Κεφάλαιο 3. x 300 = = = Άσκηση 3.1

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 3. x 300 = = = Άσκηση 3.1"

Transcript

1 Άσκηση. Κεφάλαιο Έστω χ η πόσοτητα ενός αγαθού που παράγει μια επιχείρηση. Η κάθε μονάδα αυτής της ποσότητας μπορεί να πουλήθει στην τιμή που δίνεται από τη συνάρτηση P = 00. Το συνολικό κόστος για την παραγωγή χ μονάδων του αγαθού είναι 00 TC( ) = ) Να βρείτε τα κέρδη της επιχείρησης όταν παράγει: α) 0 μονάδες, β) 000 μονάδες, γ) 000, δ) 000, ε) 4000 και στ) 5000 μονάδες. ) Να κατασκευάστε τη γραφική παράσταση των κερδών της επιχείρηση που προκύπτει για τα παραπάνω επίπεδα παραγωγής. ) Να βρείτε το επίπεδο παραγωγής που μεγιστοποιεί τα κέρδη της επιχείρησης; Να διασταυρώσετε την αλγεβρική λύση των παραπάνω ερωτημάτων με τη βοήθεια του ecel solver. ) Κέρδος επιχείρησης: π = P ( ) TC ( ) π = (00 ) ( ) π = Επομένως, για: = 0, π = 00 = 000, π = = 000, π = = 000, π = 9800 = 4000, π = = 5000, π = ) Η γραφική παράσταση κατασκευάζεται βάσει των παραπάνω συνδυασμών παραγωγής και κέρδους. ) Για να βρούμε το επίπεδο παραγωγής που μεγιστοποιεί τα κέρδη της επιχείρησης, θέτουμε την πρώτη παράγωγο της συνάρτησης κέρδους ως προς το επίπεδο παραγωγής ίση με το μήδεν, και λύνουμε ως προς το επίπεδο παραγωγής (Συνθήκη πρώτης τάξης). π = = = 75 *

2 Για να βεβαιωθούμε ότι η λύση που βρήκαμε αντιστοιχεί στο μέγιστο επίπεδο παραγωγής και όχι στο ελάχιστο, ελέγχουμε ότι η δεύτερη παράγωγος είναι αρνητική (Συνθήκη δεύτερης τάξης). (80 ) π 75 = 0 = < 0 75 Άσκηση.8 Έστω μία επιχείρηση του παράγει δύο αγαθά και z. Συμβολίζουμε με και z τον αριθμό των μονάδων που παράγει η επιχείρηση από το κάθε αγαθό. Η αντίστροφη συνάρτηση ζήτησης για τα αγαθά και z είναι αντίστοιχα: z z P = 00 και P z = Η συνάρτηση συνολικού κόστους της επιχείρησης είναι: ( ) + z TC(, z) = z ) Να βρείτε τα επίπεδα παραγωγής του κάθε αγαθού που μεγιστοποιούν τα κέρδη της επιχείρησης και να τα διασταυρώσετε με τη βοήθεια του ecel solver. ) Αν η επιχείρηση έπρεπε να παράγει την ίδια ποσότητα από κάθε αγαθό, να βρείτε πόσες μονάδες από κάθε προϊον θα παρήγαγε έτσι ώστε να μεγιστοποιεί τα κέρδη της. Διασταυρώστε με τη βοήθεια του ecel solver. ) Τι παρατηρείτε σχετικά με την ποσότητα κάθε αγαθού που παράγει η επιχείρηση στις παραπάνω περιπτώσεις και τι για το συνολικό προϊον; ) Κέρδος επιχείρησης: π = P + P TC(, ) z z z ( ) + z z z π = (00 ) + (80 ) z ( z + ) z z π = z Χρησιμοποιώντας τις συνθήκες πρώτης τάξης, έχουμε: π = = z * π = = * 0 z.6

3 ) Αν η επιχείρηση έπρεπε να παράγει την ίδια ποσότητα από κάθε αγαθό, τότε θα πρέπει να θέσουμε στις αρχικές εξισώσεις = z =. Επομένως, P P z = = TC( ) = Το κέρδος της επιχείρησης είναι: 6 π = P + P z TC( ) π = Η συνθήκη πρώτης τάξης μας δίνει το επίπεδο παραγωγής που μεγιστοποιεί τα κέρδη της επιχείρησης: π 6 = 0 = 600 * ) Παρατηρούμε ότι ο περιορισμός = z = μειώνει τη συνολική παραγωγή της επιχείρησης καθώς οι πόροι δεν χρησιμοποιούνται με τον πλέον αποδοτικό τρόπο για την παραγωγή των δύο αγαθών που μεγιστοποιεί το συνολικό κέρδος της επιχείρησης. Άσκηση 4. Κεφάλαιο 4 Δίνεται η συνάρτηση ζήτησης Dp ( ) = 000( p). ) Ποια είναι η αντίστροφη συνάρτηση ζήτησης; ) Ποια είναι η κλίση της αντίστροφης συνάρτησης ζήτησης και σε ποια σημεία τέμνει τους δύο άξονες; Να δείξετε διαγραμματικά την αντίστροφη συνάρτηση ζήτησης. ) Να υπολογίσετε την ελαστικότητα ζήτησης όταν η τιμή αυξάνεται από 8 σε 8.5 και όταν η ποσότητα αυξάνεται από 4000 μονάδες σε 4500 μονάδες. ) Για να βρούμε την αντίστροφη συνάρτηση ζήτησης, λύνουμε την συνάρτηση ζήτησης D( p ) ως προς p.

4 Dp ( ) = 000( p) 000 p = = ) Η παραπάνω συνάρτηση είναι της μορφής =A- b και επομένως η κλίση της αντίστροφη συνάρτηση ζήτησης είναι. 000 Για να βρούμε σε ποιο σημείο τέμνει τον άξονα των τιμών, θέτουμε = 0. Επομένως, έχουμε p =. Για να βρούμε σε ποιο σημείο τέμνει τον άξονα των ποσοτήτων, θέτουμε p = 0. Επομένως, έχουμε = 000. Εφόσον η αντίστροφη συνάρτηση ζήτησης είναι γραμμικής μορφής, το ευθύγραμμο τμήμα που ενώνει τα σημεία (000,0) και (0,) απεικονίζει τη διαγραμματική της μορφή. ) Η ελαστικότητα ζήτησης δίνεται από τη σχέση: % Δq Δq p ε = = Δp q Επομένως, όταν η τιμή αυξάνεται από 8 σε 8.5, η ζητούμενη ποσότητα μειώνεται από Dp= ( ) 000( 8) = 4000 σε Dp= ( ) 000( 8.5) = 500 μονάδες. Επομένως, Δqp ε = = = Δpq Επίσης, όταν η ζητούμενη ποσότητα αυξάνεται από 4000 σε 4500 μονάδες, η τιμή μειώνεται από p = = 8 σε p = = 7.5. Επομένως, Δqp ε = = = Δpq Άσκηση 4.4 Μία επιχείρηση πουλάει το προϊόν της στη τιμή των 8 ανά μονάδα και σε αυτή την τιμή πουλάει 0000 μονάδες μηνιαίως. Τα εμπειρικά δεδομένα που έχει συλλέξει η επιχείρηση καταλήγουν στο συμπέρασμα ότι για μικρές μεταβολές της τιμής, μία μεταβολή της τιμής κατά % οδηγεί στην αντίθετη μεταβολή στην ποσότητα που πουλάει κατά %. ) Πως θα επηρεάζονταν τα έσοδα της επιχείρησης αν μείωνε την τιμή του αγαθού κατά 0.0 ; ) Πως θα επηρεάζονταν τα έσοδα της επιχείρησης αν μείωνε την ποσότητα του αγαθού που πουλάει κατά 50 μονάδες; ) Θα συμβουλεύατε την επιχείρηση να αυξήσει ή να μειώσει την τιμή του αγαθού για να αυξήσει τα έσοδά της; Γιατί;

