Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă"

Transcript

1 Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare de baza

2 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Fie Γ corpul numerelor reale Γ = R sau complexe Γ = C. Definiţie Se numeşte spaţiu liniar (vectorial) peste Γ o mulţime V înzestrată cu cu două legi de compoziţie: -o lege internă + : VxV V, (u, v) u + v, u, v V -o lege externă : ΓxV V, (λ, u) λ u, u V, λ Γ faţă de care sunt satisfacute axiomele:

3 Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Definiţie 1 (u + v) + w = u + (u + w) u, v, w V 2 0 V V, astfel ca u + 0 V = 0 V + u = u, u V 3 u V, ( u) V astfel ca u + ( u) = ( u) + u = 0 V 4 u + v = v + u, u, v V 5 λ (u + v) = λ u + λ v λ Γ, u, v V 6 (λ + µ) u = λ u + µ u, λ, µ Γ, u V 7 λ (µ u) = (λµ) u, λ, µ Γ, u V 8 1 u = u

4 Observaţii Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Elementele lui V se numesc vectori, iar cele din Γ scalari. 1. (V, +) formează grup abelian. 2. În axioma 6. in membrul I este + dintre scalari, iar in membrul II intre vectori. 3. În axioma 8. 1 este elementul neutru la înmulţirea din corpul Γ. 4. Notăm cu 0 elementul neutru faţă de adunarea din Γ.

5 Consecinţe Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 1 λ 0 V = 0 V, λ Γ 2 0 u = 0 V, u V 3 λ u = 0 V λ = 0 sau u = 0 V

6 Exemple Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 1 V = R n, n N faţă de R. 2 F = {f : R R, f funcţie}faţă de R. 3 Mulţimea vectorilor din spaţiu faţă de R. 4 Mulţimea polinoamelor cu coeficienţi reali R[X] faţă de R. 5 Mulţimea matricelor M mn (Γ) faţă de Γ.

7 Subspaţiu liniar Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Definiţie Fie V un spaţiu liniar peste Γ. V 1 V se numeşte subspaţiu liniar dacă V 1 împreună cu restricţiile operaţiilor de adunare si înmulţire cu scalari formează o structură de spaţiu liniar.

8 Caracterizarea unui subspaţiu Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Teoremă Fie V un spaţiu liniar peste Γ. V 1 V este subspaţiu liniar dacă şi numai dacă au loc 1 u, v V 1 rezultă u + v V 1 2 u V 1, λ Γ rezultă λ u V 1.

9 Exemple Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 1 V 1 = C[a, b] mulţimea funcţiilor continue pe [a, b] este subspaţiu in F 2 V 1 = {u = (x 1, x 2, x 3 ) x 1 x 2 + 2x 3 = 0} este subspaţiu in R 3. 3 Dacă V 1, V 2 V sunt două subspaţii liniare, atunci intersecţia lor este subspaţiu liniar

10 Acoperire (înfăşurătoare) liniară Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Definiţie Fie V spaţiu liniar peste Γ. Numim combinaţie liniară a elementelor u 1, u 2,, u n V, n N elementul de forma n λ i u i = λ 1 u 1 + λ 2 u λ n u n, λ i Γ, i = 1,, n. i=1 Definiţie Fie V spaţiu liniar peste Γ şi A V. Numim acoperire liniară a mulţimii A, mulţimea tuturor combinaţiilor liniare finite cu elemente din A.

11 Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Notăm cu Sp A spaţiul generat. Deci { } n Sp A = u = λ i u i λ i Γ, i = 1,, n, u i A, n N. i=1

12 Proprietăţi Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Teoremă Sp A este subspaţiu liniar peste Γ. Teoremă SpA coincide cu intersecţia tuturor subspaţiilor care conţin A.

13 Noţiunea de spaţiu liniar Mulţime infinită liniar independentă Definiţie Vectorii u 1, u 2,, u n V se numesc liniar dependenţi dacă există scalarii λ i, i = 1,, n, n N nu toţi nuli astfel ca Definiţie λ 1 u 1 + λ 2 u λ n u n = 0 V Vectorii u 1, u 2,, u n V se numesc liniar independenţi dacă din λ 1 u 1 + λ 2 u λ n u n = 0 V rezultă λ i = 0, i = 1,, n

14 Mulţime infinită liniar independentă Exemple.Caracterizare a dependenţei liniare 1. Vectorul {0 V } este liniar dependent. 2. Orice vector u 0 V este liniar independent. Teoremă Vectorii u 1, u 2,, u n sunt liniar dependenţi dacă şi numai dacă un vector este o combinaţie liniară a celorlalţi.

