x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3)"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Να σχεδιάσετε το ϕάσµα πλάτους και το ϕάσµα ϕάσης του σήµατος xt + cosπt sinπt 3 cos3πt Μπορούµε να χρησιµοποιήσουµε τις ταυτότητες : sinθ cosθ π/, sinθ cosθ + π/, cosθ + π cosθ. 3 Θα µετατρέψουµε τα sin σε cos και ϑα ϕροντίσουµε τα πρόσηµα να είναι όλα ϑετικά, εισάγοντας όπου χρειάζεται την κατάλληλη ϕάση. Είναι : xt + cosπt sinπt 3 cos3πt + cosπt + cosπt + π/ + 3 cos3πt + π + ejπt + e jπt + ejπt e jπ/ + + e jπt e jπ/ + 3 ej3πt e jπ + 3 e j3πt e jπ. 4 Το ϕάσµα πλάτους και το ϕάσµα ϕάσης ϕαίνονται στα παρακάτω Σχήµατα αʹ και βʹ αντίστοιχα, ως συνάρτηση της γωνιακής συχνότητας ω πf. αʹ Φάσµα πλάτους ϐʹ Φάσµα ϕάσης Σχήµα : Φάσµα πλάτους και ϕάσης Άσκησης Λύστε ξανά την άσκηση χωρίς τη χρήση ταυτοτήτων, αλλά µε τις σχέσεις του Euler!

2 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις. Εστω το σήµα xt sin 5πt cosπt Βρείτε την περίοδο του σήµατος και υπολογίστε το ολοκλήρωµα : T x tdt Για να ϐρούµε την περίοδο, ϑα πρέπει να γράψουµε το xt ως άθροισµα ηµιτόνων ή/και συνηµιτόνων. Είναι : xt sin 5πt cosπt j ej5πt j e j5πt ejπt + e jπt 4j ejπt j j ej5πt e j5πt + 4j e jπt ejπt + e jπt 4 ejπt + 4 e jπt ejπt + e jπt 8 ej3πt 8 e jπt + 4 ejπt + 4 e jπt 8 e j3πt 8 ejπt 4 cosπt + cosπt 4 cos3πt 4 cosπ6t + cosπt 4 cosπ6t 4 cosπ6t + π + cosπt + cosπ6t + π 5 4 Ενας διαφορετικός τρόπος λύσης ϑα ήταν να χρησιµοποιήσουµε τις τριγωνοµετρικές ταυτότητες : sin θ cosθ και cosθ cosω cosθ + ω + cosθ ω Τότε ϑα είναι : cosπt cosπt cosπt cosπt cosπt cosπt + 4 cos3πt + π + cosπt + π 4 Προφανώς, η ϑεµελιώδης συχνότητα ϑα είναι : ω ΜΚ π, π, 3π π. Άρα π ω sec. Τώρα, το Ϲητούµενο ολοκλήρωµα είναι δύσκολο να υπολογιστεί κατευθείαν στο πεδίο του χρόνου. Οµως η σχέση του Parseval µας λέει ότι : T x tdt X k A A k + k όπου X k οι συντελεστές του εκθετικού αναπτύγµατος και A k X k οι συντελεστές του τριγωνοµετρικού αναπτύγµατος. Επιλέξτε όποιο σας ϐολεύει. Άρα ϑα είναι : T x tdt + k Στο ίδιο αποτέλεσµα καταλήγουµε και µε τον τύπο A + k k X k A k

3 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις 3 που είναι και το Ϲητούµενο. 3. Αναπτύξτε σε Σειρά Fourier το περιοδικό, µε περίοδο, σήµα : {, t < xt t T, t < Σας δίνεται ότι : te αt dt eαt α t α Θα αναπτύξουµε το σήµα κατά την εκθετική σειρά Fourier. Γνωρίζουµε ότι : X T xtdt και X k T xte jkωt dt Είναι χρήσιµο να ϑυµόµαστε ότι f, e ±jπk, και e jπk. Θα είναι λοιπόν : X T xtdt T T T dt + t + t T tdt T T + T T + t T T 3 T T t dt tdt X T xtdt 3 4 8