5 ) Με βάση το γεγονός ότι για μικρές μεταβολές της τιμής, μία μεταβολή της τιμής κατά % οδηγεί στην αντίθετη μεταβολή στην ποσότητα κατά %, έχουμε: % Δq % ε = = = % Επομένως, μια μείωση της τιμής κατά 0.0 αντιστοιχεί σε μια ποσοστιαία μείωση Δp 0. της τάξης του % Δ p = = = 0.05=.5%. Άρα, με βάση τον τύπο της P αρχ 8 ελαστικότητας, η ποσοστιαία αύξηση στη ζητούμενη ποσότητα είναι: % Δq ε = = % Δ q = (.5) =.75% Η τελική ποσότητα είναι q τελ = 0000*(.075) = 075 μονάδες. Επομένως, τα έσοδα που αντιστοιχούν στην μείωση της τιμής ειναι p q = 7.9*075 = ενώ τα αρχικά έσοδα ήταν τελ τελ ) Αντιθέτως, αν η επιχείρηση μείωνε την ποσότητα του αγαθού κατά 50 μονάδες, τότε θα είχαμε μια ποσοστιαία μεταβολή της τάξης του Δq 50 % Δ q = = = 0.05=.5% που αντιστοιχεί σε μια ποσοστιαία αύξηση της 0000 q αρχ % Δq.5 τιμής κατά ε = = % Δ p = = 0.5%. Η τελική τιμή είναι q τελ = 8*(.005) = Επομένως, τα έσοδα που αντιστοιχούν στην μείωση της τιμής ειναι p q = 8.04*9850 = 7994 ενώ τα αρχικά έσοδα ήταν τελ τελ ) Τα έσοδα μιας επιχείρησεις δίνονται από το γινόμενο της τιμής επί της ποσότητας. Καθώς όμως υπάρχει μια αρνητική σχέση μεταξύ τιμής και ποσότητας, είναι αμφίβολο αν μια αύξηση της τιμής, που θα οδηγήσει σε μια μείωση της ποσότητας, θα είναι προς όφελος της επιχείρησης. Η κρίσιμη παράμετρος που επηρεάζει τα έσοδα της επιχείρησης είναι η ελαστικότητα ζήτησης. Θυμηθείτε ότι η ελαστικότητα ζήτησης ισούται με την ποσοστιαία μεταβολή στην ποσότητα προς την ποσοστιαία μεταβολή στην τιμή. Επομένως: % Δq Αν η ζήτηση είναι ανελαστική, δηλαδή αν ε < < % Δ q<, η ποσοστιαία μεταβολή στην τιμή είναι μεγαλύτερη από την ποσοστιαία μεταβολή στην ποσότητα που προκαλείται. Αυτό σημαίνει ότι τα έσοδα της επιχείρησης αυξάνονται όταν αυξηθεί η τιμή, καθώς η αύξηση στα έσοδα από την αύξηση της τιμής υπερκαλύπτει τη μείωση στα έσοδα από την μείωση στην ποσότητα που πωλείται.

6 % Δq Αν αντίθετα η ζήτηση είναι ελαστική, δηλαδή αν ε > > % Δ q>, τα έσοδα της επιχείρησης αυξάνονται όταν μειωθεί η τιμή, καθώς η αύξηση στα έσοδα από την αύξηση της ποσότητας που πωλείται υπερκαλύπτει τη μείωση στα έσοδα από την μείωση στην τιμή. Άσκηση 4.6 Μία αυτοκινητοβιομηχανία μεγιστοποιεί το κέρδος της πουλώντας.6 εκατομμύρια αυτοκίνητα μιας συγκεκριμένης κατηγορίας (π.χ πόλης) στην τιμή των 0 χιλιάδων Ευρώ έκαστος. Αν η ελαστικότητα ζήτησης για τα συγκεκριμένα αυτοκίνητα είναι - 4, να υπολογίσετε το οριακό κόστος παραγωγής των αυτοκινήτων της συγκεκριμένης κατηγορίας για αυτήν την αυτοκινητοβιομηχανία. Η επιχείρηση μεγιστοποιεί το κέρδος της πουλώντας.6 εκατομμύρια αυτοκίνητα μιας συγκεκριμένης κατηγορίας (π.χ πόλης) στην τιμή των 0 χιλιάδων Ευρώ έκαστος. Αυτό σημαίνει ότι για αυτό το συνδυασμό τιμής- ποσότητας, το οριακό έσοδο της επιχείρησης ισούται με το οριακό της κόστος. Άρα: ΔP ΔP MR = MC P + Q = MC P MC = Q ΔQ ΔQ P MC ΔP Q P ΔQ P = = P ΔQ P P MC ΔP Q P P P = 4 MC = P = = 0000 P MC MC = 5000 Άσκηση 4.8 Υποθέτουμε ότι μία επιχείρηση έχει ένα σταθερό οριακό κόστος παραγωγής, το οποίο το συμβολίζουμε με c. Η επιχείρηση αυτή ορίζει ένα περιθώριο κέρδους, δηλαδή θέτει την τιμή για τα προϊόντα της ίση με το οριακό κόστος παραγωγής τους προσαυξημένο κατά ένα ποσοστό. Αν το περιθώριο κέρδους που μεγιστοποιεί τα κέρδη της είναι ίσο με 0%, δηλαδή P=.c, να βρείτε την ελαστικότητα ζήτησης για τα προϊόντα της επιχείρησης. Σύμφωνα με την ανάλυση που χρησιμοποιήσαμε για την επίλυση της άσκησης 4.6, P MC ΔP Q έχουμε: = =. Άρα,. c c 0. c. = = ε = = 6. P ΔQ P ε.c ε.c ε 0.