15 Demonstraţie. Noţiunea de spaţiu liniar Mulţime infinită liniar independentă Presupunem că u 1, u 2,, u n sunt liniar dependenţi. Există scalarii λ i, i = 1, n, nu toţi nuli astfel ca λ 1 u 1 + λ 2 u λ n u n = 0 V Schimbând eventual ordinea presupunem că λ 1 0. Împărţim prin λ 1 avem u 1 = λ 2 λ 1 u 2 λ n λ 1 u n Presupunem că u 1 este o combinaţie liniară de ceilalţi; Există deci β 2,, β n astfel ca De unde obţinem u 1 = β 2 u β n u n. 1 u 1 β 2 u 2 β n u n = 0 V.

16 Mulţime infinită liniar independentă Mulţime infinită liniar independentă Definiţie Mulţimea V 1 V, infinită, se numeşte liniar independentă dacă orice n elemente sunt linar independente, n N. Definiţie Spaţiul V se numeşte infinit dimensional dacă conţine o submulţime infinită liniar independentă. Spaţiul F este infinit dimensional, deoarece mulţimea 1, x, x 2, x 3,..., x n, este o submulţime infinit dimensională.

17 Notiunile de dimensiune şi bază Schimbarea coordonatelor unui vector la o schimbare de baza Definiţie Spaţiul V are dimensiunea n, n N dacă conţine n elemente liniar independente şi oricare n + 1 sunt liniar dependente. Definiţie Nimim bază a unui spaţiu n- dimensional oricare n vectori liniar independenţi. Dacă {u 1,, u n } formează o bază, notăm B = {u 1,, u n }.

18 Exemple Noţiunea de spaţiu liniar Schimbarea coordonatelor unui vector la o schimbare de baza În spaţul R n, spaţiu liniar peste R vectorii e 1 = (1, 0,, 0) e 2 = (0, 1, 0,, 0) e n = (0, 0,, 1) formează o bază numită baza canonica sau uzuală.

19 Caracterizare a unei baze Schimbarea coordonatelor unui vector la o schimbare de baza Teoremă Mulţimea B = {u 1,, u n } este o bază a spaţiului liniar n-dimensional V dacă şi numai dacă orice element u V poate fi scris unic ca o combinaţie liniară de vectorii bazei. Aceasta înseamnă că există scalarii λ 1,, λ n Γ unic determinaţi astfel ca u = λ 1 u 1 + λ 2 u λ n u n. λ 1,, λ n se numesc coordonatele vectorului u în baza B. Vom mai nota (λ 1,, λ n ) B sau sub forma unei matrice: X = λ 1 λ 2 λ n.

20 Demonstraţie Noţiunea de spaţiu liniar Schimbarea coordonatelor unui vector la o schimbare de baza Deoarece V are dimensiunea n şi B = {u 1,, u n } este o bază, rezultă că mulţimea {u, u 1,, u n } este liniar dependentă. Există scalarii α 1, α 2,, α n+1 nu toţi nuli astfel ca α 1 u α n u n + α n+1 u = 0 V. Observăm că α n+1 0, deoarece în caz contrar ar rezulta u 1,, u n sunt liniar dependenţi. Rezultă u = α 1 u 1 α 1 u n. α n+1 α n+1 Arătăm unicitatea scalarilor. Presupunem că u = β 1 u β n u n = γ 1 u γ n u n. Rezultă (β 1 γ 1 ) u (β n γ n ) u n = 0 V, deci β i = γ i.

21 Schimbarea coordonatelor unui vector la o schimbare de baza Fie B = {u 1,, u n } cu proprietatea că orice vector se exprimă unic ca o combinaţie liniară. În particular pentru vectorul 0 V există scalarii α 1 = = α n = 0, unic determinaţi astfel ca 0 V = α 1 u α n u n. Deci u 1,, u n sunt liniar independenţi. Cum orice u 0 V se exprimă ca o combinaţie liniară de u 1,, u n rezultă că {u, u 1,, u n } este liniar dependentă, deci spaţiul are dimensiunea n şi B este o bază.