4 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις 4 Επίσης, X k T xte jkωt dt e jkωt dt + + T e jkωt dt T jπk e jπk + e jkωt jkω e jkω t jkω + T T T jπk e jπk + e jπk e jπk jkω jkω T e jπk T jkω jkω te jkωt dt te jkωt dt e jkω t t jkω jkω e jπk jkω jkω jπk e jπk + jπk e jπk jπk jπk T jkω jkω + e jπk jπk + e jπk T jkω jkω jπk e jπk + jπk e jπk jπk jπk π k + e jπk jπk + e jπk π k e jπk jπk + jπk + jπk π k e jπk jπk + e jπk π k jπk π k e jπk πk e j π π k e jπk. 9 Οπότε τελικά οι συντελεστές Fourier είναι οι : Μπορούµε να γράψουµε τώρα ότι : xt X + X 3 4 και X k πk e j π π k e jπk. k,k k,k k,k X k e jkω t πk e j π e jkω t πk ejkω t π Παρατηρούµε ότι e jπk k, άρα : + k,k k,k k,k πk e j π π k e jπk e jkω t π k e jπk e jkω t π k e jπk e jkω t. Άρα ϑα είναι : xt k,k k,k e jπk πk ejkω t π πk ejkω t π {, k odd, k even k odd k π k ejkω t π k ejk ω t

5 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις 5 Αν ϑέλουµε να προχωρήσουµε ακόµα λίγο και να αναπτύξουµε το σήµα µας σε µονόπλευρη σειρά Fourier τότε ϑα έχουµε : xt k,k k k πk ejkω t π k π k ejk ω t πk coskω t π + 4 π k cosk ω t k πk sinkω t π k cosk ω t k γιατί ξέρουµε ότι για τους συντελεστές του µονόπλευρου αναπτύγµατος σε σειρά Fourier ισχύει ότι : A k X k 4. Εστω ένα πραγµατικό, περιττό και περιοδικό σήµα xt, που αναπτύσσεται σε σειρά Fourier µε συντελεστές X k. είξτε ότι X k X k Το σήµα µας είναι περιττό, άρα ϑα ισχύει xt x t. Είναι : Θέτω u t du dt. Επίσης, u, u. Άρα ϑα είναι που είναι και το Ϲητούµενο. X k T xte jkωt dt T x te jkωt dt X k T xue jkωu du xue jπ kf u du X k 3 5. ίδονται τρια πραγµατικά, περιοδικά σήµατα µε µικρό αριθµό αρµονικών. Οι µη µηδενικοί συντελεστές για k > δίδονται ακολούθως : α x t :, X 5, X 3. ϐ x t :, X j, X j, X 3 j 4, X 4 j 8. Βρείτε τα x i t. Αφού τα σήµατα είναι πραγµατικά, αυτό σηµαίνει ότι υπάρχουν συντελεστές X k και για k <, και για αυτούς ϑα ισχύει ότι X k X k. α Είναι x t X 3 e jπ 3 t + X e jπ t + X e jπ+ t + X3 e jπ+3 t X 3e jπ3 t + X e jπ t + X e jπ t + X3 e jπ3 t e jπ3 t + 5e jπ t + 5e jπ t + e jπ3 t e j6πt + 5e jπt + 5e jπt + e j6πt e j6πt + e j6πt + 5e jπt + e jπt 4 cos6πt + cosπt. 4

6 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις 6 ϐ Είναι x t X 4 e jπ 4 t + X 3 e jπ 3 t + + X3 e jπ+3 t + X4 e jπ+4 t που είναι και τα Ϲητούµενα. X 4e jπ4 t + X 3 e jπ3 t + + X3 e jπ3 t + X4 e jπ4 t j 8 e jπ4 t j 4 e jπ3 t + j e jπ t + j ejπ t + j 4 ejπ3 t j 8 ejπ4 t j 8 e j4πt j 4 e j3πt + j e jπt je jπt + je jπt j ejπt + j 4 ej3πt j 8 ej4πt j 8 e j4πt e j4πt j 4 e j3πt e j3πt + j e jπt e jπt je jπt je jπt j 8 j sin4πt + j 4 j sin3πt j j sinπt + jj sinπt 4 sin4πt sin3πt + sinπt sinπt 5 6. Αναπτύξτε σε Σειρά Fourier το περιοδικό, µε περίοδο, σήµα : { e xt αt, t < T, t < Θα αναπτύξουµε το σήµα κατά την εκθετική σειρά Fourier. Γνωρίζουµε ότι : Θα είναι λοιπόν : X X T xtdt και X k T xte jkωt dt T xtdt T T α e αt α e α X T e αt dt xtdt e α 6 α Επίσης, X k T T α + jkω α + jkω xte jkω t dt T e αt e jkω t dt T e α+jkωt dt α + jkω e α+jkω t e α+jkω e α +jπk α + jkω e α e jπk e αt jkω t dt e α e jπk 7 α + jπk

