Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Εργαστήριο ιδάσκοντες: Παναγόπουλος Γ., Σους Ι.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Εργαστήριο ιδάσκοντες: Παναγόπουλος Γ., Σους Ι."

Transcript

1 ΤΕΙ ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Εργαστήριο ιδάσκοντες: Παναγόπουλος Γ, Σους Ι Ονοµατεπώνυµο: ΑΕΜ Σέρρες Βαθµολογία: ίνεται ο ξυλότυπος του σχήµατος που ακολουθεί καθώς και τα αντίστοιχα µόνιµα και κινητά φορτία των πλακών Ζητείται η διαστασιολόγηση των πλακών, συγκεκριµένα: Η απαιτούµενη συνολική επικάλυψη των οπλισµών (το d 1 ) Να θεωρηθούν στο στάδιο αυτό οπλισµοί Ø10 (στη συνέχεια µπορεί να τοποθετηθεί άλλη διάµετρος οπλισµών) Η εκλογή ενιαίου πάχους των πλακών Το στατικό σύστηµα και ο υπολογισµός των ροπών σχεδιασµού (το διάγραµµα ροπών να γίνει στην κάτοψη της εκφώνησης) Ο υπολογισµός των οπλισµών των πλακών Ο σχεδιασµός των απαιτούµενων οπλισµών (στην κάτοψη της πίσω σελίδας) Σημειώσεις: Το ίδιο βάρος των πλακών δεν συμπεριλαμβάνεται στα μόνιμα φορτία που δίνονται Υλικά: C20, S500 εδοµένα G Q Qπρ L 1 L 2 L 3 Lπρ1 Lπρ2 (kn/m²) (kn/m²) (kn/m²) (m) (m) (m) (m) (m) Περιβάλλον A Μέτρ διαβρωτ B Ελάχ διαβρωτ

2 ΛΥΣΗ Α ομάδας Υπολογισμός της επικάλυψης των οπλισµών Ο υπολογισμός των οπλισμών υπολογίζεται σύμφωνα με τον πίνακα στην σελίδα 30 του βιβλίου Στην περίπτωση μας έχουμε μέτρια διαβρωτικό περιβάλλον το οποίο κατατάσσεται στην δεύτερη κατηγορία συνθηκών του πίνακα και μας δίνει c min mm c nom c min mm Θεωρούμε ότι θα βάλουμε οπλισμό στις πλάκες Φ10 που το μισό της διαμέτρου είναι 5mm επόμενος d 1 c nom + Ø L / mm Η εκλογή ενιαίου πάχους των πλακών Θα γίνει με βάση τον έλεγχο λειτουργικότητας (περιορισμός βελών κάμψης) οι Π1 και Π2 είναι τετραέρειστες με λόγο πλευρών μικρότερο του 2 άρα είναι σταυροειδώς οπλισμένες Π1: Διεύθυνση Χ : αριστερά έδραση, δεξιά πάκτωση L x 380m 304

3 Διεύθυνση Υ : αριστερά (έλεγχος), δεξιά (έλεγχος) έλεγχος: L πρ2 /L3170/475035>033 οπότε αριστερά πάκτωση έλεγχος: L πρ1 /L3120/475025<033 οπότε δεξιά έδραση L y 475m 380 ( ) Π2: Διεύθυνση Χ : αριστερά πάκτωση, δεξιά έδραση L x 570m 456 Διεύθυνση Υ : αριστερά (έλεγχος), δεξιά (έλεγχος) έλεγχος: L πρ2 /L3170/475035>033 οπότε αριστερά πάκτωση έλεγχος: L πρ1 /L3120/475025<033 οπότε δεξιά έδραση L y 475m 380

4 ( ) Από τους προβόλους 1 και 2 αρκεί να μελετήσουμε μόνο τον 2 που έχει μεγαλύτερο μήκος Πρ2: L17m ( ) Το μεγαλύτερο απαιτούμενο στατικό ύψος είναι 0136 h Επιλέγω h17cm & dh-d cm Συνδυασμοί Φόρτισης Δυσμενής συνδυασμός φόρτισης πλακών

5 Δυσμενής συνδυασμός φόρτισης προβόλου Ευμενής συνδυασμός φόρτισης πλακών και προβόλου Συνδυασμοί για μέθοδο πεσσοειδών φορτίσεων Στατική επίλυση προβόλου Υπολογίζεται η δυσμενέστερη ροπή του προβόλου με επίλυση ως ισοδύναμη λωρίδα πλάτους 1m Στατική επίλυση πλάκας Για την επίλυση των τετραέρειστων πλακών θα χρησιμοποιηθούν οι πίνακες Czerny Ο πίνακας που μας ενδιαφέρει για τον υπολογισμό των ροπών των στηρίξεων είναι αυτός των πινάκων τύπου 4

6 ΠΛΑΚΑ 2 12 έχουμε : m xerm m xm m yerm m ymax Ροπές στις στηρίξεις Η στατική επίλυση γίνεται με καθολική δυσμενή φόρτιση (135G+15Q) m xerm 2505 m yerm 2199 Ροπές στο άνοιγμα Με χρήση εναλλακτών φορτίσεων Καθολική φόρτιση με P G+075Q (πλάκα τύπου 2α)

7 Εναλλακτές φορτίσεις με P G+075Q (πλάκα τύπου 1) 12 έχουμε : m xm Ροπές στο άνοιγμα m ymax Όποτε για την πλάκα 2 o o o

