volumului al selecţiei) Dacă sedoreşte ca eroarea de aproximare ˆ să nu depăşească ovaloarelimită cu probabilitate cel puţin (1 ), adică ³ ˆ 1 comparând cu inegalitatea (56) scrisă sub forma echivalentă µ ˆ (1 ), deunderezolvândpentru obţinem condiţia ³ (1 ) (1 ) = 1, se obţine Folosind faptul că (1 ) 1 4,obţinem eroarea de aproximare ˆ nu va depăşi valoarea cu probabilitate cel puţin (1 ) dacă volumul al selecţiei este ales astfel încât 1 ³ ³ (1 ) 4 Observaţia 8.11 Ca şi în celelalte cazuri prezentate, înlocuind prin se pot obţine intervale de mărginire inferioară sau superioară pentru proporţia necunoscută. 8.6 Intervale de predicţie Vom considera problema determinării unui interval de predicţie a unei valori dintr-o populaţie normală N. Pentru aceasta, considerăm o selecţie 1 dintr-o populaţia,şi observăm că valoarea +1 aobservaţiei viitoare verifică +1 = =0 şi şi deci h +1 i = ( +1 )+ µ = + = 1+ 1 = +1 N (0 1)

6 Dacă dispersia P 1 nu este cunoscută, înlocuind prin estimatorul = 1 =1 obţinem variabila aleatoare = +1 şi se poate arăta că variabila aleatoare are o distribuţie Student cu grade de libertate. Pentru a obţine un interval de (1 )% încredere pentru valoarea +1 aobservaţiei viitoare, considerăm punctul cu proprietatea că aria de sub densitatea distribuţiei Student cu grade de libertate la dreapta acestui punct este egală cu, adică =1 unde este funcţia de distribuţie Student cu grade de libertate (a se vedea Anexa 3). Obţinem deci +1 = de unde rezolvând în raport cu +1 obţinem echivalent =1 Un interval de predicţie de 100 (1 )% încredere pentru observaţia unei valori dintr-o populaţie normală este deci ( ) = unde = 1++ P 1 este media iar = 1 =1 ( ) este dispersia eşantionului 1. 60

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Elemente de bază în evaluarea incertitudinii de măsurare. Sonia Gaiţă Institutul Naţional de Metrologie Laboratorul Termometrie

Elemente de bază în evaluarea incertitudinii de măsurare. Sonia Gaiţă Institutul Naţional de Metrologie Laboratorul Termometrie Elemente de bază în evaluarea incertitudinii de măsurare Sonia Gaiţă Institutul Naţional de Metrologie Laboratorul Termometrie Sonia Gaiţă - INM Ianuarie 2005 Subiecte Concepte şi termeni Modelarea măsurării

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

2 Variabile aleatoare

2 Variabile aleatoare Variabile aleatoare În practică, variabilele aleatoare apar ca funcţii ce depind de rezultatul efectuării unui anumit experiment. Spre exemplu, la aruncarea a două zaruri, suma numerelor obţinute este

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 5 16 martie 2 011

Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 5 16 martie 2 011 1.0.011 STATISTICA Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 16 martie 011 al.isaic-maniu www.amaniu.ase.ro http://www.ase.ro/ase/studenti/inde.asp?itemfisiere&id Observati doua

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

DistributiiContinue de Probabilitate Distributia Normala

DistributiiContinue de Probabilitate Distributia Normala 8.03.011 STATISTICA -distributia normala -distributii de esantionare lectia 7 30 martie 011 al.isaic-maniu www.amaniu.ase.ro http://www.ase.ro/ase/studenti/index.asp?item=fisiere&id=88 DistributiiContinue

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

3. Vectori şi valori proprii

3. Vectori şi valori proprii Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau

Διαβάστε περισσότερα

Verificarea ipotezelor statistice 1 de I.Văduva

Verificarea ipotezelor statistice 1 de I.Văduva Verificarea ipotezelor statistice 1 de I.Văduva Notaţii si noţiuni preliminare Variabila aleatoare: X,Y,U,V,etc., descrisă de funcţie de repartiţie. Variabila aleatoare este asaociată unei populaţii statistice;