22 Exemple Noţiunea de spaţiu liniar Schimbarea coordonatelor unui vector la o schimbare de baza 1. Mulţimea polinoamelor cu coeficienţi reali, de grad n, R n [X] este spaţiu liniar de dimensiune n Mulţimea matricelor M mn (R) este spaţiu liniar de dimensiune m n.

23 Caracterizarea rangului unei matrice Teoremă Fie A M m,n (Γ). Atunci are loc Schimbarea coordonatelor unui vector la o schimbare de baza rang (A) = dim Sp{L 1,, L m } = dim Sp{C 1,, C n }, (1) unde L i, i = 1,, m sunt liniile, iar C i, i = 1,, n coloanele matricei A. Demonstraţie. Demonstrăm că rang (A) = dim Sp{C 1,, C n }. (2) Notăm r = rang (A) min{m, n}. Arătăm că r dim Sp{C 1,, C n }. (3) Pentru aceasta este suficient să arătăm că primele r coloane (schimbând eventual ordinea)sunt liniar independente.

24 Schimbarea coordonatelor unui vector la o schimbare de baza Fie combinaţia liniară λ 1 C λ r C r = 0 R m, echivalentă cu λ 1 a 11 + λ 2 a λ r a 1r = 0 λ 1 a r1 + λ 2 a r2 + + λ r a rr = 0 λ 1 a m1 + λ 2 a m2 + + λ r a mr = 0 Notăm B = (a ij ), i, j = 1,, r şi din definiţia rangului lui A, det (B) 0. Primele r linii devin B λ 1 λ r = 0 0 Amplificând la stânga cu B 1, rezultă λ i = 0, i = 1,, r, deci (3) este adevărată..

25 Reciproc Noţiunea de spaţiu liniar Schimbarea coordonatelor unui vector la o schimbare de baza Fie ik = a 11 a 1r a 1k a r1 a rr a rk a i1 a ir a ik Dacă i r sau k r, avem evident ik = 0. Fixăm k = 1,, n şi dezvoltăm ik după ultima linie. Avem. ik = A 1 a i1 + A 2 a i2 + + A r a ir + det(b)a ik = 0. a ik = A 1 det(b) a i1 A r det(b) a ir, i = 1, m.

26 Schimbarea coordonatelor unui vector la o schimbare de baza Deducem C k = A 1 det(b) C 1 A r det(b) C r. Deci pentru k = r + 1,, n coloanele C k sunt liniar dependente de primele r coloane. Rezultă dim Sp{C 1,, C r } r. (4) Din (3) şi (4) rezultă (2); teorema este demonstrată dacă observăm că rang A = rang A t.

27 Consecinţă. Noţiunea de spaţiu liniar Schimbarea coordonatelor unui vector la o schimbare de baza Mulţimea soluţiilor unui sistem liniar şi omogen este spaţiu liniar de dimensiune n r unde n este numărul de necunoscute r este rangul matricei.

28 Matricea de schimbare de bază Schimbarea coordonatelor unui vector la o schimbare de baza Fie V un spaţiu n dimensional şi bazele B = {e 1,, e n } şi B = {e 1,, e n}. Vectorii e i se exprimă în mod unic in funcţie de vectorii bazei B după formulele e i = n c ji e j. (5) j=1 Matricea C = (c ji ), i, j = 1,, n se numeşte matrice de schimbare de bază. Observaţie Matricea C are pe coloane coordonatele vectorilor e i în baza B şi evident det (C) 0.

29 Schimbarea coordonatelor unui vector la o schimbare de baza Schimbarea coordonatelor unui vector la o schimbare de baza Teoremă Fie V un spaţiu n dimensional în care avem bazele B = {e 1,, e n } şi B = {e 1,, e n}. Fie vectorul u V care are coordonatele (α 1,, α n ) B şi respectiv (α 1,, α n) B în cele două baze. Atunci are loc α 1 α 2 α n = C 1 α 1 α 2 α n (6)

30 Demonstraţie Noţiunea de spaţiu liniar Schimbarea coordonatelor unui vector la o schimbare de baza Vectorul u poate fi scris în cele două baze Înlocuim (5) şi avem u = n α i e i = i=1 n α j e j. j=1 u = n α i e i = i=1 n i=1 α i n c ji e j = j=1 = n n ( c ji α i ) e j j=1 i=1

31 Schimbarea coordonatelor unui vector la o schimbare de baza Din unicitatea exprimării unui vector avem α j = n i=1 c ji α i, j = 1,, n Matriceal devine α 1 α 2 α n = C α 1 α 2 α n Deoarece matricea C este nesingulară, afirmaţia este dovedită.