7 ΔQP Επομένως, η ελαστικότητα ζήτησης είναι - 6 αφού ε =. Δ PQ Άσκηση 5. Κεφάλαιο 5 Υποθέτουμε ότι τρεις καταναλωτές αγοράζουν έναν συνδυασμό (bundle) από b φρατζόλες ψωμί, c κιλά τυρί και s κιλά σαλάμι. Η συνάρτηση χρησιμότητας του κάθε καταναλωτή δίνεται από: U ( b, c, s) = ln( b) + 0.5ln(c) + 0.5ln( s) 4 U( b, c, s) = b c s U ( b, c, s) = b+ c+ ln( s) Να βρείτε ποιον από τους ακόλουθους συνδυασμούς αγαθών θα επιλεξει ο κάθε καταναλωτής: Bundle : ( bcs,, ) = (4,0.5,0.5) Bundle : ( bcs,, ) = (,.5,0.5) Bundle : ( bcs,, ) = (,0.5,.5) Αντικαθιστούμε τις τιμές τως b, c και s του κάθε bundle στις συναρτήσεις χρησιμότητας του κάθε καταναλωτή. Η χρησιμότητα του καταναλωτή, όταν καταναλώνει το bundle, και, αντίστοιχα, είναι: U ( b, c, s) = ln( b) + 0.5ln(c) + 0.5ln( s) U (4,0.5,0.5) = ln( + 0.5ln(0.5) + 0.5ln(0.5) = U (,.5,0.5) = ln() + 0.5ln(.5) + 0.5ln(0.5) = U (,0.5,.5) = ln() + 0.5ln(0.5) + 0.5ln(.5) = 0.57 Ακολουθώντας την ίδια διαδικασία για τον καταναλωτή, βρίσκουμε ότι: 4 U( b, c, s) = b c s U (4,0.5,0.5) = 6 U (,.5,0.5) =.5 U (,0.5,.5) = 0.65 Τέλος, για τον καταναλωτη, ισχύει ότι: U ( b, c, s) = b+ c+ ln( s) U (4,0.5,0.5) =. 74 U (,.5,0.5) =. 7 U (,0.5,.5) =. 86

8 Από τα παραπάνω συμπεραίνουμε ότι ο καταναλωτής επιλέγει το ο bundle, ο καταναλωτής επιλέγει το ο bundle, ενώ ο καταναλωτής επιλέγει το ο bundle. Άσκηση 5.5 Έστω ότι η χρησιμότητα ένος καταναλωτή από την κατανάλωση των αγαθών b, c και s δίνεται από τη συνάρτηση Ubcs (,, ) = 0ln( b) + ln(c+ ) + 0.5ln( s+. Αν η τιμή των τριών αγαθών είναι, 5 και 0 αντίστοιχα και ο καταναλωτής έχει στη διάθεσή του 8 για να ξοδέψει, να βρείτε πόση ποσότητα από κάθε αγαθό θα καταναλώσει. Να λύσετε το ίδιο πρόβλημα όταν η συνάρτηση χρησιμότητας είναι Ubcs (,, ) = 0ln( b) + ln(c) + 0.5ln( s+ + m, όπου m το ποσό που δεν καταναλώθηκε (mone left over) για την αγορά των τριών αγαθών. Να εξετάσετε και την περίπτωση κατά την οποία ο καταναλωτής έχει στη διάθεσή του μόνο 6.6 για να ξοδέψει. Υποθέτουμε ότι ο καταναλωτής μεγιστοποιεί την χρησιμότητα του καταναλώνοντας θετικές ποσότητες από όλα τα αγαθά. Bangs for the buck: MUb MUc MU s = = P P P b c s = = b ( c+ ) 5 ( s+ 0 b 0( s+ = 5( c + ) = b= 5( c+ ) = 0( s+ Άρα, c = 0.04b και s = 0.0b 4 Επίσης, ο εισοδηματικός περιορισμός του καταναλωτή συνεπάγεται ότι: b+ 5c+ 0s = 8 Αντικάθιστώντας τις συναρτήσεις των c και s ως προς b στην παραπάνω σχέση έχουμε: b+ 5(0.04b ) + 0(0.0b = 8.b 45= 8 b= Άρα, c = 0.04(55. 65) =.608 και s = 0.0(55. 65) 4 = Παρατηρούμε ότι η επιλεγόμενη τιμή για το αγαθό s είναι αρνητική, οπότε παραβιάζεται η υπόθεση ότι ο καταναλωτής καταναλώνει μία θετική ποσότητα από κάθε αγαθό. Επομένως, θέτουμε s=0 και υποθέτουμε ότι ο καταναλωτής επιλέγει μία θετική ποσότητα από το κάθε αγαθό b και c. Επομένως:

9 MUb MUc 0 b = = = 5( c + ) P P b ( c+ ) 5 0 b c 0.b= 5( c+ ) b= 5( c+ ) Επίσης, θα πρέπει b+ 5c = 8. Αντικαθιστώντας έχουμε (5( c+ )) + 5c= 8 c= 0.6 και b+ 5(0.6) = 8 b= 40. Έστω τώρα ότι μετά την αγορά των ποσοτήτων των αγαθών, ο καταναλωτής έχει ρευστά διαθέσιμα αξίας m ευρώ. Το Bangs for the buck for mone left over είναι. Οπότε: MUb MUc MU s = = = P P P b c s = = = b 5c 0( s+ 5 = = = b 5c 0( s+ Επομένως, b = 5, c = / 5 = 0. και 0( s+ = s =.95. Ο καταναλωτής καταναλώνει 5 μονάδες από το αγαθό b, 0. μονάδες από το αγαθό c και καθόλου από το αγαθό s. Η κατανάλωση των παραπάνω αγαθών κοστίζει b+ 5c+ 0s= (5) + 5(0.) + 0(0) = που είναι λιγότερα από τα 8 που διαθέτει ο καταναλωτής. Αν όμως ο καταναλωτής είχε μόνο 6.6 για την κατανάλωση των αγαθών, τότε 5 = = b 5c 0( s+ b = 5c= 0( s+ 5 Άρα, b= 00( s+ και c= 4( s+. Επίσης, b+ 5c+ 0s = 6.6. Επομένως, b = 0.6, c = 0.8 και s =.80. Όπως και b προηγουμένως, θέτουμε s = 0. Άρα: = 5c b= 5c και b+ 5c = Αντικαθιστώντας την πρώτη εξίσωση στη δεύτερη έχουμε (5 c) + 5c= 6.6 c= 0. και b =. Άσκηση 5.8 Ένας καταναλωτής έχει στη διάθεσή του 5 για να αγοράσει ψωμί και τυρί. Έστω ότι η κάθε φρατζόλα ψωμιού κοστίζει 0.5 και το κάθε κιλό τυρί. Με βάση τα παραπάνω δεδομένα, να σχεδιάσετε την καμπύλη που αντιπροσωπεύει τον προϋπολογισμό (budget set) του καταναλωτή για την αγορά των δύο αγαθών. Έστω ότι ο καταναλωτής ξοδεύει όλα τα ρευστά διαθέσιμά του στην αγορά ψωμιού. Τότε μπορεί να αγοράσει 5/0.5=0 φραντζόλες ψωμί.