8 o ΠΛΑΚΑ έχουμε : m xerm m xm m yerm m ymax Ροπές στις στηρίξεις Η στατική επίλυση γίνεται με καθολική δυσμενή φόρτιση (135G+15Q) m xerm 166 m yerm 1407 Ροπές στο άνοιγμα Με χρήση εναλλακτών φορτίσεων Καθολική φόρτιση με P G+075Q (πλάκα τύπου 2α)

9 Εναλλακτές φορτίσεις με P G+075Q (πλάκα τύπου 1) 125 έχουμε : m xm m ymax Ροπές στο άνοιγμα Όποτε για την πλάκα 2

10 o o o o Μέσος όρος ροπών στηρίξεων ( 166)

11 Έλεγχος επάρκειας της διατομής Για S500 είναι μ lim 031 οπότε < 14 Υπολογισμός των οπλισμών Ελάχιστος οπλισμός για εξασφάλιση αντοχής της πλάκας, Αρα, 21 Ελάχιστος οπλισμός λόγω απαιτήσεων λειτουργικότητας, Μέγιστη απόσταση μεταξύ ράβδων οπλισμού h , Άρα για 20 Μέγιστος οπλισμός, 4%

12 Οπλισμός πλακών Ξεκινάμε με τον υπολογισμό του οπλισμού που απαιτείται για την μέγιστη ροπή ώστε αν είναι λιγότερος από τον ελάχιστο να τοποθετήσουμε παντού τον ελάχιστο (267cm 2) < 033 Από τους πίνακες για ορθογωνική διατομή προκύπτει ω cm2 Είναι μικρότερο από το ελάχιστο το οποίο είναι 267cm 2 επομένως τοποθετούμε το ελάχιστο 8/185 (272cm 2 ) Για τις μικρότερες ροπές δεν απαιτείται περεταίρω έλεγχος καθώς θα μας οδηγήσει σε ακόμα μικρότερη απαίτηση όπλισης η οποία προφανώς θα είναι μικρότερη του ελάχιστου ορίου που ορίζεται από τον κανονισμό Οπλισμός προβόλου < 033 Από τους πίνακες για ορθογωνική διατομή προκύπτει ω cm cm 2 Τοποθετούνται επιπλέον 8/37 136cm 2 Σύνολο 8/185+ 8/ cm 2

13 Οπλισμός προβόλου < 033 Αλλά > 18 < 267cm Επομένως αρκεί να προεκτείνουμε τον οπλισμό τις πλακάς

14 Έλεγχος για πρόσθετο οπλισμό στηρίξεων μεταξύ των πλακών < 033 Από τους πίνακες για ορθογωνική διατομή προκύπτει ω Από τον οπλισμό που προεκτείνουμε έχουμε Το οποίο αρκεί / cm2 Οπλισμός διανομής προβόλου Τίθεται το μέγιστο από τα παρακάτω 20% / Τοποθετούμε 6/25 (113c ) Φουρκέτες Τοποθετούμε ξεχωριστές φουρκέτες 6/25 στην μεγάλη πλευρά ενώ αριστερά και δεξιά μας βολεύει να χρησιμοποιήσουμε τον οπλισμό διανομής λυγίζοντας τον προς τα κάτω

15

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος

Διαβάστε περισσότερα

Άσκηση 3. Παράδειγμα σταυροειδώς οπλισμένων πλακών

Άσκηση 3. Παράδειγμα σταυροειδώς οπλισμένων πλακών Άσκηση 3. Παράδειγμα σταυροειδώς οπλισμένων πλακών Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:

Διαβάστε περισσότερα

ΕΚΛΟΓΗ ΕΝΙΑΙΟΥ ΠΑΧΟΥΣ ΠΛΑΚΩΝ

ΕΚΛΟΓΗ ΕΝΙΑΙΟΥ ΠΑΧΟΥΣ ΠΛΑΚΩΝ Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Β Κατασκευές Οπλισµένου Σκυροδέµατος Ι ιδάσκοντες: Μητούλης Στ., Παναγόπουλος Γ., Σους Ι. Σέρρες 8-6-01 ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΚΑΛΥΨΗΣ ΠΛΑΚΩΝ Επικάλυψη c min για συνθήκες

Διαβάστε περισσότερα

Άσκηση 2. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας

Άσκηση 2. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας Άσκηση. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών,

Διαβάστε περισσότερα

25x30. 25x30. Π2 Πρ1. Π1 Πρ2. Άσκηση 3 η

25x30. 25x30. Π2 Πρ1. Π1 Πρ2. Άσκηση 3 η Πλάκες ο εργαστήριο 1 Άσκηση 3 η Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα: Η εκλογή

Διαβάστε περισσότερα

Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας

Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 26-6-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.2(σχήμα 4.1) και από

Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.2(σχήμα 4.1) και από Τ.Ε.Ι. Τμήμα Κατασκευές ΣΕΡΡΩΝ Πολιτικών Οπλισμένου Δομικών Σκυροδέματος Έργων ΥΠΟΛΟΓΙΣΜΟΣ Ι Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.(σχήμα 4.1) και από Β προκύπτει d1cnom+øw+øl/

Διαβάστε περισσότερα

Σέρρες Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 4.0)

Σέρρες Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 4.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 18-1-2008 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 29-1-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 6.0) Στο

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 18-6-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 4.0) ίνεται

Διαβάστε περισσότερα

Σέρρες 20-1-2006. Βαθμολογία:

Σέρρες 20-1-2006. Βαθμολογία: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

Π1 Ππρ. Δ1 (20x60cm) Σ1 (25x25cm) Άσκηση 1 η

Π1 Ππρ. Δ1 (20x60cm) Σ1 (25x25cm) Άσκηση 1 η Πλάκες 1 ο μάθημα εργαστηρίου 1 Άσκηση 1 η Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 11-9-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ

Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ Τ.Ε.Ι. K.M. Τμήμα ΠΓ&ΜΤΓ Κατασκευές Οπλισμένου Σκυροδέματος Ι Διδάσκων: Παναγόπουλος Γιώργος Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ Δίνεται η κάτοψη του σχήματος που ακολουθεί και ζητείται να εξεταστεί

Διαβάστε περισσότερα

4.5 Αµφιέρειστες πλάκες

4.5 Αµφιέρειστες πλάκες Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και

Διαβάστε περισσότερα

Λειτουργία της πλάκας Επίδραση στο σχεδιασμό της δοκού. Φορτία Συνεργαζόμενο πλάτος. Προκατασκευή

Λειτουργία της πλάκας Επίδραση στο σχεδιασμό της δοκού. Φορτία Συνεργαζόμενο πλάτος. Προκατασκευή Λειτουργία της πλάκας Επίδραση στο σχεδιασμό της δοκού Φορτία Συνεργαζόμενο πλάτος Προκατασκευή 2 Δοκός Δοκός Δοκός Δοκός Δ1 25/50 Δοκός Μορφή Ολόσωμες Δοκός α) Αμφιέρειστη β) Τετραέρειστη Με νευρώσεις

Διαβάστε περισσότερα

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών CSI Hellas, εκέµβριος 2003 Τεχνική Οδηία 5 Ανάλυση συµπαών πλακών Η τεχνική οδηία 5 παρέχει βασικές πληροφορίες ια την πλακών. ανάλυση Γενικά. Το Adaptor αναλύει µόνο συµπαείς ορθοωνικές πλάκες, συνεχείς

Διαβάστε περισσότερα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Πλάκες

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Πλάκες ADAPTOR Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης Εγχειρίδιο Επαλήθευσης για Πλάκες Version 0 Ιανουάριος 004 ΠΝΕΥΜΑΤΙΚΑ ΙΚΑΙΩΜΑΤΑ Το λογισµικό Adaptor και όλα τα σχετικά µε

Διαβάστε περισσότερα

Τεχνική Οδηγία 6 Όπλιση πλακών

Τεχνική Οδηγία 6 Όπλιση πλακών CSI Hella, εκέµβριος 2003 Τεχνική Οδηγία 6 Όπλιση πλακών Η τεχνική οδηγία 6 παρέχει βασικές πληροφορίες για την όπλιση πλακών. Κανονισµοί. Η όπλιση των πλακών πραγµατοποιείται σύµφωνα µε τις διατάξεις

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ

ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ Επίλυση γραμμικών φορέων ΟΣ σύμφωνα με τους EC & EC8 ΑΣΚΗΣΗ 4 (3/3/017) ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ Να υπολογιστεί σε κάµψη η µονοπροέχουσα δοκός του σχήµατος για συνδυασµό φόρτισης 135G15Q Η δοκός ανήκει σε

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Δεξαμενές Ο/Σ (Μέρος 2 ο ) -Σιλό Ορθογωνικές δεξαμενές Διάκριση ως προς την ύπαρξη ή μη επικάλυψης

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Πλάκες με νευρώσεις Πλάκες με νευρώσεις Οι πλάκες με νευρώσεις αποτελούνται από διαδοχικές πλακοδοκούς

Διαβάστε περισσότερα

Κατασκευές Οπλισμένου Σκυροδέματος Ι

Κατασκευές Οπλισμένου Σκυροδέματος Ι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχ/κών και Μηχ/κών Τοπογραφίας και Γεωπληροφορικής Τ.Ε. Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις

Διαβάστε περισσότερα

Π1. Πίνακες υπολογισμού

Π1. Πίνακες υπολογισμού Π1. Πίνακες υπολογισμού Στο παράρτημα Π1 θα παρατεθούν συγκεντρωμένοι οι πίνακες υπολογισμού που χρησιμοποιούνται κατά τη διαστασιολόγηση των δομικών στοιχείων από Ο/Σ. Πίνακας 1. Κύριες κατηγορίες περιβαλλοντικής

Διαβάστε περισσότερα

Ι Απόστολου Κωνσταντινίδη υσµενείς φορτίσεις και περιβάλλουσες εντάσεων βελών. Τόµος B

Ι Απόστολου Κωνσταντινίδη υσµενείς φορτίσεις και περιβάλλουσες εντάσεων βελών. Τόµος B Τόµος B 4.2.3 υσµενείς φορτίσεις και περιβάλλουσες εντάσεων βελών Το ελάχιστο φορτίο που εξασκείται σε µία πλάκα ισούται µε g, ενώ το µέγιστο µε p=(γ g -1) g i + γ q q i. Το γενικό ερώτηµα που τίθεται

Διαβάστε περισσότερα

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα.