7 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις 7 Οµως ξέρουµε ότι : e jπk cos πk j sin πk k, γιατί για κάθε k ακέραιο, το cos πk είναι είτε για άρτια k, είτε - για περιττά k, ενώ το sin πk είναι µηδέν για κάθε k. Άρα µπορούµε να γράψουµε τελικά ότι : X k Οπότε τελικά οι συντελεστές Fourier είναι οι : Άρα το σήµα µας ϑα γράφεται ως : xt που είναι και το Ϲητούµενο. k X X k X k e jkω t k e α α + jπk e α και 8 α α + jπk k k e α k e α e jkω t α + jπk 9 7. Βρείτε την περίοδο του σήµατος : xt sin 5πt + φ + sin πt + φ Θα χρειαστεί να γράψουµε το σήµα µας ως άθροισµα απλών ηµιτόνων ή/και συνηµιτόνων, ώστε να µπορούµε να αποφανθούµε για την περιοδικότητά του. Είναι : xt sin 5πt + φ + sin πt + φ j ej5πt e jφ j e j5πt e jφ + j ejπt e jφ j e jπt e jφ 4 ejπt e jφ j j 4 e jπt e jφ 4 ej4πt e jφ j j 4 e j4πt e jφ 4 ejπt e jφ + e jπt e jφ 4 ej4πt e jφ + e j4πt e jφ + 4 cosπt + φ 4 cos4πt + φ cosπt + φ cos4πt + φ cosπ5t + φ cosπt + φ Άρα η ϑεµελιώδης συχνότητα του σήµατος ϑα είναι ω ΜΚ {π, 4π} π. Άρα π ω µπορούσαµε να πούµε ότι ΕΚΠ{ 5, } ΕΚΠ{.,.5} sec. sec. Αλλιώς, ϑα Σηµείωση : αʹ Αν µας Ϲητούσε να δείξουµε ότι το σήµα είναι περιοδικό, και µετά να υπολογίσουµε την περίοδό του, τότε ϑα έπρεπε για να είµαστε απόλυτα σωστοί να πούµε ότι : T T 5 5, που είναι λόγος ακεραίων αριθµών, άρα το σήµα είναι περιοδικό. Επειτα, ϑα υπολογίζαµε την περίοδο µε όποιον τρόπο ϑέλαµε. Ενα καλό αντιπαράδειγµα σχετικά µε αυτή τη σηµείωση, ϑα ήταν το xt + cosπt + φ cos4t φ

8 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις 8 Τότε, ϑα ήταν T T 5 π περιοδικό. π, το οποίο προφανώς ΕΝ είναι λόγος ακεραίων αριθµών, άρα το σήµα ΕΝ είναι ϐʹ Εννοείται πως µε τη διαδικασία που ακολουθήσαµε για να λύσουµε την άσκηση, µπορούµε αµέσως έστω, µε ελάχιστες πράξεις ακόµα : να απαντήσουµε σε ερωτήµατα σχεδίασης ϕάσµατος πλάτους και ϕάσης, όπως και ερωτήµατα σχετικά µε ϑεώρ. Parseval, κατανοµής ενέργειας κλπ. Ο,τι χρειαζόµαστε για να απαντήσουµε σε αυτά υπάρχει έτοιµο στη λύση παραπάνω! 8. Ενα περιοδικό σήµα xt A cosω t µε περίοδο 5 sec ϑέλουµε να καθυστερήσει κατά.5 sec. Πόση ϑα είναι η ϕάση µετατόπισής του ; Εστω t.5sec. Το καθυστερηµένο κατά t σήµα εκφράζεται ως : xt t A cosω t t A cosω t ω t A cosω t + φ Άρα φ ω t π t π.5.π 5 Προφανώς, αν ϑέλαµε να προηγείται κατά t.5sec, ϑα είχαµε φ.π, µε παρόµοιο συλλογισµό µε παραπάνω ϑα Ϲητούσαµε τότε το xt + t. 9. Εστω το σήµα Βρείτε την περίοδό του. xt + k β k cosk + πt + φ k Βλέπουµε ότι για k, k, k 3, παίρνουµε αντίστοιχα συχνότητες ω 4π, ω 6π, ω 3 8π. Προφανώς, όλες αυτές οι συχνότητες είναι πολλαπλάσια µιας ϑεµελιώδους, της ω π. Άρα η περίοδος είναι π f. Προσέξτε, το γεγονός ότι δεν υπάρχει συνηµίτονο µε τέτοια συχνότητα στην παραπάνω αναπαράσταση, δε σηµαίνει κάτι για την περίοδο του σήµατος.. Αναπτύξτε σε σειρά Fourier το σήµα xt sint + sin3t sint α Ποιά είναι η περίοδος του σήµατος ; ϐ Σχεδιάστε το ϕάσµα πλάτους και ϕάσµα ϕάσης του σήµατος. Αναπτύσσουµε το σήµα µας σύµφωνα µε τους τύπους του Euler: xt sint + sin3t sint j ejt e jt + e j3t e j3t j ejt e jt e jt e jt ejt e jt + e j3t e j3t