10 Αντιθέτως, αν ξοδέψει όλα τα ρευστά διαθέσιμά του στην αγορά τυριού, τότε μπορεί να αγοράσει 5/=5 κιλά τυρί. Η ένωση των δύο αυτών σημείων (0,0) και (5,0), όπου στον κάθετο άξονα έχουμε θέσει την ποσότητα ψωμιού και στον οριζόντιο την ποσότητα τυριού), μας δίνει όλες τις ποσότητες των δύο αγαθών που μπορεί να αγοράσει ο καταναλωτής δεδομένου του προϋπολογισμού του. budget set Ψωμί (φρατζόλες) Τυρί (Kg)

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D )

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D ) 2 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ 1. Ποια είναι η επιδίωξη του καταναλωτή και ποιοι παράγοντες την περιορίζουν; 2. Ποιος καταναλωτής ονομάζεται ορθολογικός και πότε λέμε ότι βρίσκεται σε ισορροπία; 3. Να διατυπώσετε

Διαβάστε περισσότερα

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης.

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης. ΕΛΑΣΤΙΚΟΤΗΤΑ ΖΗΤΗΣΗΣ Ορισμός: Η ελαστικότητα ζήτησης, ενός αγαθού ως προς την τιμή του δίνεται από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία μεταβολή της τιμής του. Δηλαδή %

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Ανάλυση

Εισαγωγή στην Οικονομική Ανάλυση ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΠΟΛΙΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ Εισαγωγή στην Οικονομική Ανάλυση Εξετάσεις περιόδου Ιουνίου-Ιουλίου 011 1 Ιουλίου 011 Νίκος Θεοχαράκης

Διαβάστε περισσότερα

2 ο ΚΕΦΑΛΑΙΟ (Προκαταρκτικές ασκήσεις για εξάσκησης)

2 ο ΚΕΦΑΛΑΙΟ (Προκαταρκτικές ασκήσεις για εξάσκησης) 2 ο ΚΕΦΑΛΑΙΟ (Προκαταρκτικές ασκήσεις για εξάσκησης) 1. Χρησιμοποιώντας τα στοιχεία του παρακάτω πίνακα που δείχνουν τις ζητούμενες ποσότητες του αγαθού Χ από τρεις διαφορετικούς καταναλωτές, οι οποίες

Διαβάστε περισσότερα

x r i s t o s t s a g a l i d i s

x r i s t o s t s a g a l i d i s ΕΑ-2009 1. Εισαγωγή 1. Πώς προσδιορίζονται οι τιμές των αγαθών στην αγορά; Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς. 2. Η συµπεριφορά

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.4. Αν αυξηθεί η αμοιβή της εργασίας η καμπύλη του οριακού κόστους μετατοπίζεται προς τα επάνω και αριστερά.

ΑΠΑΝΤΗΣΕΙΣ. Α.4. Αν αυξηθεί η αμοιβή της εργασίας η καμπύλη του οριακού κόστους μετατοπίζεται προς τα επάνω και αριστερά. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά

Επιχειρησιακά Μαθηματικά Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ

ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ Άσκηση 3 Η ζήτηση τυριού τύπου δίνεται από τη συνάρτηση: Q 300 35P 14PB 24 20B όπου: Q η ζητούμενη ποσότητα τυριού τύπου P η τιμή τυριού τύπου P B η τιμή τυριού τύπου B η δαπάνη

Διαβάστε περισσότερα

Η ΖΗΤΗΣΗ ΤΩΝ ΑΓΑΘΩΝ. οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς.

Η ΖΗΤΗΣΗ ΤΩΝ ΑΓΑΘΩΝ. οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς. ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Η ΖΗΤΗΣΗ ΤΩΝ ΑΓΑΘΩΝ 1. Εισαγωγή Στο προηγούμενο κεφάλαιο εξετάσαμε τα βασικά οικονομικά προβλήματα που αντιμετωπίζει κάθε κοινωνία και στα οποία πρέπει να δίνει λύση. Παρουσιάσαμε επίσης

Διαβάστε περισσότερα

8. Η ζήτηση ενός αγαθού µεταβάλλεται προς την αντίθετη κατεύθυνση µε τη µεταβολή της τιµής του υποκατάστατου αγαθού.

8. Η ζήτηση ενός αγαθού µεταβάλλεται προς την αντίθετη κατεύθυνση µε τη µεταβολή της τιµής του υποκατάστατου αγαθού. ΚΕΦΑΛΑΙΟ 2 : Η ΖΗΤΗΣΗ Να σηµειώσετε το σωστό ή το λάθος στο τέλος των προτάσεων: 1. Η επιδίωξη της µέγιστης χρησιµότητας αποτελεί βασικό χαρακτηριστικό της συµπεριφοράς του καταναλωτή στη ζήτηση αγαθών.

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ

ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ Άσκηση 1 Αν το επιτόκιο είναι 10%, ποια είναι η παρούσα αξία των κερδών της Monroe orporation στα επόμενα 5 χρόνια; Χρόνια στο μέλλον

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 23/01/2012 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 23/01/2012 ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 23/01/2012 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.3. Το μέσο μεταβλητό κόστος στην αρχή μειώνεται και μετά αυξάνεται.

ΑΠΑΝΤΗΣΕΙΣ. Α.3. Το μέσο μεταβλητό κόστος στην αρχή μειώνεται και μετά αυξάνεται. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη:, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1. Αν

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Στην αγορά ενός αγαθού συμμετέχουν δύο καταναλωτές, των οποίων οι ατομικές συναρτήσεις

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση της ζήτησης και της προσφοράς.