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα. CSI Hellas, Φεβρουάριος 2004 Τεχνική Οδηγία 1 Πέδιλα στα οποία εδράζονται υποστυλώµατα ορθογωνικής διατοµής Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΓΡΑΜΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟ ΕΜΑΤΟΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ. ΑΣΚΗΣΗ 1 η και 2 η Α) Έλεγχος Κάµψης Πλάκας Β) Έλεγχος Κάµψης οκού

ΣΧΕ ΙΑΣΜΟΣ ΓΡΑΜΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟ ΕΜΑΤΟΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ. ΑΣΚΗΣΗ 1 η και 2 η Α) Έλεγχος Κάµψης Πλάκας Β) Έλεγχος Κάµψης οκού ΣΧΕ ΙΑΣΜΟΣ ΓΡΑΜΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟ ΕΜΑΤΟΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ ΑΣΚΗΣΗ 1 η και η Α) Έλεγχος Κάµψης Πλάκας Β) Έλεγχος Κάµψης οκού Στον ξυλότυπο τυπικού ορόφου κτιρίου όπως φαίνεται στο σχήµα,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8. Διαστασιολόγηση πλακών

ΚΕΦΑΛΑΙΟ 8. Διαστασιολόγηση πλακών ΚΕΦΑΛΑΙΟ 8 Διαστασιολόγηση πλακών 8.1 Γενικά Με τον όρο «πλάκες» αναφερόμαστε συνήθως σε επίπεδους φορείς σχετικά λεπτού πάχους που φορτίζονται κυρίως κάθετα στο επίπεδό τους και στηρίζονται γραμμικά (π.χ.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Δεξαμενές οπλισμένου σκυροδέματος Δεξαμενές οπλισμένου σκυροδέματος Το σημαντικότερο πρόβλημα

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΙΙ

Τ.Ε.Ι. ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΙΙ 1 Τ.Ε.Ι. ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΙΙ 22/02/2011 ΘΕΜΑ 1 ο Στον πρόβολο του σχήματος μήκους l, η διατομή είναι ορθογωνική διαστάσεων bxh (για τις οποίες δίνεται h=3b). Aν σ εφ

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις Εφαρμογή 9 Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής για συνδυασμό φόρτισης.5g.5q. Xάλυβας συνδετήρων S400 Λύση Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις περιπτώσεις φόρτισης που αναφέρονται

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Σύντομη επανάληψη διαστασιολόγησης δοκών, στύλων και τοιχείων από Ο/Σ Πλαίσιο υπό φορτία βαρύτητας

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

Γιώργος ΒΑ ΑΛΟΥΚΑΣ 1, Κρίστης ΧΡΥΣΟΣΤΟΜΟΥ 2. Λέξεις κλειδιά: Ευρωκώδικας 2, CYS159, όγκος σκυροδέµατος, βάρος χάλυβα

Γιώργος ΒΑ ΑΛΟΥΚΑΣ 1, Κρίστης ΧΡΥΣΟΣΤΟΜΟΥ 2. Λέξεις κλειδιά: Ευρωκώδικας 2, CYS159, όγκος σκυροδέµατος, βάρος χάλυβα Συγκριτική µελέτη τυπικών κτιρίων οπλισµένου σκυροδέµατος µε το Ευρωκώδικα 2 και τον CYS 159 Comparative Study of typical reinforced concrete structures according το EC2 and CYS 159 Γιώργος ΒΑ ΑΛΟΥΚΑΣ

Διαβάστε περισσότερα

Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης.

Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης. Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης. 1. Ανατροπής ολίσθησης. 2. Φέρουσας ικανότητας 3. Καθιζήσεων Να γίνουν οι απαραίτητοι έλεγχοι διατομών και να υπολογισθεί ο απαιτούμενος

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού).

ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού). 1 ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού). Πλάτος δοκού t beam =0.30m Πλάτος υποστυλωμάτων 0.50m

Διαβάστε περισσότερα

Κατασκευές Ωπλισμένου. Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ

Κατασκευές Ωπλισμένου. Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ Δημοκρίτειο Πανεπιστήμιο Θράκης_ Τμήμα Πολιτικών Μηχανικών_ Τομέας Δομικών Έργων Κατασκευές Ωπλισμένου Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ ΣΤΟΙΧΕΙΑ ΣΕ ΚΑΘΑΡΟ ΕΦΕΛΚΥΣΜΟ Εφελκυσμός από εξωτερική φόρτιση: 0.60

Διαβάστε περισσότερα

ΑΚΑΔ. ΕΤΟΣ ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Η ΕΠΙΛΥΣΗ ΤΟΥΣ ΕΓΙΝΕ ΣΤΟ ΜΑΘΗΜΑ

ΑΚΑΔ. ΕΤΟΣ ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Η ΕΠΙΛΥΣΗ ΤΟΥΣ ΕΓΙΝΕ ΣΤΟ ΜΑΘΗΜΑ 1 ΑΚΑΔ. ΕΤΟΣ 2016 17 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Η ΕΠΙΛΥΣΗ ΤΟΥΣ ΕΓΙΝΕ ΣΤΟ ΜΑΘΗΜΑ Σύνθεση & Σχεδιασμός Κατασκευών Οπλισμένου Σκυροδέματος Τμήμα Πολιτικών Μηχανικών Παν/μιο Πατρών ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ ΣΤΟIΧΕIΑ

Διαβάστε περισσότερα

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ ΚΑΙ ΥΝΑΜΙΚΗΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ 2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ

Διαβάστε περισσότερα

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων 1 Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων F 3=1.5εW W H F =εw W F =0.5 εw 1 Υ4 Δ1 Υ Δ1 W H Υ3 Υ1 H Π L L To τριώροφο επίπεδο πλαίσιο του σχήματος έχει (θεωρητικό) ύψος ορόφου

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Κελύφη οπλισμένου σκυροδέματος Κελύφη Ο/Σ Καμπύλοι επιφανειακοί φορείς μικρού πάχους Εντατική

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση

Διαβάστε περισσότερα

Βιβλιογραφία: Αναγνωστόπουλος (Πιτιλάκης κ.α. 1999) και Πενέλης κ.α. 1995

Βιβλιογραφία: Αναγνωστόπουλος (Πιτιλάκης κ.α. 1999) και Πενέλης κ.α. 1995 Τυπόγιο: ιαστασιόγηση μεμονωμένων πεδίλων 1 Γενικοί Κανόνες ιαμόρφωσης Μεμονωμένων Πεδίλων Βιβλιογραφία: Αναγνωστόπουλος (Πιτιλάκης κ.α. 1999) και Πενέλης κ.α. 1995 C C α 0.05m D D ' σκυρόδεμα καθαριότητας