9 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις 9 Θα χρησιµοποιήσουµε τώρα τις ταυτότητες : a b a ba + b, 3 a 3 b 3 a ba + ab + b 4 για τα εκθετικά του αριθµητή. Θα είναι λοιπόν : xt e jt e jt ejt e jt + e j3t e j3t e jt e jt [ejt e jt + e jt 3 e jt 3 ] e jt e jt [ejt e jt e jt + e jt + e jt e jt e jt + + e jt ] e jt e jt ejt e jt e jt + e jt + + e jt + e jt e jt + e jt + + e jt + e jt + cost + cost 5 α Η περίοδος του σήµατος ϑα είναι ΕΚΠ{π, π} π. ϐ Το ϕάσµα πλάτους και ϕάσης ϕαίνονται στα Σχήµατα. αʹ Φάσµα πλάτους ϐʹ Φάσµα ϕάσης Σχήµα : Φάσµα πλάτους και ϕάσης Άσκησης. Αναπτύξτε σε σειρά Fourier το περιοδικό σήµα το οποίο έχει περίοδο. xt sinπf t 6

10 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις Είναι X T xtdt T π π sin dt T πt π cos π + π πt dt cos π. 7 Επίσης X k T xte jkωt dt T π T π cos πt πt cos e jkω t π + π + π jkω π jk π jk π jk π π + 4k T π + T 4k sin π + 4k X k e jπkf t dt + T π T cos πt sin e jkωt dt πt cos e jkω t dt πt e jkω t dt πt cos e jkωt dt T T πt e kkω sin t dt π πt sin e jkω t T + jk T π T πt sin e jkωt dt πt e jkω t dt jπk T πt sin e jkωt dt X k 4k X k π X k 4k π X k π 4k 8

11 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις Άρα ϑα είναι xt π + π + π + 4 π k,k k π 4k ejkω t 4 π 4k coskω t k 4k coskω t 9. είξτε ότι για πραγµατικά σήµατα ισχύει : Αρτιο σήµα Χ Αρτιο σήµα Αρτιο σήµα Περιττό σήµα Χ Περιττό σήµα Αρτιο σήµα Αρτιο σήµα Χ Περιττό σήµα Περιττό σήµα { Αν xt άρτιο xt x t Αν yt άρτιο yt y t που δηλώνει ότι το zt είναι άρτιο. { Αν xt περιττό xt x t Αν yt περιττό yt y t που δηλώνει ότι το zt είναι άρτιο. { Αν xt άρτιο xt x t Αν yt περιττό yt y t που δηλώνει ότι το zt είναι περιττό. } xtyt x ty t zt z t 3 } xtyt x ty t zt z t 3 } xtyt x ty t zt z t 3 3. Υπολογίστε το ολοκλήρωµα π sin tdt χρησιµοποιώντας το ϑεώρηµα του Parseval. Το ϑεώρηµα του Parseval συνοψίζεται στην εξίσωση T x tdt X + k X k A + η οποία περιλαµβάνει και τη µονόπλευρη και τη δίπλευρη εκθετική αναπαράσταση της σειράς Fourier. Αναλύουµε το σήµα σε σειρά Fourier: k A k e xt sin 5 jt e jt 5 e jt e jt 5 t j 3j 33

12 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις Χρησιµοποιώντας τον τύπο του Newton, η σχέση 33 γράφεται : a + b n a n + na n b + nn a n b + + nab n + b n 34! xt 3j ej5t 5e j4t e jt + e j3t e jt e jt e j3t + 5e jt e j4t e j5t 3j ej5t e j5t 5e j3t + 5e j3t + e jt e jt j sin5t j sin3t + j sint 3j 6 sin5t 5 6 sin3t sint Οπότε σύµφωνα µε τα παραπάνω π dt sin 5 6 π dt t π 5 sin 5 6 t π 5 35 που είναι και το Ϲητούµενο. 4. ίνεται το παρακάτω περιοδικό σήµα xt: xt cos πt + π + cos π5t π sin π6t + π αʹ Βρείτε την περίοδο,, του σήµατος και σχεδιάστε το ϕάσµα πλάτους και ϕάσης. ϐʹ Υπολογίστε το yt t xτdτ γʹ Υπολογίστε την ισχύ του σήµατος yt αʹ Το σήµα έχει συχνότητες, 5, 6Hz, άρα ϑεµελιώδη συχνότητα f ΜΚ {, 5, 6} Hz. Οπότε η περίοδος ϑα είναι /.sec. Χρησιµοποιώντας τις σχέσεις του Euler, το σήµα γράφεται ως : xt e jπt e jπ/3 + e jπt e jπ/3 + ejπ5t e jπ/8 + e jπ5t e jπ/8 j ejπ6t e jπ/5 + j e jπ6t e jπ/5 e jπt e jπ/3 + e jπt e jπ/3 + ejπ5t e jπ/8 + e jπ5t e jπ/8 + + ejπ/ e jπ6t e jπ/5 + e jπ/ e jπ6t e jπ/5 e jπt e jπ/3 + e jπt e jπ/3 + ejπ5t e jπ/8 + e jπ5t e jπ/8 + + ejπ6t e j9π/ + e jπ6t e j9π/ Το ϕάσµα πλάτους και ϕάσης ϕαίνεται στο σχήµα 3. ϐʹ Γνωρίζουµε ότι t yt xτdτ Y k X k jkω