32 Schimbarea coordonatelor unui vector la o schimbare de baza Dacă notăm X = α 1 α 2 α n X = α 1 α 2 α n relaţia (6) devine X = C 1 X. (7)

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A =

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A = Matrice, determinanti Un punct de vedere liniar independent "A judeca matematic nu înseamn a gândi losoc, a judeca losoc nu înseamn a liber, a gândi liber nu înseamn a losof " Blaise Pascal Liniar independenta:

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n 1 Preliminarii Fie M, A mulţimi nevide şi n N. Se muneşte operaţie n ară (sau lege de compoziţie n-ară) definită pe M orice aplicaţie τ : M n M (M n = } M {{... M } ). In cazul n = 2, obţinem operaţiile

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

MATEMATICI APLICATE ECONOMIE - NOTE DE CURS - PENTRU - ÎNVǍŢǍMÂNTUL LA DISTANŢǍ-

MATEMATICI APLICATE ECONOMIE - NOTE DE CURS - PENTRU - ÎNVǍŢǍMÂNTUL LA DISTANŢǍ- UNIVERSITATEA "LUCIAN BLAGA" DIN SIBIU Dumitru Acu Petrică Dicu Mugur Acu Ana Maria Acu MATEMATICI APLICATE ÎN ECONOMIE - NOTE DE CURS - PENTRU - ÎNVǍŢǍMÂNTUL LA DISTANŢǍ- Cuprins Introducere 6. Necesitatea

Διαβάστε περισσότερα

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber Algebră liniară CAPITOLUL VECTORI LIBERI. Segment orientat. Vector liber Acest capitol este dedicat în totalitate studierii spaţiului vectorilor liberi, spaţiu cu foarte multe aplicaţii în geometrie, fizică

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

3. Vectori şi valori proprii

3. Vectori şi valori proprii Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ. Simina Mariş Simona Epure Ioan Rodilǎ

Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ. Simina Mariş Simona Epure Ioan Rodilǎ Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ Liliana Brǎescu Eva Kaslik Simina Mariş Simona Epure Ioan Rodilǎ CURS DE GEOMETRIE Timişoara 2007

Διαβάστε περισσότερα

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs Aritmetică în domenii de integritate şi teoria modulelor Note de curs În prima parte a cursului, vom prezenta câteva clase remarcabile de domenii de integritate şi legăturile dintre acestea A doua parte

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

ALGEBRĂ LINEARĂ, GEOMETRIE. Valeriu Zevedei, Ionela Oancea

ALGEBRĂ LINEARĂ, GEOMETRIE. Valeriu Zevedei, Ionela Oancea ALGEBRĂ LINEARĂ, GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Valeriu Zevedei, Ionela Oancea April 9, 005 CUPRINS 1 CALCUL VECTORIAL 7 1.1 Vectori legaţi,vectori liberi... 7 1. Operaţiilinearecuvectori... 9 1..1

Διαβάστε περισσότερα

1. Mulţimi. Definiţia mulţimii.

1. Mulţimi. Definiţia mulţimii. Definiţia mulţimii. 1. Mulţimi Definiţia 1.1. (Cantor) Prin mulţime înţelegem o colecţie de obiecte bine determinate şi distincte. Obiectele din care este constituită mulţimea se numesc elementele mulţimii.

Διαβάστε περισσότερα

Calculul valorilor şi vectorilor proprii

Calculul valorilor şi vectorilor proprii Capitolul 4 Calculul valorilor şi vectorilor proprii Valorile şi vectorii proprii joacă un rol fundamental în descrierea matematică a unor categorii foarte largi de procese tehnice, economice, biologice

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

3.1. Ecuaţii de gradul întâi Inecua tii de gradul întâi Modul unui număr real... 9

3.1. Ecuaţii de gradul întâi Inecua tii de gradul întâi Modul unui număr real... 9 Cuprins 1 Operaţii cu numere reale 1 11 Radicali, puteri 1 111 Puteri 1 112 Radicali 1 12 Identităţi 2 13 Inegalităţi 3 2 Funcţii 4 21 Noţiunea de funcţii 4 22 Funcţii injective, surjective, bijective