Διαβάστε περισσότερα

s,min ΕΚΩΣ : Ελάχιστος οπλισμός τουλάχιστο Ø12 ανά max 15cm (Ø12/15cm=7.54cm²) ποιότητας ισοδύναμης με S400/S500 (υγρά εδάφη Ø14/15cm)

s,min ΕΚΩΣ : Ελάχιστος οπλισμός τουλάχιστο Ø12 ανά max 15cm (Ø12/15cm=7.54cm²) ποιότητας ισοδύναμης με S400/S500 (υγρά εδάφη Ø14/15cm) Τυπόγιο: ιαστασιόγηση μεμονωμένων πεδίλων 1 Γενικοί Κανόνες ιαμόρφωσης Μεμονωμένων Πεδίλων Βιβλιογραφία: Αναγνωστόπουλος κ.α. (01) και Πενέλης κ.α. (1995) C C α 0.05m D α D ' σκυρόδεμα καθαριότητας (~10cm)

Διαβάστε περισσότερα

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:... Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Δομικών Έργων Χειμερινό Εξάμηνο 00-0 Διάρκεια εξέτασης: ώρες Εξέταση Θεωρίας: ΘΕΜΕΛΙΩΣΕΙΣ Διδάσκων: Κίρτας Εμμανουήλ

Διαβάστε περισσότερα

Υψος Ισογείου (m) Υψη Ορόφων (m)

Υψος Ισογείου (m) Υψη Ορόφων (m) Πάτρα 20-3-2017 ΘΕΜΑ Για τα 5-όροφα πλαίσια των σχημάτων που ακολουθούν να γίνει μονοτονική στατική ανάλυση τύπου pushover κατά τις δύο οριζόντιες διευθύνσεις Χ και Υ. Σκοπός της εν λόγω ανάλυσης είναι

Διαβάστε περισσότερα

Εγχειρίδιο Χρήσης Α. Λεπτομέρειες Οπλισμών Δοκών

Εγχειρίδιο Χρήσης Α. Λεπτομέρειες Οπλισμών Δοκών Εγχειρίδιο Χρήσης Α. Λεπτομέρειες Οπλισμών Δοκών 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. ΛΕΠΤΟΜΕΡΕΙΕΣ ΟΠΛΙΣΜΩΝ ΔΟΚΩΝ 5 1. Γεωμετρία 8 2. Κύριος Οπλισμός Ανοίγματος 12 3. ισμός Στηρίξεων 14 4. Συνδετήρες 16 5. Πρόσθετα 17 6.

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Επικάλυψη οπλισμών Ανθεκτικότητα σε διάρκεια - Επικάλυψη οπλισμών Μια κατασκευή θεωρείται ανθεκτική

Διαβάστε περισσότερα

Διάτρηση: Εφαρμογή Την επιμέλεια της εφαρμογής είχε η Γαλήνη Καλαϊτζοπούλου

Διάτρηση: Εφαρμογή Την επιμέλεια της εφαρμογής είχε η Γαλήνη Καλαϊτζοπούλου Διάτρηση: Εφαρμογή Την επιμέλεια της εφαρμογής είχε η Γαλήνη Καλαϊτζοπούλου Υποστύλωμα διαστάσεων 0.50*0.50m θεμελιώνεται σε πλάκα γενικής κοιτόστρωσης πάχους h=0.70m. Η πλάκα είναι οπλισμένη με διπλή

Διαβάστε περισσότερα

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και

Διαβάστε περισσότερα

Παράδειγμα 7 Ολοκληρωμένο παράδειγμα Επίπεδων Πλακών

Παράδειγμα 7 Ολοκληρωμένο παράδειγμα Επίπεδων Πλακών Παράδειγμα 7 Ολοκληρωμένο παράδειγμα Επίπεδων Πλακών 2 Σημείωση Η ACE-HELLAS στο πλαίσιο της ανάπτυξης και βελτιστοποίησης των προϊόντων της, και συγκεκριμένα της εφαρμογής SCADA Pro, δημιούργησε τη νέα

Διαβάστε περισσότερα

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7 Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια Κεφάλαιο 7 Διαφάνειες παρουσίασης εκπαιδευτικών σεμιναρίων Γεώργιος Πενέλης, ομότιμος καθηγητής Α.Π.Θ. Ανδρέας

Διαβάστε περισσότερα

O7 O6 O4 O3 O2 O1 K1 K2 K3 K4 K5 K6. Μέρος 1 ο Επιλογή θέσης και διαστάσεων κατακόρυφων στοιχείων. Βήμα 1 ο Σχεδιασμός καννάβου

O7 O6 O4 O3 O2 O1 K1 K2 K3 K4 K5 K6. Μέρος 1 ο Επιλογή θέσης και διαστάσεων κατακόρυφων στοιχείων. Βήμα 1 ο Σχεδιασμός καννάβου Μέρος 1 ο Επιλογή θέσης και διαστάσεων κατακόρυφων στοιχείων Βήμα 1 ο Σχεδιασμός καννάβου Με βάση τις θέσεις των τοιχοπληρώσεων που εμφανίζονται στο αρχιτεκτονικό σχέδιο γίνεται ο κάναβος που φαίνεται

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 10: Έλεγχος διακοπτόμενης συγκόλλησης Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Advanced Center of Excellence in Structural and Earthquake Engineering University of Patras, European Commission, Framework Programme 7