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

1Reziduuri şi aplicaţii

1Reziduuri şi aplicaţii Reziduuri şi aplicaţii În acest curs vom prezenta noţiunea de reziduu, modul de calcul al reziduurilor, teorema reziduurilor şi câteva aplicaţii ale teoremei reziduurilor, în special la calculul unor tipuri

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

ANALIZA DATELOR EXPERIMENTALE

ANALIZA DATELOR EXPERIMENTALE INGINERIA TRAFICULUI 1-1 Lucrarea IT-1 ANALIZA DATELOR EXPERIMENTALE - Testul Kolmogorov-Smirnov - Un eperiment (fenomen) a cărui realizare diferă semnificativ atunci când este repetat în aceleaşi condiţii

Διαβάστε περισσότερα

TESTAREA IPOTEZELOR STATISTICE

TESTAREA IPOTEZELOR STATISTICE Capitolul 9 TESTAREA IPOTEZELOR STATISTICE D acă în capitolul anterior au fost epuse principalele aspecte ale teoriei selecţiei, în acest capitol vom trata modalitatea de aplicare a teoriei în testarea

Διαβάστε περισσότερα

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y).

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y). Ecuaţii diferenţiale Ecuaţii diferenţiale ordinare Ecuaţii cu derivate parţiale Ordinul unei ecuaţii Soluţia unei ecuaţii diferenţiale ordinare Fie I R un interval deschis, G R n, n 1, un domeniu şi f

Διαβάστε περισσότερα

Statisticǎ - notiţe de curs

Statisticǎ - notiţe de curs Statisticǎ - notiţe de curs Ştefan Balint, Loredana Tǎnasie Cuprins 1 Ce este statistica? 3 2 Noţiuni de bazǎ 5 3 Colectarea datelor 7 4 Determinarea frecvenţei şi gruparea datelor 11 5 Prezentarea datelor

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare

Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare Capitolul 1 Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare Definiţia 1.0.1 O ecuaţie diferenţialǎ de ordinul întâi este o relaţie de dependenţǎ funcţionalǎ de forma g(t, x, ẋ)

Διαβάστε περισσότερα

3.5. Indicatori de împrăştiere

3.5. Indicatori de împrăştiere Dragomirescu L., Drane J. W., 009, Biostatisticã pentru începãtori. Vol I. Biostatisticã descriptivã. Editia a 6 revãzutã, Editura CREDIS, Bucure ti, 07p. ISB 978-973-734-46-8. 3.5. Indicatori de împrăştiere

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5 Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

CURSUL AL IV-LEA. Tabelul 1 Greutatea corporală a 1014 pacienţi cu diferite afecţiuni, pe clase din 5kg în 5kg

CURSUL AL IV-LEA. Tabelul 1 Greutatea corporală a 1014 pacienţi cu diferite afecţiuni, pe clase din 5kg în 5kg CURSUL AL IV-LEA 1 Reprezentarea grafică a datelor statistice - Consideraţii generale Sunt două metode de bază în statistică: numerică şi grafică. Folosind metoda numerică putem calcula statistici ca media

Διαβάστε περισσότερα

Statisticǎ - exerciţii

Statisticǎ - exerciţii Statisticǎ - exerciţii Ştefan Balint, Tǎnasie Loredana 1 Noţiuni de bazǎ Exerciţiu 1.1. Presupuneţi cǎ lucraţi pentru o firmǎ de sondare a opiniei publice şi doriţi sǎ estimaţi proporţia cetǎţenilor care,

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

Variabile aleatoare şi funcţii de repartiţie

Variabile aleatoare şi funcţii de repartiţie Caitolul 4 Variabile aleatoare şi funcţii de reartiţie 4. Variabile aleatoare Variabila aleatoare este una din noţiunile fundamentale ale teoriei robabilitãţilor şi a statisticii matematice. In urma unui