13 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις 3 αʹ Φάσµα πλάτους ϐʹ Φάσµα ϕάσης Σχήµα 3: Φάσµα πλάτους και ϕάσης Άσκησης 4 και άρα ϑα έχουµε yt jπ ejπt e jπ/3 + jπ e jπt e jπ/3 + jπ5 ejπ5t e jπ/8 + jπ5 e jπ5t e jπ/8 + jπ6 ejπ6t e j9π/ + jπ6 e jπ6t e j9π/ π ejπt e jπ/3 e jπ/ + π e jπt e jπ/3 e jπ/ + π5 ejπ5t e jπ/8 e jπ/ + π5 e jπ5t e jπ/8 e jπ/ + π6 ejπ6t e j9π/ e jπ/ + π6 e jπ6t e j9π/ e jπ/ π ejπt e j5π/6 + π e jπt e j5π/6 + π5 ejπ5t e j3π/8 + π5 e jπ5t e j3π/8 + π6 ejπ6t e j4π/ + π6 e jπ6t e j4π/ cosπt + 5π/6 + cosπ5t + 3π/8 + cosπ6t + 4π/ π π5 π6 γʹ Η συνολική ισχύς είναι το άθροισµα των επιµέρους ισχύων των ηµιτόνων, αφού αυτά έχουν διαφορετικές µεταξύ τους συχνότητες, άρα P y 3 k Pk π + π + π Στο ίδιο αποτέλεσµα ϑα καταλήγαµε αν αθροίζαµε τα τετράγωνα των µέτρων των εκθετικών συντελεστών Fourier, Y k. 5. Εστω το περιοδικό σήµα xt που ορίζεται σε µια περίοδο / t / ως : xt {, t tc, t c < t /

14 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - 5-6/Λυµένες Ασκήσεις 4 µε tc < /. Αναπτύξτε το σε σειρά Fourier, για t c /4 και t c /. Θα αναπτύξουµε το περιοδικό σήµα σε σειρά Fourier χωρίς αντικατάσταση της t c, η οποία ϑα γίνει στο τέλος. Είναι : X T xtdt tc dt t tc t c + t c t c t c t c και Για t c 4, έχουµε Για t c, έχουµε X k T xte jπkft dt tc e jπkft dt t c e jπkf t tc jπkf t c e jπkf t c e jπkf t c jπk jπk j sinπkf t c sinπkf t c πk X /4 X k sinπkf /4 sinπk/ πk πk sinck/ X / 5 X k sinπkf / sinπk/5 πk πk 5 sinck/5

x(t) = sin 2 (5πt) cos(22πt) = x 2 (t)dt

x(t) = sin 2 (5πt) cos(22πt) = x 2 (t)dt ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 6-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Εστω το σήµα xt

Διαβάστε περισσότερα

0 2j e jπt e j2πkt dt (3)

0 2j e jπt e j2πkt dt (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τρίτη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης :

Διαβάστε περισσότερα

= R{(a + jb)e j2π 3 4 t } (6) a + jb = j2.707 = e j π (7) A = (9) f 0 = 3 4

= R{(a + jb)e j2π 3 4 t } (6) a + jb = j2.707 = e j π (7) A = (9) f 0 = 3 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

X 1 = X1 = 1 (1) X 3 = X3 = 1 (2) X k e j2πk 1 2 t = k

X 1 = X1 = 1 (1) X 3 = X3 = 1 (2) X k e j2πk 1 2 t = k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 6-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τέταρτης Σειράς Ασκήσεων Ασκηση (i) Είναι T

Διαβάστε περισσότερα

= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού

= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.5/10.0 Θέµα 1ο - 5

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 08-9 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τρίτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 8//09

Διαβάστε περισσότερα

x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect

x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες - Ηµεροµηνία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Μετασχηµατισµός Laplace. Εστω

Διαβάστε περισσότερα

c n x n (t)) f(t) c n x n (t)dt + θ f 2 (t)dt = 0 f(t)c i x i (t)dt =

c n x n (t)) f(t) c n x n (t)dt + θ f 2 (t)dt = 0 f(t)c i x i (t)dt = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Ειστήµης Υολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση. Προφανώς και θee

Διαβάστε περισσότερα

= 1 E x. f(t)x n (t)dt, n = 1, 2,, N (2) = 0, i = 1, 2,, N (3) E e = e 2 (t)dt (4) e(t) = f(t) c n x n (t) (5) f(t) cx(t) = 4 sin(t) (7)