Διαβάστε περισσότερα

(i) Νόμος Ζήτησης. Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης)

(i) Νόμος Ζήτησης. Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης) ΕΙΣΑΩΗ Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης) Μικροοικονομία ή Θεωρία Τιμών Σημείο αναφοράς είναι ο προσδιορισμός της τιμής ενός αγαθού. Ν Ο

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

ΔΕΟ34. Ενδεικτική Απάντηση 1ης γραπτής εργασίας Επιμέλεια: Γιάννης Σαραντής

ΔΕΟ34. Ενδεικτική Απάντηση 1ης γραπτής εργασίας Επιμέλεια: Γιάννης Σαραντής ΔΕΟ34 Ενδεικτική Απάντηση 1ης γραπτής εργασίας 2016-17 Επιμέλεια: Γιάννης Σαραντής 16/11/2016 2 Ερώτηση 1 α1) Αρχικό σημείο ισορροπίας της αγοράς είναι το σημείο Δ και η τιμή ισορροπίας του κλάδου είναι

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ

ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ Ας υποθέσουμε ότι έχουμε ένα αγαθό το οποίο δημιουργεί κατά την παραγωγή ή την κατανάλωσή του έναν ρύπο, και ας υποθέσουμε ότι για κάθε μία μονάδα

Διαβάστε περισσότερα

10. Η επιδίωξη της μέγιστης χρησιμότητας αποτελεί βασικό χαρακτηριστικό της συμπεριφοράς του καταναλωτή στη ζήτηση αγαθών.

10. Η επιδίωξη της μέγιστης χρησιμότητας αποτελεί βασικό χαρακτηριστικό της συμπεριφοράς του καταναλωτή στη ζήτηση αγαθών. ΚΕΦΑΛΑΙΟ 2 : Η ΖΗΤΗΣΗ Να σημειώσετε το σωστό ή το λάθος στο τέλος των προτάσεων: 1. Όταν η ζήτηση ενός αγαθού είναι ελαστική, η συνολική δαπάνη των καταναλωτών για το αγαθό αυτό μειώνεται καθώς αυξάνεται

Διαβάστε περισσότερα

Άσκηση 3: Έστω η συνάρτηση χρησιμότητας για δύο αγαθά Χ και Υ έχει τη μορφή Cobb- Douglas U (X,Y) = X o,5 Y 0,5

Άσκηση 3: Έστω η συνάρτηση χρησιμότητας για δύο αγαθά Χ και Υ έχει τη μορφή Cobb- Douglas U (X,Y) = X o,5 Y 0,5 ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Σημείωση: Κάποιες από τις παρακάτω ασκήσεις θα λυθούν στην 3 η και 4 η διάλεξη του μαθήματος (στις ημερομηνίες που αναγράφονται στο πρόγραμμα) και οι υπόλοιπες θα αποτελέσουν προσωπική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 22/01/2012 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 22/01/2012 ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 22/01/2012 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Η ελαστικότητα ζήτησης για το αγαθό "Κ" είναι ίση με 2. Αυτό σημαίνει

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ.

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ. ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : ΣΥΝΔΥΑΣΜΟΙ P Α 24 80 Β 35 64 Γ 45 50 Δ 55 36 Ε 60 29 Ζ 70 14 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Α. Να σχεδιάσετε την καμπύλη

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 4 ο : Η Προσφορά των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Δίνονται τα διπλανά δεδομένα μιας επιχείρησης στη βραχυχρόνια περίοδο. i. Να κάνετε

Διαβάστε περισσότερα

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ 1. Εισαγωγή Όπως έχουμε τονίσει, η κατανόηση του τρόπου με τον οποίο προσδιορίζεται η τιμή ενός αγαθού απαιτεί κατανόηση των δύο δυνάμεων της αγοράς, δηλαδή της ζήτησης

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του ΣΥΜΒΟΛΙΣΜΟΙ - ΕΝΝΟΙΕΣ Q ή q : Ποσότητα (Quantity) προϊόντος ρ, Ρ : τιμή (Price) προϊόντος ανά μονάδα προϊόντος. Συνάρτηση τηςζητησης; Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του. Δηλαδή Qd = f(p).

Διαβάστε περισσότερα

Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ TΩN ΤΙΜΩΝ

Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ TΩN ΤΙΜΩΝ ΚΕΦΑΛΑΙΟ ΠΕΜ Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ TΩN ΤΙΜΩΝ 1. Έννοια και λειτουργία της αγοράς Σε μια πρωτόγονη οικονομία, όπως του Ροβινσώνα Κρούσου, όπου δεν υπάρχει καταμερισμός της εργασίας ο άνθρωπος παράγει μόνος του

Διαβάστε περισσότερα

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 Να λυθούν οι παρακάτω ασκήσεις: 1. Αν η τιµή των Ιταλικών επίπλων µειωθεί τι θα συµβεί στη ζήτηση α) των Ιταλικών επίπλων και β) των Ελληνικών επίπλων. 2. Αν η τιµή του υγραερίου

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 5 ο : Ο Προσδιορισμός των Τιμών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Οι συναρτήσεις ζήτησης και προσφοράς ενός αγαθού είναι: =20-2P και S =5+3P αντίστοιχα.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΟΜΑΔΑ ΠΡΩΤΗ

ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΟΜΑΔΑ ΠΡΩΤΗ ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 15/01/2017 ΚΑΘ/ΤΗΣ ΣΦΥΡΗΣ Π. ΒΑΘΜΟΣ: /100, /20 ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α1. Στις προτάσεις α μέχρι και ε να γράψετε στο τετράδιο σας το γράμμα της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Προσφορά των Αγαθών

ΚΕΦΑΛΑΙΟ 4. Προσφορά των Αγαθών ΚΕΦΑΛΑΙΟ 4 Προσφορά των Αγαθών Καμπύλη Προσφοράς Υποθέσεις 1. Η επιχείρηση είναι αποδέκτης τιμών (price taker) και όχι διαμορφωτής τιμών (price maker). 2. H επιχείρηση στοχεύει στην μεγιστοποίηση του κέρδους.

Διαβάστε περισσότερα

Α2. Κάθε φορά που μεταβάλλεται η τιμή ενός αγαθού, μεταβάλλεται και η ζήτησή του. (μον. 3)

Α2. Κάθε φορά που μεταβάλλεται η τιμή ενός αγαθού, μεταβάλλεται και η ζήτησή του. (μον. 3) ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Ον/μο:.. Γ Λυκείου Ύλη: 2 0 και 3 ο κεφάλαιο 26-01-14 ΟΜΑΔΑ Α Α1. Όταν το οριακό προϊόν είναι μεγαλύτερο από το μέσο προϊόν, τότε το μέσο προϊόν αυξάνεται. (μον.