Διαβάστε περισσότερα

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate. Copyright c 009 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 15 iunie

Διαβάστε περισσότερα

Bazele teoriei riscului

Bazele teoriei riscului Bazele teoriei riscului Mircea Crâşmăreanu ii Contents Mulţimi şi funcţii 3 2 Probabilităţi: abordare clasică 5 3 Probabilităţi: abordare modernă 4 Funcţia de repartiţie a unei variabile aleatoare 9 5

Διαβάστε περισσότερα

A1. Valori standardizate de rezistenţe

A1. Valori standardizate de rezistenţe 30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea

Διαβάστε περισσότερα

Algoritmi genetici. 1.1 Generalităţi

Algoritmi genetici. 1.1 Generalităţi 1.1 Generalităţi Algoritmii genetici fac parte din categoria algoritmilor de calcul evoluţionist şi sunt inspiraţi de teoria lui Darwin asupra evoluţiei. Idea calculului evoluţionist a fost introdusă în

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

Geometria diferenţială a curbelor în spaţiu

Geometria diferenţială a curbelor în spaţiu Geometria diferenţială a curbelor în spaţiu A. U. Thor 0.1 Generalităţi Definitia 1.1 Se numeşte curbă înspaţiu dată parametric mulţimea punctelor M (x, y, z) din spaţiuacăror coordonate sunt date de x

Διαβάστε περισσότερα

Tranzistoare bipolare cu joncţiuni

Tranzistoare bipolare cu joncţiuni Tranzistoare bipolare cu joncţiuni 1. Noţiuni introductive Tranzistorul bipolar cu joncţiuni, pe scurt, tranzistorul bipolar, este un dispozitiv semiconductor cu trei terminale, furnizat de către producători

Διαβάστε περισσότερα

PRELEGEREA XII STATISTICĂ MATEMATICĂ

PRELEGEREA XII STATISTICĂ MATEMATICĂ PRELEGEREA XII STATISTICĂ MATEMATICĂ I. Teste nonparametrice Testele nonparametrice se aplică variabilelor măsurate la nivel nominal sau ordinal. Ele se aplică pe eşantioane mici, nefiind nevoie de presupuneri

Διαβάστε περισσότερα

PROIECT ECONOMETRIE. Profesori coordinatori: Liviu-Stelian Begu și Smaranda Cimpoeru

PROIECT ECONOMETRIE. Profesori coordinatori: Liviu-Stelian Begu și Smaranda Cimpoeru PROIECT ECONOMETRIE Profesori coordinatori: LiviuStelian Begu și Smaranda Cimpoeru Proiect realizat de?, grupa?, seria? FACULTATEA DE RELAȚII ECONOMICE INTERNAȚIONALE, ASE, BUCUREȘTI 2015 CUPRINS Înregistrați

Διαβάστε περισσότερα

Lecţii de Analiză Matematică. Dan Bărbosu şi Andrei Bărbosu

Lecţii de Analiză Matematică. Dan Bărbosu şi Andrei Bărbosu Lecţii de Analiză Matematică Dan Bărbosu şi Andrei Bărbosu 2 Cuprins Şiruri şi serii numerice; şiruri şi serii de funcţii 7. Şiruri numerice. Noţiuni şi rezultate generale......... 7.2 Şiruri fundamentale.