Advanced Center of Excellence in Structural and Earthquake Engineering University of Patras, European Commission, Framework Programme 7 1 Σχεδιασµός πολυορόφου κτηρίου µε δύο υπόγεια (Τροποιηµένο παράδειγµα Λισαβώνας 02-2011) Μ.Ν.Φαρδής Τµήµα Πολιτικών Μηχανικών Πανεπιστηµίου Πατρών Σεµινάρια Ευρωκωδίκων στη υτική Ελλάδα Advanced Center

Διαβάστε περισσότερα

Ενότητα Ι ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΕΙΣΤΩΝ ΚΑΙ ΤΕΤΡΑΕΡΕΙΣΤΩΝ ΠΛΑΚΩΝ

Ενότητα Ι ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΕΙΣΤΩΝ ΚΑΙ ΤΕΤΡΑΕΡΕΙΣΤΩΝ ΠΛΑΚΩΝ Ενότητα Ι ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΕΙΣΤΩΝ ΚΑΙ ΤΕΤΡΑΕΡΕΙΣΤΩΝ ΠΛΑΚΩΝ 1. ΣΤΟΧΟΙ ΚΑΙ ΚΡΙΤΗΡΙΑ ΟΡΘΟΥ ΣΧΕΔΙΑΣΜΟΥ Ο στόχος του σχεδιασμού των φορέων σε κατάσταση αστοχίας είναι, όπως εντοπίστηκε στην ενότητα Α και Ζ διττός:

Διαβάστε περισσότερα

Εγχειρίδιο Χρήσης ❺ Πλάκες

Εγχειρίδιο Χρήσης ❺ Πλάκες Εγχειρίδιο Χρήσης ❺ Πλάκες 2 ΠΕΡΙΕΧΟΜΕΝΑ I. ΤΟ ΝΕΟ ΑΝΑΒΑΘΜΙΣΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ SCADA Pro 4 II. ΑΝΑΛΥΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΙΑΣ 5 1. Πλάκες 5 1.1 Εισαγωγή 6 1.2 Τροποποίηση 10 1.3 Τομές

Διαβάστε περισσότερα

3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3.1 ΑΝΟΧΕΣ ΔΙΑΣΤΑΣΕΩΝ [ΕΚΟΣ 5.2] Ισχύουν μόνο για οικοδομικά έργα. Απαιτούνται ιδιαίτερες προδιαγραφές για μη οικοδομικά έργα l: Ονομαστική τιμή διάστασης Δl: Επιτρεπόμενη

Διαβάστε περισσότερα

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 20 1 XΑΛΥΒΔΌΦΥΛΛΟ SYMDECK 73 ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο

Διαβάστε περισσότερα

Προσομοίωση πλάκας οπλισμένου σκυροδέματος με χρήση επιφανειακών πεπερασμένων στοιχείων

Προσομοίωση πλάκας οπλισμένου σκυροδέματος με χρήση επιφανειακών πεπερασμένων στοιχείων Κεφάλαιο 8 Προσομοίωση πλάκας οπλισμένου σκυροδέματος με χρήση επιφανειακών πεπερασμένων στοιχείων Σύνοψη Στο παράδειγμα του Κεφαλαίου 8, παρουσιάζεται η προσομοίωση πλάκας οπλισμένου σκυροδέματος με χρήση

Διαβάστε περισσότερα

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe 3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe 67 3.2 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe Στις επόμενες σελίδες παρουσιάζεται βήμα-βήμα ο τρόπος με τον οποίο μπορεί

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Πλάκες χωρίς δοκούς Οπλισμός κατά δύο διευθύνσεις Μονολιθική σύνδεση με τα υποστυλώματα Απευθείας

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΝΟ.1 (2011)

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΝΟ.1 (2011) Τ.Ε. 01 - Προσομοίωση και παραδοχές FESPA SAP 2000 1.1 ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΝΟ.1 (2011) Προσομοίωση και παραδοχές FESPA - SAP 2000 Η παρούσα τεχνική έκθεση αναφέρεται στις παραδοχές και απλοποιήσεις που υιοθετούνται

Διαβάστε περισσότερα

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Παράδειγμα

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ Ε.Κ.Ω.Σ. 2000) ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ

ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ Ε.Κ.Ω.Σ. 2000) ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ. 2003 Ε.Κ.Ω.Σ. 2000) ΑΠΟΤΙΜΩΜΕΝΗΣ ΜΕ pushover ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ Περίληψη Σκοπός της παρούσης εργασίας είναι

Διαβάστε περισσότερα

ΙΑπόστολου Κωνσταντινίδη ιαφραγµατική λειτουργία. Τόµος B

ΙΑπόστολου Κωνσταντινίδη ιαφραγµατική λειτουργία. Τόµος B Τόµος B 3.1.4 ιαφραγµατική λειτουργία Γενικά, αν υπάρχει εκκεντρότητα της φόρτισης ενός ορόφου, π.χ. από την οριζόντια ώθηση σεισµού, λόγω της ύπαρξης της πλάκας που στο επίπεδό της είναι πρακτικά άκαµπτη,

Διαβάστε περισσότερα

Δ Ρ Ι Τ Σ Ο Σ Σ. Δ Ρ Ι Τ Σ Ο Σ

Δ Ρ Ι Τ Σ Ο Σ Σ. Δ Ρ Ι Τ Σ Ο Σ Ιαπωνικές Οδηγίες Αποτίμησης εισμικές Βλάβες, Επισκευές και Ενισχύσεις Τρία επίπεδα ελέγχου Κόστος/m : / 5 /0 x.4 όταν δεν υπάρχουν σχέδια Ελέγχεται ανά διεύθυνση? ορ. ορ. d, ελ. d Β =α Φ W d. πρ d τέφανος.