Διαβάστε περισσότερα

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Άσκηση στο μάθημα «Εισαγωγή στην Οικονομική Ανάλυση» Νίκος Θεοχαράκης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ [5 μονάδες (6+6+6+7)] www.onlineclassroom.gr Δίνεται η ακόλουθη συνάρτηση των οριακών εσόδων MR μιας μονοπωλιακής επιχείρησης: MR() = 100 + 16 όπου είναι η ποσότητα παραγωγής του προϊόντος. Επίσης,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ. max. ( ) (16 ) Q Q = +. [1]

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ. max. ( ) (16 ) Q Q = +. [1] ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ Θέµα ο. (α) Η µονοπωλιακή επιχείρηση µεγιστοποιεί το κέρδος της οποίο δίνεται από τη συνάρτηση π µε τύπο π ( ) = (6 ), δηλαδή λύνει το πρόβληµα max. π ( ) = (6 ) π '( ) =

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΘΕΜΑ Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας,

Διαβάστε περισσότερα

Καμπύλη Προσφοράς. (α) Καμπύλη Προσφοράς. Σκοπός Επιχειρήσεων Μεγιστοποίηση Κέρδους

Καμπύλη Προσφοράς. (α) Καμπύλη Προσφοράς. Σκοπός Επιχειρήσεων Μεγιστοποίηση Κέρδους ΕΙΣΩΗ Καταναλωτής Παραγωγός-Επιχείρηση Χρησιμότητα Παραγωγή-Κόστος Σημεία ΠΙΝΚΣ ΠΡΟΣΦΟΡΣ Οριακό Κόστος (MC) Τιμή () Παραγόμενο Προϊόν (Q) Προσφερόμενη Ποσότητα () MC11 1 MC22 Q22 MC33 Q33 Καμπύλη Προσφοράς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : Η ζήτηση των αγαθών

ΚΕΦΑΛΑΙΟ 2 ο : Η ζήτηση των αγαθών ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ 2000 2017 : ΚΕΦΑΛΑΙΟ 2 Ο 1 Στο συγκεκριμένο αρχείο υπάρχουν οι ερωτήσεις κλειστού τύπου της ύλης του 2 ου κεφαλαίου και τέθηκαν στις πανελλαδικές: - Ημερησίων και

Διαβάστε περισσότερα

25. Μία τυπική επιχείρηση που λειτουργεί σε καθεστώς τέλειου ανταγωνισμού, στη μακροχρόνια θέση ισορροπίας της: α. πραγματοποιεί θετικά οικονομικά κέρδη. β. πραγματοποιεί μηδενικά οικονομικά κέρδη. γ.

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. Όνομα/Επίθετο: ΟΜΑΔΑ Α

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. Όνομα/Επίθετο: ΟΜΑΔΑ Α ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ 2015- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Όνομα/Επίθετο: ΟΜΑΔΑ Α Για τις προτάσεις από Α1 μέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως: http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΔΕΟ -: Άσκηση I. (α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

Διαβάστε περισσότερα

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών. Εισαγωγή στην Οικονομική Ανάλυση. Νίκος Θεοχαράκης Διάλεξη 5 Ιανουάριος 2014

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών. Εισαγωγή στην Οικονομική Ανάλυση. Νίκος Θεοχαράκης Διάλεξη 5 Ιανουάριος 2014 Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Εισαγωγή στην Οικονομική Ανάλυση Νίκος Θεοχαράκης Διάλεξη 5 Ιανουάριος 2014 Ελαστικότητα Ελαστικότητα Γενικά η ελαστικότητα μας δείχνει πως αντιδρά μια εξαρτημένη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

Στις παρακάτω προτάσεις Α2 και Α3 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα του, το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις παρακάτω προτάσεις Α2 και Α3 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα του, το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 2 ΜΑΪΟΥ 206 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - ΕΠΙΛΟΓΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΟΜΑΔΑ

Διαβάστε περισσότερα

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25 Διάλεξη 6 Μονοπωλιακή Συμπεριφορά VA 25 1 Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέχρι στιγμής το μονοπώλιο έχει θεωρηθεί σαν μια επιχείρηση η οποία πωλεί το προϊόν της σε κάθε πελάτη στην ίδια τιμή. Δηλαδή

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΕΚΤΟ ΕΚΤΟ ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ-ΙΣΟΡΡΟΠΙΑ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2011-2012 ΕΠΙΧ Μικροοικονοµική

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Βάλτε σε κύκλο το σωστό γράμμα: 1 ο ΔΙΑΓΩΝΙΣΜΑ Α. 1. Ταυτόχρονη αύξηση της ζήτησης και της προσφοράς μπορεί να μη μεταβάλλει την ποσότητα ισορροπίας. Σ Λ Α. 2. Έστω δύο αγαθά

Διαβάστε περισσότερα

Διάκριση Τιμών 3 ου Βαθμού: Κατάτμηση της Αγοράς

Διάκριση Τιμών 3 ου Βαθμού: Κατάτμηση της Αγοράς Διάκριση Τιμών 3 ου Βαθμού: Κατάτμηση της Αγοράς (arket Segmentation ή ultimarket Price iscrimination) -H διάκριση τιμών 1 ου βαθμού προϋποθέτει ότι η μονοπωλιακή επιχείρηση γνωρίζει τις ατομικές συναρτήσεις

Διαβάστε περισσότερα

= δ P η ελαστικότητα ως προς την τιµή

= δ P η ελαστικότητα ως προς την τιµή ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 9 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής Α1. Η τεχνολογία παραγωγής του αγαθού

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλών επιλογών

Ερωτήσεις πολλαπλών επιλογών Ερωτήσεις πολλαπλών επιλογών 1. Έστω ότι μία οικονομία, που βρίσκεται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων, παράγει σε μία συγκεκριμένη χρονική στιγμή 10 τόνους υφάσματος και 00 τόνους τροφίμων.

Διαβάστε περισσότερα

Ελαστικότητες Ζήτησης

Ελαστικότητες Ζήτησης Ελαστικότητες Ζήτησης - Η ευαισθησία της ζητούμενης ποσότητας x σε μεταβολές της τιμής μπορεί να μετρηθεί άμεσα από το λόγο Δx / Δ (ήαπότην παράγωγο x / ). - Αυτό το μέτρο ευαισθησίας έχει το μειονέκτημα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ Βάλτε σε κύκλο το σωστό γράμμα: Α. 1. Ταυτόχρονη αύξηση της ζήτησης και της προσφοράς μπορεί να μη μεταβάλλει την ποσότητα ισορροπίας. Α. 2. Έστω

Διαβάστε περισσότερα

Παράγωγοι ανώτερης τάξης

Παράγωγοι ανώτερης τάξης Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 2 3 / 1 0 / 2 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Ανάλυση. Εξετάσεις περιόδου Ιανουαρίου Ιανουαρίου Νίκος Θεοχαράκης Θανάσης Μανιάτης

Εισαγωγή στην Οικονομική Ανάλυση. Εξετάσεις περιόδου Ιανουαρίου Ιανουαρίου Νίκος Θεοχαράκης Θανάσης Μανιάτης ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Εισαγωγή στην Οικονομική Ανάλυση Εξετάσεις περιόδου Ιανουαρίου 010 1 Ιανουαρίου 010 Νίκος Θεοχαράκης Θανάσης Μανιάτης Απαντήστε 6