Διαβάστε περισσότερα

PROBLEME DE VALORI ŞI VECTORI PROPRII

PROBLEME DE VALORI ŞI VECTORI PROPRII 9 PROBLEME DE VALORI ŞI VECTORI PROPRII 81 Introducere Problema de valori proprii a unui operator liniar A: Ax = λx x vector propriu, λ valoare proprie În reprezentarea unei baze din < n problemă matricială

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

ALGEBRĂ LINIARĂ, GEOMETRIE. Culegeredeprobleme. Emil STOICA şi Mircea NEAGU

ALGEBRĂ LINIARĂ, GEOMETRIE. Culegeredeprobleme. Emil STOICA şi Mircea NEAGU ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Culegeredeprobleme Emil STOICA şi Mircea NEAGU Cuprins 1 Spaţii vectoriale. Spaţii euclidiene 1 1.1 Elementeteoreticefundamentale................ 1

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Vectori liberi-seminar 1

Vectori liberi-seminar 1 Vectori liberi-seminar ) Determinati α R astfel incat vectorii ā = m+ n si b = m+α n sa fie coliniari, unde m, n sunt necoliniari. ) Demonstrati ca urmatorii trei vectori liberi sunt coplanari: ā = ī j

Διαβάστε περισσότερα

EUGEN RADU OVIDIU ŞONTEA MATEMATICĂ. Manual pentru clasa a 12-a

EUGEN RADU OVIDIU ŞONTEA MATEMATICĂ. Manual pentru clasa a 12-a EUGEN RADU OVIDIU ŞONTEA MATEMATICĂ M Manual pentru clasa a 1-a Cuprins ALGEBRÃ 1. Grupuri... 6 1.1. Legi de compoziþie... 6 1.. Proprietãþi ale legilor de compoziþie... 9 1.3. Grupuri... 1.4. Exemple

Διαβάστε περισσότερα

Prof. univ. dr. Ion CRĂCIUN Departamentul de Matematică Universitatea Tehnică Gheorghe Asachi din Iaşi CALCUL DIFERENŢIAL

Prof. univ. dr. Ion CRĂCIUN Departamentul de Matematică Universitatea Tehnică Gheorghe Asachi din Iaşi CALCUL DIFERENŢIAL Prof. univ. dr. Ion CRĂCIUN Departamentul de Matematică Universitatea Tehnică Gheorghe Asachi din Iaşi ANALIZĂ MATEMATICĂ CALCUL DIFERENŢIAL IAŞI 2011 Cuprins 1 Noţiuni fundamentale de teoria mulţimilor

Διαβάστε περισσότερα

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU 81 Curbe în plan I Definiţia analitică a curbelor plane În capitolul 7 am studiat deja câteva eemple de curbe plane, amintim aici conicele nedegenerate: elipsa, hiperbola

Διαβάστε περισσότερα

Grupuri de simetrii. Oana Constantinescu

Grupuri de simetrii. Oana Constantinescu Rolul grupurilor de transformari in denirea unei geometrii Felix Klein (1849-1925) a dorit sa aplice conceptul de grup pentru a caracteriza diferitele geometrii ale timpului. In discursul inaugural de

Διαβάστε περισσότερα

Curs 7. Definiţia II Un grup G este o mulţime, împreună cu o operaţie binară

Curs 7. Definiţia II Un grup G este o mulţime, împreună cu o operaţie binară Curs 7 II.3 Grupuri II.3.1 Definiţie. Exemple Definiţia II.3.1.1. Un grup G este o mulţime, împreună cu o operaţie binară pe G, notată : G G G, (x, y) x y, astfel încât: (G1) (Asociativitate) (x y) z =

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene

CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene Geometrie liniară în spaţiu CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU 6.. Sisteme de coordonate în plan şi în spaţiu I. Coordonate carteziene În cele ce urmează, notăm cu E 3 spaţiul punctual tridimensional

Διαβάστε περισσότερα

Aurelian Claudiu VOLF. Coduri. Universitatea Al. I Cuza Iaşi

Aurelian Claudiu VOLF. Coduri. Universitatea Al. I Cuza Iaşi Aurelian Claudiu VOLF Coduri Universitatea Al. I Cuza Iaşi 2011 Cuprins Cuprins... 2 Prefaţă... 3 Unele notaţii... 5 I. Coduri corectoare de erori... 6 II. Coduri liniare... 14 III. Corpuri finite... 26