= 1 E x. f(t)x n (t)dt, n = 1, 2,, N (2) = 0, i = 1, 2,, N (3) E e = e 2 (t)dt (4) e(t) = f(t) c n x n (t) (5) f(t) cx(t) = 4 sin(t) (7) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 25-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : /3/26

Διαβάστε περισσότερα

P x = X k 2 (2) = = p = 78% (5)

P x = X k 2 (2) = = p = 78% (5) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 08-9 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εξέταση Προόδου - Λύσεις Θέµα - Βαθµός : 5 Ενα πραγµατικό

Διαβάστε περισσότερα

z(t) = 5.05e j(2πf 0t 0.209) sin 3 (5t)dt = 4 15 x(t) = 4 + cos(2π100t + π/3) cos(2π250t π/7) + 2 sin(2π300t π/4) (6)

z(t) = 5.05e j(2πf 0t 0.209) sin 3 (5t)dt = 4 15 x(t) = 4 + cos(2π100t + π/3) cos(2π250t π/7) + 2 sin(2π300t π/4) (6) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 18/2/216

Διαβάστε περισσότερα

x(t) = cos(2π100t + π/3) sin(2π250t + π/4) (1)

x(t) = cos(2π100t + π/3) sin(2π250t + π/4) (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 016-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 16/3/017

Διαβάστε περισσότερα

y(t) = x(t) + e x(2 t)

y(t) = x(t) + e x(2 t) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΞΕΤΑΣΗ ΠΡΟΟ ΟΥ - ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ιάρκεια : 3 ώρες

Διαβάστε περισσότερα

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν

Διαβάστε περισσότερα

x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3)

x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/0.0 Θέµα ο - Περιοδικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - Ενδεικτικές Λύσεις ιάρκεια : 3 ώρες Ρήτρα τελικού :

Διαβάστε περισσότερα

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2)

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 15/16 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier

Διαβάστε περισσότερα

x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) )

x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/10.0

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Μετασχ. Laplace και Συστήµατα

Διαβάστε περισσότερα

bx 2 (t). Για είσοδο ax 1(t) + bx 2 (t), η έξοδος είναι x(t t 0 ) και y(t t 0) = t t 0 x(t) ax 1 (t 1) + bx 2 (t 1) sin ax 1 (t)+

bx 2 (t). Για είσοδο ax 1(t) + bx 2 (t), η έξοδος είναι x(t t 0 ) και y(t t 0) = t t 0 x(t) ax 1 (t 1) + bx 2 (t 1) sin ax 1 (t)+ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Ασκηση. αʹ Γραµµικό: Είναι y = y = Τρίτη Σειρά Ασκήσεων

Διαβάστε περισσότερα

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω

Διαβάστε περισσότερα

T 2 Tsinc2( ft e j2πf3t

T 2 Tsinc2( ft e j2πf3t ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Μετασχηµατισµός Fourier. Απλός

Διαβάστε περισσότερα

= t2 t T 2T 3t + 9T, για t < 3T και t 2T 2T t < 3T (Σχήµα

= t2 t T 2T 3t + 9T, για t < 3T και t 2T 2T t < 3T (Σχήµα ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 016-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Συνέλιξη και Συστήµατα Σε αυτό

Διαβάστε περισσότερα

y(t) = x(t) + e x(2 t)

y(t) = x(t) + e x(2 t) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2015-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΞΕΤΑΣΗ ΠΡΟΟ ΟΥ - Σχόλια ιάρκεια : 3 ώρες Ηµεροµηνία

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό

Διαβάστε περισσότερα

dx T0 (t) 2 T rect ( t sinc = 1 2 sinc ( k

dx T0 (t) 2 T rect ( t sinc = 1 2 sinc ( k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Επαναληπτικά Θέµατα. Βρείτε το

Διαβάστε περισσότερα

e (4+j2πf)t dt (5) (0 1)

e (4+j2πf)t dt (5) (0 1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Ειστήµης Υολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

u = x t t = t 0 = T = x u = = s t = = s u = u bat 1 + T c = 343 m/s 273

u = x t t = t 0 = T = x u = = s t = = s u = u bat 1 + T c = 343 m/s 273 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-: Φυσική Ι Χειµερινό Εξάµηνο 5 ιδάσκων : Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : //5 Ηµεροµηνία Παράδοσης : 7//5 Σηµείωση : Επιτρέπεται

Διαβάστε περισσότερα

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2017-18 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης :

Διαβάστε περισσότερα

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

x[n]z n = ) nu[n]z n z 1) n z 1 (5) ( 1 z(2z 1 1]z n +

x[n]z n = ) nu[n]z n z 1) n z 1 (5) ( 1 z(2z 1 1]z n + ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 6 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης : //6 Ηµεροµηνία