Διαβάστε περισσότερα

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος

Διαβάστε περισσότερα

1 ου πακέτου. Βαθµός πακέτου

1 ου πακέτου. Βαθµός πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

Αγοραία ζήτηση. Ατοµική και αγοραία συνάρτηση. Διάλεξη 9. συνάρτηση. συνάρτηση

Αγοραία ζήτηση. Ατοµική και αγοραία συνάρτηση. Διάλεξη 9. συνάρτηση. συνάρτηση Ατοµική και αγοραία συνάρτηση Διάλεξη 9 Αγοραία ζήτηση Υποθέστε µιαν οικονοµία που έχει n καταναλωτές, και συµβολίζονται µε =,,n. Η συνάρτηση της κανονικής καµπύλης ζήτησης του καταναλωτή για το αγαθό

Διαβάστε περισσότερα

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ. Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που

Διαβάστε περισσότερα

(1β) Μη Χωροθετικά Υποδείγματα Διαφοροποιημένου Προϊόντος με Ενδογενές Πλήθος Επιχειρήσεων

(1β) Μη Χωροθετικά Υποδείγματα Διαφοροποιημένου Προϊόντος με Ενδογενές Πλήθος Επιχειρήσεων (β) Μη Χωροθετικά Υποδείγματα Διαφοροποιημένου Προϊόντος με Ενδογενές Πλήθος Επιχειρήσεων Ελεύθερη Είσοδος και Ισορροπία Μηδενικών Κερδών - Η δυνατότητα νέων επιχειρήσεων να εισέρχονται ελεύθερα στην αγορά

Διαβάστε περισσότερα

Παράγωγοι ανώτερης τάξης

Παράγωγοι ανώτερης τάξης Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 3 / 1 0 / 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα

Διαβάστε περισσότερα

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ.Παραδείγματα αναλυτικά.παραδείγματα αριθμητικά 3.Ελαστικότητα ζήτησης 4.Ελαστικότητα προσφοράς 5. Έσοδο 6.Κέρδος μονοπωλίου. Παραδείγματα αναλυτικά Παράδειγμα. Σε μια οικονομία

Διαβάστε περισσότερα

Q VC AVC MC , ,5 7, , ,

Q VC AVC MC , ,5 7, , , ΛΥΣΕΙΣ ΑΟΘ 4 (για καλά διαβασμένους) ΟΜΑΔΑ Α Α1. γ Α2. γ Α3. Λ Α4. Σ Α5. Σ Α6. Λ Α7. Λ ΟΜΑΔΑ Β Σχολικό βιβλίο σελ. 24 η παράγραφος 11 ΟΜΑΔΑ Γ Γ1. Ο πίνακας γίνεται: VC AVC MC 0 0 - - 10 100 10 10 180 9

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΟΜΙΛΟΣ ΑΛΦΑ ΓΡΑΠΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΥΡΙΑΚΗ 11 ΜΑΡΤΙΟΥ 2012

ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΟΜΙΛΟΣ ΑΛΦΑ ΓΡΑΠΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΥΡΙΑΚΗ 11 ΜΑΡΤΙΟΥ 2012 ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΟΜΙΛΟΣ ΑΛΦΑ ΓΡΑΠΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΥΡΙΑΚΗ 11 ΜΑΡΤΙΟΥ 2012 ΟΜΑΔΑ Α Για τις προτάσεις Α.1 έως και Α.5, να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Επιστήμη Ι

Εισαγωγή στην Οικονομική Επιστήμη Ι Εισαγωγή στην Οικονομική Επιστήμη Ι Ελαστικότητα και Εφαρμογές Ελαστικότητα... μας επιτρέπει να αναλύσουμε την προσφορά και τη ζήτηση σε βάθος. αποτελεί μια μέτρηση για τον τρόπο με τον οποίο πόσοι παραγωγοί

Διαβάστε περισσότερα

Εξετάσεις Η επιβολή από το κράτος κατώτατης τιμής στα αγροτικά προϊόντα έχει ως σκοπό την προστασία του εισοδήματος των αγροτών.

Εξετάσεις Η επιβολή από το κράτος κατώτατης τιμής στα αγροτικά προϊόντα έχει ως σκοπό την προστασία του εισοδήματος των αγροτών. ΚΕΦΑΛΑΙΟ 5: Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΤΙΜΩΝ Να σημειώσετε με Σ (σωστό) ή Λ (λάθος) στο τέλος των προτάσεων: 1. Η επιβολή από το κράτος ανώτατης τιμής σε ένα προϊόν δημιουργεί συνήθως «μαύρη αγορά». Εξετάσεις

Διαβάστε περισσότερα

H Ελαστικότητα και οι Εφαρμογές της

H Ελαστικότητα και οι Εφαρμογές της H Ελαστικότητα και οι Εφαρμογές της (1) Ελαστικότητα της Ζήτησης 1A. Ελαστικότητα της Ζήτησης ως προς την Τιμή - Γιαναμετρήσουμετηνευαισθησίατηςζητούμενηςποσότητας( ) στις μεταβολές της τιμής (), μπορούμε

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Μαθηματικά για Οικονομολόγους Ι Εργασία - ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ - ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Παρακάτω δίνονται συνολικά ασκήσεις με πολλαπλά ερωτήματα τις οποίες θα επιλύσετε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη

Διαβάστε περισσότερα

ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ

ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ 2000 2017 : ΚΕΦΑΛΑΙΟ 5 Ο 1 ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ 2000 2017 ΚΕΦΑΛΑΙΟ 5ο 1. Οι συναρτήσεις αγοραίας ζήτησης και προσφοράς ενός αγαθού είναι αντίστοιχα: Q D1 = 600

Διαβάστε περισσότερα

ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013

ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013 12 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013 ΚΕΦΑΛΑΙΟ 5ο (µε 2ο, 3ο και 4ο) ΗΜΕΡΗΣΙΑ 9/2000 ΗΜΕΡΗΣΙΑ 6/2000 ΕΣΜΕΣ 2000 ΕΣΜΕΣ 1998 28. ίνονται οι συναρτήσεις ζήτησης και προσφοράς

Διαβάστε περισσότερα

Επαναληπτικές ερωτήσεις πολλαπλής επιλογής: Κεφάλαιο 1 ο

Επαναληπτικές ερωτήσεις πολλαπλής επιλογής: Κεφάλαιο 1 ο Επαναληπτικές ερωτήσεις πολλαπλής επιλογής: Κεφάλαιο 1 ο 1. Σε γραµµική ΚΠ της µορφής Y = a+ β X : α. Η µέγιστη ποσότητα για το αγαθό Υ παράγεται όταν Y = β β. Η µέγιστη ποσότητα για το αγαθό Χ παράγεται