Διαβάστε περισσότερα

页面

页面 订单 - 配售 Εξετάζουμε την αγορά...luăm în considerare posibi 正式, 试探性 Είμαστε στην ευχάριστη Suntem θέση να încântați δώσουμε την să plasăm παραγγελία μας στην εταιρεία comandă σας pentru... για... Θα θέλαμε

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor 4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda

Διαβάστε περισσότερα

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui - Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex

Διαβάστε περισσότερα

Proiectarea algoritmilor: Programare dinamică

Proiectarea algoritmilor: Programare dinamică Proiectarea algoritmilor: Programare dinamică Dorel Lucanu Faculty of Computer Science Alexandru Ioan Cuza University, Iaşi, Romania dlucanu@info.uaic.ro PA 2014/2015 D. Lucanu (FII - UAIC) Programare

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

9. SONDAJUL STATISTIC

9. SONDAJUL STATISTIC 9. SODAJUL STATISTIC 9.. Cosideraţii geerale Creşterea ecesarului de iformaţii ce trebuie obţiute cu maximă operativitate a codus la extiderea utilizării sodajului statistic. Această expasiue a sodajului

Διαβάστε περισσότερα

Statistica descriptivă

Statistica descriptivă Statistica descriptivă Indicatori sintetici ai distribuţiilor statistice M. Popa Statistica descriptivă - obiective Cum se prezintă valorile unei distribuţii? Cât de apropiate sunt unele de altele? Cât

Διαβάστε περισσότερα

[Iulian Stoleriu] Statistică Aplicată

[Iulian Stoleriu] Statistică Aplicată [Iulian Stoleriu] Statistică Aplicată Statistică Aplicată (C1) 1 Elemente de Statistic teoretic (C1) Populaµie statistic O populaµie (colectivitate) statistic este o mulµime de elemente ce posed o trasatur

Διαβάστε περισσότερα

Asist. Dr. Oana Captarencu. otto/pn.html.

Asist. Dr. Oana Captarencu.  otto/pn.html. Reţele Petri şi Aplicaţii p. 1/45 Reţele Petri şi Aplicaţii Asist. Dr. Oana Captarencu http://www.infoiasi.ro/ otto/pn.html otto@infoiasi.ro Reţele Petri şi Aplicaţii p. 2/45 Evaluare Nota finala: 40%

Διαβάστε περισσότερα

ECO-STATISTICA-NOTITZZE DE LABORATOR

ECO-STATISTICA-NOTITZZE DE LABORATOR ECO-STATISTICA: OBIECTIVE: A. EVALUAREA CELEI MAI PROBABILE VALORI A UNEI CARACTERISTICI A MEDIULUI IN ZONA INVESTIGATA si a ERORII DE ESTIMARE In zona investigata cu o probabilitate de 90% (riscul asumat

Διαβάστε περισσότερα

Erorile sunt omniprezente. Februarie 2010

Erorile sunt omniprezente. Februarie 2010 Teoria erorilor şi aritmetică în virgulă flotantă Erorile sunt omniprezente Radu Tiberiu Trîmbiţaş Universitatea Babeş-Bolyai Februarie 2010 Radu Tiberiu Trîmbiţaş (Universitatea Babeş-Bolyai ) Teoria

Διαβάστε περισσότερα

Capitolul 30. Transmisii prin lant

Capitolul 30. Transmisii prin lant Capitolul 30 Transmisii prin lant T.30.1. Sa se precizeze domeniile de utilizare a transmisiilor prin lant. T.30.2. Sa se precizeze avantajele si dezavantajele transmisiilor prin lant. T.30.3. Realizati

Διαβάστε περισσότερα

3. DINAMICA FLUIDELOR. 3.A. Dinamica fluidelor perfecte

3. DINAMICA FLUIDELOR. 3.A. Dinamica fluidelor perfecte 3. DINAMICA FLUIDELOR 3.A. Dinamica fluidelor perfecte Aplicația 3.1 Printr-un reductor circulă apă având debitul masic Q m = 300 kg/s. Calculați debitul volumic şi viteza apei în cele două conducte de

Διαβάστε περισσότερα

In cazul sistemelor G-L pentru care nu se aplica legile amintite ale echilibrului de faza, relatia y e = f(x) se determina numai experimental.