Διαβάστε περισσότερα

e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)

e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς-Λύσεις 4ης Σειράς Ασκήσεων 7/5/ Λύσεις 4ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι

Διαβάστε περισσότερα

e jθ = cos θ j sin θ(1.2)

e jθ = cos θ j sin θ(1.2) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - Λύσεις ης Σειράς Ασκήσεων Ασκηση. Σχέσεις του Euler

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εβδοµη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/4/206

Διαβάστε περισσότερα

y = u i t 1 2 gt2 y = m y = 0.2 m

y = u i t 1 2 gt2 y = m y = 0.2 m ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2018 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. (αʹ) Το χαρτονόµισµα ξεκινά από ηρεµία, u i = 0, και

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ Άσκηση 1 Προσδιορίστε τη Σειρά Fourier (δηλαδή τους συντελεστές πλάτους A n και φάσης φ n ) του παρακάτω

Διαβάστε περισσότερα

400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6)

400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Θεωρούµε ως χρονικό σηµείο αναφοράς τη στιγµή που

Διαβάστε περισσότερα

X k e j2πkf0t = x(t) = x(t)e j2πkf0t dt (6.2)

X k e j2πkf0t = x(t) = x(t)e j2πkf0t dt (6.2) Κεφάλαιο 6 Ο Μετασχηματισμός Fourier 6. Εισαγωγή στο Μετασχ. Fourier Ο μετασχ. Fourier ορίζεται εύκολα ως η επέκταση των σειρών Fourier, όταν η περίοδος του σήματος τείνει στο άπειρο, όταν δηλαδή το σήμα

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΣΧΟΛΗ Ν. ΟΚΙΜΩΝ ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ Σ.Α.Ε. ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΕΚΕΜΒΡΙΟΣ 3 ) Αρχικό σήµα ( ) Στο παρακάτω σχήµα φαίνεται ένα περιοδικό σήµα ( ), το οποίο έχει ληφθεί από

Διαβάστε περισσότερα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1) Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Εκθετική Ορισμοί & Ιδιότητες Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

(α) (β) (β) Γαλλική λέξη Magnifique. Σήμα φωνής στο χώρο της συχνότητας. Σήμα φωνής με θόρυβο στο χώρο της συχνότητας

(α) (β) (β) Γαλλική λέξη Magnifique. Σήμα φωνής στο χώρο της συχνότητας. Σήμα φωνής με θόρυβο στο χώρο της συχνότητας Κεφάλαιο 5 Ανάλυση Σημάτων στο Πεδίο της Συχνότητας 5. Εισαγωγή Ως τώρα, η όποια ανάλυση συζητήσαμε για σήματα περιελάμβανε αποκλειστικά το χώρο του χρόνου. Σε αυτό το κεφάλαιο, θα γνωρίσουμε μια άλλη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων - Bonus Ασκήσεις Ηµεροµηνία

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα» Εξεταστική Ιανουαρίου 27 Μάθηµα: «Σήµατα και Συστήµατα» Θέµα 1 ο (3%) Έστω δύο διακριτά σήµατα: x(n) = {1,,, -1} και h(n) = {1,, 1} µε το πρώτο δείγµα να αντιστοιχεί σε n= και για τα δύο. Υπολογίστε τα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Σειρές Fourier: Προσέγγιση Οι Σειρές Fourier μπορούν να αναπαραστήσουν μια πολύ μεγάλη κλάση περιοδικών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

... ονοµάζεται ακολουθία µερικών αθροισµάτων. Το όριό της, καθώς το n τείνει στο άπειρο, n n n 1

... ονοµάζεται ακολουθία µερικών αθροισµάτων. Το όριό της, καθώς το n τείνει στο άπειρο, n n n 1 ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Στην ενότητα αυτή παρουσιάζουµε τα βασικότερα στοιχεία που είναι απαραίτητα για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους Έτσι, δίνονται συστηµατικά οι

Διαβάστε περισσότερα

2.1 Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα

2.1 Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα Σειρές Fourier. Σειρές Fourier. Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα Μία συνάρτηση f() είναι περιοδική με περίοδο όταν ισχύει f(+)=f(). Η ελάχιστη δυνατή περίοδος λέγεται και θεμελιώδης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uo.gr/abelga/numbertheory/nt2016/nt2016.html Πέµπτη 7 εκεµβρίου 2016 Ασκηση 1. Για κάθε

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 3 Νοεµβρίου 2016 Ασκηση 1. Αφού ϐρείτε

Διαβάστε περισσότερα

(α) (β) (β) Γαλλική λέξη Magnifique. Σήμα φωνής στο χώρο της συχνότητας. Σήμα φωνής με θόρυβο στο χώρο της συχνότητας