Διαβάστε περισσότερα

Τεχνική Έκθεση ΦΟΡΕΑΣ: ΕΡΓΟ:

Τεχνική Έκθεση ΦΟΡΕΑΣ: ΕΡΓΟ: ΦΟΡΕΑΣ: ΕΡΓΟ: ΘΕΣΗ: ΗΜΟΣ ΠΑΛΑΙΟΥ ΦΑΛΗΡΟΥ - ΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΟΥ ΧΩΡΟΥ ΣΤΑΘΜΕΥΣΗΣ ΟΧΗΜΑΤΩΝ ΚΑΘΑΡΙΟΤΗΤΑΣ ΚΑΙ ΥΠΕΡΓΕΙΟΥ ΧΩΡΟΥ ΓΡΑΦΕΙΩΝ ΚΑΘΑΡΙΟΤΗΤΑΣ, ΗΜΟΣ ΠΑΛΑΙΟΥ ΦΑΛΗΡΟΥ-Ο.Τ 381

Διαβάστε περισσότερα

Υ Π Ο Μ Ο Ν Α Δ Α «Κ Λ Ι Μ Α Κ Ε Σ»

Υ Π Ο Μ Ο Ν Α Δ Α «Κ Λ Ι Μ Α Κ Ε Σ» Σ Τ Α Τ Ι Κ Ε Σ Μ Ε Λ Ε Τ Ε Σ Κ Τ Η Ρ Ι Ω Ν Υ Π Ο Μ Ο Ν Α Δ Α «Κ Λ Ι Μ Α Κ Ε Σ» Ο Δ Η Γ Ο Σ Χ Ρ Η Σ Η Σ ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ www.tol.com.gr Οκτώβριος 2012 ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ Καρτερού 60, 71201

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Έργο Ιδιοκτήτες Θέση ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Η µελέτη συντάχθηκε µε το πρόγραµµα VK.STEEL 5.2 της Εταιρείας 4M -VK Προγράµµατα Πολιτικού Μηχανικού. Το VK.STEEL είναι πρόγραµµα επίλυσης χωρικού

Διαβάστε περισσότερα

10,2. 1,24 Τυπική απόκλιση, s 42

10,2. 1,24 Τυπική απόκλιση, s 42 Ασκηση 3.1 (a) Αν μία ράβδος οπλισμού θεωρηθεί ότι λυγίζει μεταξύ δύο διαδοχικών συνδετήρων με μήκος λυγισμού το μισό της απόστασης, s w, των συνδετήρων, να υπολογισθεί η απόσταση συνδετήρων, s w, πέραν

Διαβάστε περισσότερα

(MPa) f ctk0.05 = 0.7f ctm (MPa); E s = 200 GPa

(MPa) f ctk0.05 = 0.7f ctm (MPa); E s = 200 GPa Βοήθηµα µαθήµατος Ωπλισµένο Σκυρόδεµα Ια (Προσοχή: Εκτύπωση 6 σελίδων σε 3 φύλλα) Ε ΟΜΕΝΑ ΓΙΑ ΤΟ ΣΚΥΡΟ ΕΜΑ ΚΑΙ ΤΟΝ ΧΑΛΥΒΑ Συντελεστές υλικών και φορτίων για ΟΚΑ (βασικοί συνδυασµοί): γ c =1.5, γ =1.15

Διαβάστε περισσότερα

ΠΟΙΟΤΙΚΗ ΑΝΑΛΥΣΗ & ΣΥΓΚΡΙΣΗ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΤΟΥΣ ΠΑΛΙΟΥΣ ΚΑΙ ΝΕΟΥΣ ΚΑΝΟΝΙΣΜΟΥΣ. ΕΝΙΣΧΥΣΗ ΜΕΛΩΝ & ΒΕΛΤΙΩΣΗ ΑΝΤΟΧΗΣ.

ΠΟΙΟΤΙΚΗ ΑΝΑΛΥΣΗ & ΣΥΓΚΡΙΣΗ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΤΟΥΣ ΠΑΛΙΟΥΣ ΚΑΙ ΝΕΟΥΣ ΚΑΝΟΝΙΣΜΟΥΣ. ΕΝΙΣΧΥΣΗ ΜΕΛΩΝ & ΒΕΛΤΙΩΣΗ ΑΝΤΟΧΗΣ. Εργασια Νο 20 ΠΟΙΟΤΙΚΗ ΑΝΑΛΥΣΗ & ΣΥΓΚΡΙΣΗ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΤΟΥΣ ΠΑΛΙΟΥΣ ΚΑΙ ΝΕΟΥΣ ΚΑΝΟΝΙΣΜΟΥΣ. ΕΝΙΣΧΥΣΗ ΜΕΛΩΝ & ΒΕΛΤΙΩΣΗ ΑΝΤΟΧΗΣ. ΤΣΑΠΡΑΖΗΣ ΒΑΣΙΛΗΣ ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία γίνεται μια προσπάθεια ανάλυσης

Διαβάστε περισσότερα

= = = = N N. Σηµείωση:

= = = = N N. Σηµείωση: Ανάλογα ε τα φορτία που αναπτύσσονται σε ια διατοή ακολουθείται διαφορετική διαδικασία διαστασιολόγησης. 1 Φορτία ιατοής Καθαρή Κάψη Ροπή M σε ια διεύθυνση Προέχουσα Κάψη+Θλίψη Ροπή M σε ια διεύθυνση ε