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ

Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ Άσκηση 1 Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ και Υ. Α Β Γ Δ Ε Χ 90 30 5 55 50 Υ 10 80 40 0 55 Ποιες από τις παρακάτω προτάσεις θεωρείτε ότι αντιστοιχούν σε ορθολογική

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική Γραπτή Εργασία # 4 (Δημόσια Οικονομική) Ακαδ. Έτος: 2006-7 Οδηγίες

Διαβάστε περισσότερα

ΦΟΙΤΗΤΙΚΟ ΔΙΔΑΣΚΑΛΕΙΟ Facebook: Didaskaleio Foititiko

ΦΟΙΤΗΤΙΚΟ ΔΙΔΑΣΚΑΛΕΙΟ  Facebook: Didaskaleio Foititiko Άσκηση. «Σε ορισμένες περιπτώσεις παρατηρείται στον κλάδο της γεωργίας της Ευρωπαϊκής Ένωσης το φαινομενικά παράδοξο να ευημερούν οι αγρότες περισσότερο όταν οι σοδειές τους δεν είναι καλές, και να πλήττονται

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ. Α.1. α. Λάθος β. Λάθος γ. Σωστό δ. Σωστό ε. Λάθος ΟΜΑΔΑ ΔΕΥΤΕΡΗ

ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ. Α.1. α. Λάθος β. Λάθος γ. Σωστό δ. Σωστό ε. Λάθος ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ Α.1. α. Λάθος β. Λάθος γ. Σωστό δ. Σωστό ε. Λάθος Α.2. δ Α.3. β ΟΜΑΔΑ ΔΕΥΤΕΡΗ Β.1. Από το 5 ο Κεφάλαιο του σχολικού βιβλίου σελ. 97 98 σε συνδυασμό

Διαβάστε περισσότερα

4 Το άτομο ως παραγωγός (η προσφορά των αγαθών)

4 Το άτομο ως παραγωγός (η προσφορά των αγαθών) 4 Το άτομο ως παραγωγός (η προσφορά των αγαθών) Σκοπός Στο προηγούμενο κεφάλαιο εξετάσαμε τη ζήτηση των αγαθών, η οποία προέρχεται από τα νοικοκυριά (τους καταναλωτές). Τα αγαθά αυτά παράγονται και προσφέρονται

Διαβάστε περισσότερα

ηµόσια Οικονοµική Βασίλης Ράπανος, Γεωργία Καπλάνογλου µόνο Τµήµα Ι.

ηµόσια Οικονοµική Βασίλης Ράπανος, Γεωργία Καπλάνογλου µόνο Τµήµα Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2013-2014 Τµήµα Οικονοµικών Επιστηµών Εξεταστική περίοδος Απριλίου Εξέταση στο µάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Ράπανος, Γεωργία Καπλάνογλου Η εξέταση αποτελείται

Διαβάστε περισσότερα

ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1.

ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1. ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α. Να χαρακτηρίσετε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ÓÕÍÅÉÑÌÏÓ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ÓÕÍÅÉÑÌÏÓ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Ηµεροµηνία: Κυριακή 24 Απριλίου 2016 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Για τις

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ TETAΡΤΗ 13 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:ΕΠΤΑ(7) ΟΜΑΔΑ Α

ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ TETAΡΤΗ 13 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:ΕΠΤΑ(7) ΟΜΑΔΑ Α ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ TETAΡΤΗ 13 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:ΕΠΤΑ(7) ΟΜΑΔΑ Α Στις παρακάτω προτάσεις από Α.1.1., μέχρι και Α.1.6., να γράψετε

Διαβάστε περισσότερα

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2008-2009 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Επιστήμη Ι. Ελαστικότητα και Εφαρμογές. Αρ. Διάλεξης: 5

Εισαγωγή στην Οικονομική Επιστήμη Ι. Ελαστικότητα και Εφαρμογές. Αρ. Διάλεξης: 5 Εισαγωγή στην Οικονομική Επιστήμη Ι Ελαστικότητα και Εφαρμογές Αρ. Διάλεξης: 5 Ελαστικότητα... μας επιτρέπει να αναλύσουμε την προσφορά και τη ζήτηση σε βάθος. αποτελεί μια μέτρηση για τον τρόπο με τον

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16/3/2014)-ΣΕΙΡΑ Α

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16/3/2014)-ΣΕΙΡΑ Α ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16//201)-ΣΕΙΡΑ Α ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό Α2. (β) Α. (γ) ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1.Η μεταβολή στην προσφερόμενη ποσότητα ενός αγαθού

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Όλα λύνονται με τον τύπο του κόστους ευκαιρίας:

Κεφάλαιο 1 ο. Όλα λύνονται με τον τύπο του κόστους ευκαιρίας: Κεφάλαιο 1 ο Καμπύλη Παραγωγικών Δυνατοττων (ΚΠΔ) Δείχνει τις μεγαλύτερες ποσότητες ενός προϊόντος που είναι δυνατό να παραχθούν σε μια οικονομία για κάθε δεδομένη ποσότητα του άλλου προϊόντος. Στηρίζεται

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x Γενικά Μαθηματικά Κεφάλαιο Εισαγωγή Αριθμοί Φυσικοί 0,,,3, Ακέραιοι 0,,, 3, Ρητοί,, 0 Πραγματικοί Αν, με, :: x, :: x, :: x, :: x, :: x, :: x, :: x, :: x Συνάρτηση Κάθε διαδικασία αντιστοίχησης η οποία

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes

Notes. Notes. Notes. Notes Αγορές - Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 6 Δεκεμβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Αγορές - 6 Δεκεμβρίου 2012 1 / 26 Ως τώρα, υποθέσαμε ότι οι αγορές είναι ανταγωνιστικές. Μία συνέπεια των

Διαβάστε περισσότερα

Η αρχική γραμμή του εισοδηματικού περιορισμού είναι: Η νέα γραμμή του εισοδηματικού περιορισμού είναι: wt + V w

Η αρχική γραμμή του εισοδηματικού περιορισμού είναι: Η νέα γραμμή του εισοδηματικού περιορισμού είναι: wt + V w Επιπτώσεις μιας Μεταβολής του Εισοδήματος (V) που δεν προέρχεται από Εργασία - Κανονικά και Κατώτερα Αγαθά (i) Αν η ζήτηση ενός αγαθού αυξάνεται καθώς αυξάνεται το εισόδημα του ατόμου, τότε το αγαθό ονομάζεται

Διαβάστε περισσότερα

2 ο SET ΑΣΚΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ

2 ο SET ΑΣΚΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ 2 ο SET ΑΣΚΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Σημείωση: Κάποιες από τις παρακάτω ασκήσεις θα λυθούν στην 6 η και 7 η διάλεξη του μαθήματος (στις ημερομηνίες που αναγράφονται στο πρόγραμμα) και οι υπόλοιπες θα αποτελέσουν

Διαβάστε περισσότερα