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Cuprins. I Geometrie Analitică 9

Cuprins. I Geometrie Analitică 9 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului POSDRU/56/1.2/S/32768, Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predareînvăţare-evaluare

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Subiecte : 1. Proprietăţile mulţimilor. Mulţimi numerice importante. 2. Relaţii binare. Relaţii de ordine. Relaţii de echivalenţă. 3. Imagini directe şi imagini inverse

Διαβάστε περισσότερα

1 Serii numerice Definiţii. Exemple... 45

1 Serii numerice Definiţii. Exemple... 45 Analizǎ matematicǎ Chiş Codruţa 2 Cuprins 1 Serii numerice 5 1.1 Definiţii. Exemple....................... 5 1.2 Criterii de convergenţǎ pentru serii cu termeni pozitivi... 8 1.3 Criterii de convergenţǎ

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE Gabriel POPA, Paul GEORGESCU c August 0, 009, Iaşi Cuprins 1 SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ 4 SPAŢIUL VECTORILOR LIBERI.

Διαβάστε περισσότερα

Grupul ortogonal. Mircea Crasmareanu. Facultatea de Matematică Universitatea Al. I. Cuza Iaşi,

Grupul ortogonal. Mircea Crasmareanu. Facultatea de Matematică Universitatea Al. I. Cuza Iaşi, Grupul ortogonal Mircea Crasmareanu Facultatea de Matematică Universitatea Al. I. Cuza Iaşi, 700506 România mcrasm@uaic.ro http://www.math.uaic.ro/ mcrasm Curs de Perfecţionare 2007 9 Figuri Abstract However

Διαβάστε περισσότερα

POLINOAME ŞI ECUAŢII ALGEBRICE. Universitatea Babeş-Bolyai Facultatea de Matematică şi Informatică

POLINOAME ŞI ECUAŢII ALGEBRICE. Universitatea Babeş-Bolyai Facultatea de Matematică şi Informatică POLINOAME ŞI ECUAŢII ALGEBRICE Andrei Mărcuş Universitatea Babeş-Bolyai Facultatea de Matematică şi Informatică 6 martie 2015 Cuprins 1 Ecuaţii algebrice 1 1.1 Ecuaţii binome. Grupul rădăcinilor de ordin

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X Prelegerea 13 Coduri Reed - Solomon 13.1 Definirea codurilor RS O clasă foarte interesantă de coduri ciclice a fost definită în 1960 de Reed şi Solomon. Numite în articolul iniţial coduri polinomiale,

Διαβάστε περισσότερα

Asist. Dr. Oana Captarencu. otto/pn.html.

Asist. Dr. Oana Captarencu.  otto/pn.html. Reţele Petri şi Aplicaţii p. 1/45 Reţele Petri şi Aplicaţii Asist. Dr. Oana Captarencu http://www.infoiasi.ro/ otto/pn.html otto@infoiasi.ro Reţele Petri şi Aplicaţii p. 2/45 Evaluare Nota finala: 40%

Διαβάστε περισσότερα

TEORIA PROBABILITĂŢILOR UNIVERSITATEA TEHNICĂ GH. ASACHI,

TEORIA PROBABILITĂŢILOR UNIVERSITATEA TEHNICĂ GH. ASACHI, Ariadna Lucia Pletea Liliana Popa TEORIA PROBABILITĂŢILOR UNIVERSITATEA TEHNICĂ GH. ASACHI, IAŞI 999 Cuprins Introducere 5 Câmp de probabilitate 7. Câmp finit de evenimente...........................

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare

Διαβάστε περισσότερα

Geometria diferenţială a curbelor în spaţiu

Geometria diferenţială a curbelor în spaţiu Geometria diferenţială a curbelor în spaţiu A. U. Thor 0.1 Generalităţi Definitia 1.1 Se numeşte curbă înspaţiu dată parametric mulţimea punctelor M (x, y, z) din spaţiuacăror coordonate sunt date de x

Διαβάστε περισσότερα

Sala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ

Sala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ Sala: 203 Decembrie 204 Cof. uiv. dr.: Dragoş-Pătru Covei CURS 0: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs u a fost supus uui proces riguros de recezare petru a fi oficial publicat. distribuit

Διαβάστε περισσότερα

I3: PROBABILITǍŢI - notiţe de curs

I3: PROBABILITǍŢI - notiţe de curs I3: PROBABILITǍŢI - notiţe de curs Ştefan Balint, Eva Kaslik, Simina Mariş Cuprins Experienţǎ şi evenimente aleatoare 3 2 Eveniment sigur. Eveniment imposibil 3 3 Evenimente contrare 4 4 Evenimente compatibile.