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΕΡΓΟ : ΡΥΘΜΙΣΗ ΒΑΣΕΙ Ν.4178/2013 ΚΑΤΑΣΚΕΥΗΣ ΜΕΤΑΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΘΕΣΗ : Λεωφόρος Χαλανδρίου και οδός Παλαιών Λατομείων, στα Μελίσσια του Δήμου Πεντέλης ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Άσκηση E9: Εκτίµηση παροχών εξόδου κόµβων, υπολογισµός ελάχιστης κατώτατης

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 3

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 3 Τεχνογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχή Τεχνογικών Εφαρμογών Τμήμα Πιτικών ομικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ Επιφανειακές θεμελιώσεις (αλλαγές για διαστασιόγηση βάσει EC) ιδάσκων: Κίρτας Εμμανουήλ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΣΚΥΡΟΔΕΜΑ ΧΑΛΥΒΑΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΣΚΥΡΟΔΕΜΑ ΧΑΛΥΒΑΣ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΣΚΥΡΟΔΕΜΑ 1.1 Θλιπτική αντοχή σκυροδέματος 15 1.2 Αύξηση της θλιπτικής αντοχής του σκυροδέματος με την πάροδο του χρόνου 16 1.3 Εφελκυστική αντοχή σκυροδέματος 17 1.4 Εφελκυστική

Διαβάστε περισσότερα

BETONexpress, www.runet.gr

BETONexpress, www.runet.gr BETONe xpress ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπ ολογισμοί τμήματος κατασκευής : ΒΡ-ΠΡ.-001, Βραχύς π ρόβολος 1.1. Διαστάσεις, φορτία 1.2. Μοντέλο διαστασιολόγησης 1.3. Αντοχή λοξής θλίψης σκυροδέματος Vrd2 1.4. Δύναμη

Διαβάστε περισσότερα

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Τοµέας οµικών Κατασκευών Εργαστήριο Ωπλισµένου Σκυροδέµατος ΚΑΤΑΣΚΕΥΕΣ ΩΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟ ΕΜΑΤΟΣ Ια ΜΟΝΟΑΞΟΝΙΚΗ ΟΡΘΗ ΕΝΤΑΣΗ Σχεδιασµός

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σιδηρές Κατασκευές Ι Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύµµικτες πλάκες ονοµάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούντα από χαλυβδόφυλλα και επί τόπου έγχυτο σκυρόδεµα. Η σύµµικτη µέθοδος κατασκευής πλακών

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ.

ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ. Σχεδιασμός κτιρίου με ΕΑΚ, Κανονισμό 84 και Κανονισμό 59 και αποτίμηση με ΚΑΝ.ΕΠΕ. ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ. ΡΑΥΤΟΠΟΥΛΟΥ ΜΑΡΙΝΑ Περίληψη Αντικείμενο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ 89 Α. ΑΡΧΗ ΚΑΙ ΤΕΧΝΙΚΗ ΠΡΟΕΝΤΕΤΑΜΕΝΩΝ ΦΟΡΕΩΝ 1. Οι περιορισμοί των Συνήθων Φορέων από Ο.Σ 99 2. Η Λύση του Προεντεταμένου Σκυροδέματος- Οι τρεις Οπτικές 100 3. Η Τεχνική

Διαβάστε περισσότερα

STATICS 2013 ΝΕΕΣ ΥΝΑΤΟΤΗΤΕΣ

STATICS 2013 ΝΕΕΣ ΥΝΑΤΟΤΗΤΕΣ STATICS 2013 ΝΕΕΣ ΥΝΑΤΟΤΗΤΕΣ * ENΙΣΧΥΣΕΙΣ ΠΕΣΣΩΝ ΦΕΡΟΥΣΑΣ ΤΟΙΧΟΠΟΙΪΑΣ ΜΕ ΜΑΝ ΥΕΣ ΟΠΛ. ΣΚΥΡΟ ΕΜΑΤΟΣ Κτίρια από Φέρουσα Τοιχοποιία µε ενισχύσεις από µανδύες οπλισµένου σκυροδέµατος. Οι Μανδύες µπορεί να

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων ΚΕΦΑΛΑΙΟ 1 Οι γραμμικοί φορείς 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων 2 1. Οι γραμμικοί φορείς 1.1 Εισαγωγή 3 1.1 Εισαγωγή Για να γίνει ο υπολογισμός μιας κατασκευής, θα πρέπει ο μελετητής μηχανικός

Διαβάστε περισσότερα

( ) ( ) ( ) Ασκήσεις στην ελαστική γραµµή. Γενικές Εξισώσεις. Εφαρµογές. 1. Η γέφυρα. ΤΜ ΙΙΙ Ασκήσεις : Ι. Βαρδουλάκης & Ι. Στεφάνου, Οκτώβριος

( ) ( ) ( ) Ασκήσεις στην ελαστική γραµµή. Γενικές Εξισώσεις. Εφαρµογές. 1. Η γέφυρα. ΤΜ ΙΙΙ Ασκήσεις : Ι. Βαρδουλάκης & Ι. Στεφάνου, Οκτώβριος ΤΜ ΙΙΙ Ασκήσεις : Ι. Βαρδουλάκης & Ι. Στεφάνου, Οκτώβριος 005 Ασκήσεις στην ελαστική γραµµή Γενικές Εξισώσεις () p w ( x) = x+ M ( x) = w ( x) p w ( ) ( ) ( ) ( ) ( x) = x + x+ onst x p x onst x dm x =

Διαβάστε περισσότερα