(α) (β) (β) Γαλλική λέξη Magnifique. Σήμα φωνής στο χώρο της συχνότητας. Σήμα φωνής με θόρυβο στο χώρο της συχνότητας Κεφάλαιο 4 Ανάλυση Σημάτων και Συστημάτων στο Πεδίο της Συχνότητας Ως τώρα, η όποια ανάλυση συζητήσαμε για σήματα και συστήματα περιελάμβανε αποκλειστικά το χώρο του χρόνου. Σε αυτό το κεφάλαιο, θα γνωρίσουμε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Όνοµα: Λιβαθινός Νικόλαος 2291

Όνοµα: Λιβαθινός Νικόλαος 2291 ΠΡΩΤΗ ΆΣΚΗΣΗ ΣΤΗΝ ΚΡΥΠΤΟΓΡΑΦΙΑ Όνοµα: Λιβαθινός Νικόλαος 9 Ηµεροµηνία: 3/5/003 Άσκηση ώστε όλες τις υποοµάδες των Z και Ζ 5 * Προκειµένου να δώσουµε τις υποοµάδες θα πρέπει αρχικά να ορίσουµε τα σύνολα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Im{z} x. Re{z} -y. R{z} = x (1.1) I{z} = y (1.2) z = x jy (1.3)

Im{z} x. Re{z} -y. R{z} = x (1.1) I{z} = y (1.2) z = x jy (1.3) Κεφάλαιο Μαθηματικό Υπόβαθρο. Εισαγωγή Η μελέτη των σημάτων και των συστημάτων που θα παρουσιαστούν στη συνέχεια βασίζεται κατά κύριο λόγο σε βασικές γνώσεις μιγαδικής ανάλυσης. Εν γένει, η θεωρία σημάτων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/aeligia/linearalgerai/lai07/lai07html Παρασκευή Νοεµβρίου 07 Ασκηση Αν

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των

Διαβάστε περισσότερα

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/17 Πρόβλημα 1 (βιβλίο σελίδα 93) Να αποδειχθεί ότι: α) Κάθε

Διαβάστε περισσότερα

y[n] ay[n 1] = x[n] + βx[n 1] (6)

y[n] ay[n 1] = x[n] + βx[n 1] (6) Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το

Διαβάστε περισσότερα

Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ. xt A t A t A t t

Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ. xt A t A t A t t Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ Θεωρήστε ένα σήµα συνεχούς χρόνου το οποίο είναι άθροισµα συνηµιτονικών όρων της µορφής () = cos( ω + ϕ ) + cos

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uo.gr/abelga/numbertheory/nt2014/nt2014.html https://stes.google.com/ste/maths4edu/home/14

Διαβάστε περισσότερα

Σ F x = 0 T 1x + T 2x = 0 = T 1 cos(θ 1 ) = T 2 cos(θ 2 ) (2) F g cos(θ 2 ) (sin(θ 1 ) cos(θ 2 ) + cos(θ 1 ) sin(θ 2 )) = F g cos(θ 2 ) T 1 =

Σ F x = 0 T 1x + T 2x = 0 = T 1 cos(θ 1 ) = T 2 cos(θ 2 ) (2) F g cos(θ 2 ) (sin(θ 1 ) cos(θ 2 ) + cos(θ 1 ) sin(θ 2 )) = F g cos(θ 2 ) T 1 = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2015 ιδάσκων : Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Σχεδιάζουµε τις δυνάµεις επάνω στο σάκο όπως στο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 23 Νεµβρίου 2016 Ασκηση 1. Αν N, να

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να

Διαβάστε περισσότερα

Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου.

Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου. Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου. Ανδρέας Ζούπας 22 Ιανουαρίου 203 Οι λύσεις απλώς προτείνονται και σαφώς οποιαδήποτε σωστή λύση είναι αποδεκτή! Θέµα-

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 15 Μαΐου 2013 Ασκηση 1. Εστω n 3 ακέραιος.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα Κεφάλαιο 8 Το αόριστο ολοκλήρωµα 8 Θεµελίωση έννοιας αορίστου ολοκληρώµατος Στο 7 0 Κεφάλαιο ορίσαµε την έννοια της αντιπαραγώγου µιας συνάρτησης f σ ένα κλειστό και φραγµένο διάστηµα Γενικότερα Ορισµός

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 7 Φεβρουαρίου ΘΕΜΑ ον ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ :

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις)

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (x+)(x 2 +) (ϐ) Να υπολογισθεί το ολοκλήρωµα f(x) f(x)+f(x+) για κάθε

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/0/206 Ηµεροµηνία

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier 2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια του μετασχηματισμού Fourier συνίσταται στο ότι μία κυματομορφή

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 20 Οκτωβρίου 2017

Διαβάστε περισσότερα