In cazul sistemelor G-L pentru care nu se aplica legile amintite ale echilibrului de faza, relatia y e = f(x) se determina numai experimental. ECHILIBRUL FAZELOR Este descris de: Legea repartitiei masice Legea fazelor Legea distributiei masice La echilibru, la temperatura constanta, raportul concentratiilor substantei dizolvate in doua faze aflate

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

L6. PUNŢI DE CURENT ALTERNATIV

L6. PUNŢI DE CURENT ALTERNATIV niversitatea POLITEHNI din Timişoara epartamentul Măsurări şi Electronică Optică 6.1. Introducere teoretică L6. PNŢI E ENT LTENTIV Punţile de curent alternativ permit măsurarea impedanţelor. Măsurarea

Διαβάστε περισσότερα

Capitolul 2 ECUAŢII CU DERIVATE PARŢIALE DE ORDINUL AL DOILEA

Capitolul 2 ECUAŢII CU DERIVATE PARŢIALE DE ORDINUL AL DOILEA Capitolul 2 ECUAŢII CU DERIVATE PARŢIALE DE ORDINUL AL DOILEA Studiul ecuaţiilor cu derivate parţiale îşi are originea în secolul al XVIII-lea şi a fost inspirat de modele concrete din mecanică (elasticitate,

Διαβάστε περισσότερα

Fig Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30].

Fig Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30]. Fig.3.43. Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30]. Fig.3.44. Dependenţa curentului de fugă de raportul U/U R. I 0 este curentul de fugă la tensiunea nominală

Διαβάστε περισσότερα

Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, august 2015 Soluţii şi baremuri Clasa a IV-a

Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, august 2015 Soluţii şi baremuri Clasa a IV-a Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, 17-22 august 2015 Soluţii şi baremuri Clasa a IV-a Problema 1. Câte numere naturale de cinci cifre trebuie să scriem pentru

Διαβάστε περισσότερα

Seria Balmer. Determinarea constantei lui Rydberg

Seria Balmer. Determinarea constantei lui Rydberg Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα

Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o anumită țară

Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o anumită țară - General Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o

Διαβάστε περισσότερα

Transformări integrale şi funcţii complexe cu aplicaţii în tehnică

Transformări integrale şi funcţii complexe cu aplicaţii în tehnică Daniel BREAZ Nicolae SUCIU Păstorel GAŞPAR Nicoleta BREAZ Monica PÎRVAN Valeriu PREPELIŢĂ Gheorghe BARBU Transformări integrale şi funcţii complexe cu aplicaţii în tehnică Volumul 1 Funcţii complexe cu

Διαβάστε περισσότερα

Analiza complexităţii algoritmilor

Analiza complexităţii algoritmilor Capitolul 3 Analiza complexităţii algoritmilor Analiza complexităţii unui algoritm are ca scop estimarea volumului de resurse de calcul necesare pentru execuţia algoritmului. Prin resurse se înţelege:

Διαβάστε περισσότερα

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: (

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: ( Exemple e probleme rezolvate pentru curs 0 DEEA Recapitulare formule e calcul puteri ale numărului 0 n m n+ m 0 = 0 n n m =0 m 0 0 n m n m ( ) n = 0 =0 0 0 n Problema. Să se calculeze: a. 0 9 0 b. ( 0

Διαβάστε περισσότερα

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Subiecte : 1. Proprietăţile mulţimilor. Mulţimi numerice importante. 2. Relaţii binare. Relaţii de ordine. Relaţii de echivalenţă. 3. Imagini directe şi imagini inverse

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

Circuite cu diode în conducţie permanentă

Circuite cu diode în conducţie permanentă Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea

Διαβάστε περισσότερα

Grupuri de simetrii. Oana Constantinescu

Grupuri de simetrii. Oana Constantinescu Rolul grupurilor de transformari in denirea unei geometrii Felix Klein (1849-1925) a dorit sa aplice conceptul de grup pentru a caracteriza diferitele geometrii ale timpului. In discursul inaugural de

Διαβάστε περισσότερα