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Coduri detectoare şi corectoare de erori

Coduri detectoare şi corectoare de erori Coduri detectoare şi corectoare de erori Adrian Atanasiu Editura Universităţii BUCUREŞTI Prefaţă Vă uitaţi la televizor care transmite imagini prin satelit? Vorbiţi la telefon (celular)? Folosiţi Internetul?

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

Transformări integrale şi funcţii complexe cu aplicaţii în tehnică

Transformări integrale şi funcţii complexe cu aplicaţii în tehnică Daniel BREAZ Nicolae SUCIU Păstorel GAŞPAR Nicoleta BREAZ Monica PÎRVAN Valeriu PREPELIŢĂ Gheorghe BARBU Transformări integrale şi funcţii complexe cu aplicaţii în tehnică Volumul 1 Funcţii complexe cu

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR. Călinici Tudor 2016

APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR. Călinici Tudor 2016 APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR Călinici Tudor 2016 OBIECTIVE EDUCAŢIONALE Prezentarea conceptelor fundamentale ale teoriei calculului probabilitaţilor Evenimente independente Probabilități

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

decembrie 2016 Grafuri. Noţiuni fundamentale. Grafuri euleriene şi grafuri hamilto

decembrie 2016 Grafuri. Noţiuni fundamentale. Grafuri euleriene şi grafuri hamilto Grafuri. Noţiuni fundamentale. Grafuri euleriene şi grafuri hamiltoniene decembrie 2016 Grafuri Noţiuni fundamentale D.p.d.v. matematic, un graf este o structură G = (V, E) formată din o mulţime de noduri

Διαβάστε περισσότερα

Lecţii de Analiză Matematică. Dan Bărbosu şi Andrei Bărbosu

Lecţii de Analiză Matematică. Dan Bărbosu şi Andrei Bărbosu Lecţii de Analiză Matematică Dan Bărbosu şi Andrei Bărbosu 2 Cuprins Şiruri şi serii numerice; şiruri şi serii de funcţii 7. Şiruri numerice. Noţiuni şi rezultate generale......... 7.2 Şiruri fundamentale.

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

MC. 13 ELEMENTE DE TEORIA

MC. 13 ELEMENTE DE TEORIA MC. 13 ELEMENTE DE TEORIA CÂMPURILOR Cuprins 15 MC. 13 Elemente de teoria câmpurilor 5 15.1 Câmpuri scalare. Curbe şi suprafeţe de nivel............................. 5 15.2 Derivata după o direcţie şi

Διαβάστε περισσότερα

Calculul funcţiilor de matrice Exponenţiala matriceală

Calculul funcţiilor de matrice Exponenţiala matriceală Laborator 3 Calculul funcţiilor de matrice Exponenţiala matriceală 3.1 Tema Înţelegerea conceptului de funcţie de matrice şi însuşirea principalelor metode şi algoritmi de calcul al funcţilor de matrice.

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

Geometria curbelor şi suprafeţelor 27 Mai 2014

Geometria curbelor şi suprafeţelor 27 Mai 2014 Geometria curbelor şi suprafeţelor 7 Mai 04 Mircea Crâşmăreanu ii Cuprins Introducere v Noţiunea de curbă. Geometria unei curbe Reperul Frenet şi curburi 9 3 Teorema fundamentală a curbelor 7 4 Ecuaţiile

Διαβάστε περισσότερα

Cursul 11. Cuplaje. Sisteme de reprezentanti distincţi. Arbori de acoperire. Enumerarea tuturor arborilor cu număr fixat de noduri.

Cursul 11. Cuplaje. Sisteme de reprezentanti distincţi. Arbori de acoperire. Enumerarea tuturor arborilor cu număr fixat de noduri. Cuplaje. Sisteme de reprezentanti distincţi. Arbori de acoperire. Enumerarea tuturor arborilor cu număr fixat de noduri 17 decembrie 2016 Cuprinsul acestui curs Cuplaje Cuplaj perfect, maxim, maximal Cale

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Numere complexe. a numerelor complexe z b b arg z.

Numere complexe. a numerelor complexe z b b arg z. Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα