Κεφάλαιο 5ο: Εντολές Επανάληψης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 5ο: Εντολές Επανάληψης"

Transcript

1 Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες επαναληπτικές διαδικασίες. Η λογική των επαναληπτικών διαδικασιών εφαρµόζεται στις περιπτώσεις, όπου µια οµάδα εντολών πρέπει να εφαρµοσθεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι κοινό. Για παράδειγµα, όλες οι τράπεζες κάθε εξάµηνο αποδίδουν τόκους των καταθέσεων ταµιευτηρίου. Ο υπολογισµός των τόκων πρέπει να γίνει για όλους τους λογαριασµούς της τράπεζας, άρα η πράξη τόκος = ποσό * επιτόκιο πρέπει να εκτελεσθεί για όλους τους τραπεζικούς λογαριασµούς. Οι επαναληπτικές διαδικασίες µπορεί να έχουν διάφορες µορφές και συνήθως περιέχουν συνθήκες επιλογών. 5.1 Η εντολή Do στη Fortran 77 Επειδή στα µαθηµατικά και γενικότερα στις επιστηµονικές εφαρµογές, έχουµε πολύ συχνά επανάληψη των ίδιων ακριβώς πράξεων, γι' αυτό και η γλώσσα Fortran διαθέτει µια εντολή µε την οποία µπορούµε να ελέγχουµε αυτές τις επαναλήψεις. Ο γενικός τύπος της εντολής είναι: Do n i = m1, m2, m3 ή πιο αναλυτικά : Do "ετικέτα" "µεταβλητή" = "κατώτερο όριο", "ανώτερο όριο", "βήµα" και όπου ισχύουν : n, είναι η ετικέτα µιας άλλης εντολής που πρέπει να βρίσκεται µετά την εντολή Do και δεν πρέπει να είναι µόνο µία άλλη εντολή Do. i, είναι µία ακέραια µεταβλητή που λέγεται και µεταβλητή ελέγχου. εν πρέπει ποτέ µέσα σε µια ανακύκλωση να ορίσουµε ξανά την τιµή της. Όταν τελειώσουν οι επαναλήψεις (ανακυκλώσεις) της εντολής Do µπορούµε να δώσουµε στη µεταβλητή i οποιαδήποτε νέα τιµή θέλουµε. m1, είναι η αρχική τιµή που θα πάρει η µεταβλητή i πριν από την πρώτη εκτέλεση της εντολής Do. m2, είναι η τελική τιµή που µπορεί να πάρει η µεταβλητή i και να εκτελεστεί η επανάληψη. m3, είναι το βήµα, δηλαδή η τιµή αύξησης της µεταβλητής i σε κάθε επανάληψη της ανακύκλωσης. Μπορεί να παραληφθεί το βήµα και τότε εννοείται η µονάδα αλλά ποτέ δεν πρέπει να πάρει την τιµή µηδέν. π.χ. µπορούµε να γράψουµε: M = 0 Do 10 K = 1, 15, 1 10 Μ=Μ+Κ Write(6, 20) Μ 20 Format(1Χ, Ι5) 37

2 Εισαγωγή στη γλώσσα Fortran Εδώ βρίσκουµε και εµφανίζουµε την τιµή του αθροίσµατος των 15 πρώτων ακέραιων αριθµών. Ο µηχανισµός λειτουργίας της εντολής είναι ο εξής : Οι εντολές που βρίσκονται ανάµεσα στη γραµµή της εντολής Do..., και την εντολή (συµπεριλαµβανοµένης και της εντολής αυτής) που έχει ετικέτα τον αριθµό που ακολουθεί τη λέξη Do, επαναλαµβάνονται τόσες φορές, όσες χρειάζεται για να πάµε από τον πρώτο δείκτη στο δεύτερο δείκτη µε βήµα τον τρίτο δείκτη. Συνολικά ο αριθµός των ανακυκλώσεων που εκτελούνται είναι: m2 m m3 όπου [ ] δηλώνει το ακέραιο µέρος. Τα m1, m2, m3 µπορούν να πάρουν µόνο ακέραιες τιµές (στη Fortran 90/95) ενώ στη Fortran 77 µπορούν να πάρουν και πραγµατικές τιµές και µπορούν να είναι είτε αριθµητικές σταθερές είτε µεταβλητές αλλά όχι µεταβλητές µε δείκτες. Μια εντολή Do εκτελείται από τον υπολογιστή, µε τον ακόλουθο τρόπο: Περίπτωση 1 η : m 3 > 0. Αν m 1 > m 2, τότε µεταφερόµαστε εκτός της ανακύκλωσης. ιαφορετικά, η µεταβλητή i παίρνει την αρχική τιµή m 1. Εκτελούνται οι εντολές που βρίσκονται ανάµεσα στη γραµµή της εντολής Do..., και την εντολή (συµπεριλαµβανοµένης και της εντολής αυτής) που έχει ετικέτα τον αριθµό που ακολουθεί τη λέξη Do. Στη συνέχεια, προσθέτουµε στη µεταβλητή i το βήµα m 3 και ελέγχουµε αν i m 2. Αν ικανοποιείται ο έλεγχος επαναλαµβάνεται όλη η προηγούµενη διαδικασία. Αν δεν ικανοποιείται ο έλεγχος τότε µεταφερόµαστε εκτός της ανακύκλωσης. Περίπτωση 1 η : m 3 < 0. Αν m 1 < m 2, τότε µεταφερόµαστε εκτός της ανακύκλωσης. ιαφορετικά, η µεταβλητή i παίρνει την αρχική τιµή m 1. Εκτελούνται οι εντολές που βρίσκονται ανάµεσα στη γραµµή της εντολής Do..., και την εντολή (συµπεριλαµβανοµένης και της εντολής αυτής) που έχει ετικέτα τον αριθµό που ακολουθεί τη λέξη Do. Στη συνέχεια, προσθέτουµε στη µεταβλητή i το βήµα m 3 και ελέγχουµε αν i m 2. Αν ικανοποιείται ο έλεγχος επαναλαµβάνεται όλη η προηγούµενη διαδικασία. Αν δεν ικανοποιείται ο έλεγχος τότε µεταφερόµαστε εκτός της ανακύκλωσης. Περίπτωση 3 η : m 3 = 0. εν υπάρχει τέτοια περίπτωση. Παραδείγµατα: Do 15 Ι = 5, 5, 2 Do 32 Κ = 1, 10, 5 Η επανάληψη των εντολών εκτελείται µια φορά για την τιµή Ι = 5 Η επανάληψη των εντολών εκτελείται δύο φορές: µια για την τιµή Κ = 1 και µια για την τιµή Κ = 6 38

3 Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Do 35 L = 1, 3, 3 Do 64 Ι = 3, 1, 1 Do 18 IV = -1, 1 Η επανάληψη των εντολών εκτελείται µια φορά για την τιµή L = 1 Η επανάληψη των εντολών δεν θα εκτελεσθεί καµία φορά επειδή m 1 > m 2 και m 3 > 0. Η επανάληψη των εντολών θα εκτελεστεί 3 φορές (εννοείται βήµα = 1): µια για IV= -1, µία για IV=0 και µία για IV=1. Παρατηρήσεις: Μπορούµε µέσα σε µια ανακύκλωση να έχουµε και άλλες ανακυκλώσεις, οι οποίες πρέπει να πληρούν τον κανόνα: Το εύρος κάθε εσωτερικής ανακύκλωσης να βρίσκεται πάντα µέσα στο εύρος της αµέσως εξωτερικής της ανακύκλωσης και να µην χρησιµοποιείται η ίδια µεταβλητή (i) ελέγχου. ύο ή και περισσότερες είτε και όλες οι ανακυκλώσεις µπορούν να έχουν την ίδια τελευταία εντολή. Όταν έχουµε πολλές ανακυκλώσεις, τη µια µέσα στην άλλη, πρώτα εκτελείται εκείνη που βρίσκεται στο εσωτερικό και στη συνέχεια µια-µια από το εσωτερικό προς το εξωτερικό εκτελούνται οι υπόλοιπες µέχρις ότου φθάσουµε στην πλέον εξωτερική ανακύκλωση Η εντολή Continue Η εντολή Continue είναι µια εντολή που ενώ εκτελείται δεν έχει καµιά αποτελεσµατικότητα. Συνήθως µπαίνει στο τέλος µιας ανακύκλωσης για να αποφύγουµε τις απαγορευµένες εντολές και επειδή µπορεί να πάρει ετικέτα. Το παράδειγµα, για τον υπολογισµό της τιµής του αθροίσµατος των 15 πρώτων ακέραιων αριθµών, µπορεί να γραφτεί τώρα και µε τον ακόλουθο τρόπο: M = 0 Do 10 K = 1, 15, 1 Μ=Μ+Κ 10 Continue Write(6, 20) Μ 20 Format(1Χ, Ι5) Βλέπουµε λοιπόν ότι η εντολή CONTINUE δεν επηρεάζει το αποτέλεσµα αλλά µπορεί να χρησιµεύσει σαν την τελευταία εντολή µιας ανακύκλωσης. 39

4 Εισαγωγή στη γλώσσα Fortran 5.2 Νέες µορφές εντολών επανάληψης (Do) στη Fortran 90/95 Με τη Fortran 90/95, για να ελαττωθεί η χρήση των ετικετών και για να προσαρµοσθεί η Fortran στο δοµηµένο προγραµµατισµό, έχει εισαχθεί µια νέα µορφή γραφής της εντολής Do, η Do, η οποία µπορεί να χρησιµοποιηθεί µε τρεις µορφές σύνταξης Η πρώτη µορφή της Do (Do (Exit)) Η γενική µορφή αυτής της εντολής είναι: Do Εντολές της Fortran Οι εντολές της FORTRAN που περιλαµβάνονται σε µια παρόµοια εντολή Do θα επαναλαµβάνονται µέχρις ότου συναντηθεί µια εντολή εξόδου από τις επαναλήψεις. Εποµένως, πρέπει να είµαστε πολύ προσεκτικοί στη χρήση αυτής της εντολής για να µην υποπέσουµε σε άπειρες επαναλήψεις (πρόγραµµα χωρίς τέλος). Για την καλλίτερη και πιο αποτελεσµατική αντιµετώπιση παροµοίων προβληµάτων έχει εισαχθεί στην Fortran 90/95 η εντολή Exit. H εντολή Exit χρησιµεύει για να διακόπτεται η προκαθορισµένη σειρά επανάληψης των εντολών µέσα σε µια ενότητα εντολής Do. ηλαδή, η εντολή Exit µεταφέρει αυτόµατα τον έλεγχο για τη συνέχιση των πράξεων, έξω από την ενότητα των επαναλαµβανόµενων εντολών. Μια εντολή Exit µπορεί να χρησιµοποιηθεί ΜΟΝΟ µέσα σε οποιαδήποτε εντολή DO και ΟΧΙ σε άλλο σηµείο του προγράµµατος. Αν υπάρχουν πολλές ανακυκλώσεις, η µια µέσα στην άλλη, µια εντολή Exit σε εσωτερική ανακύκλωση, σταµατά τον έλεγχο των ανακυκλώσεων µόνο στη συγκεκριµένη εσωτερική ανακύκλωση και µεταφέρει τον έλεγχο στην αµέσως πιο εξωτερική από αυτήν ανακύκλωση. Εποµένως η γενική µορφή αυτής της εντολής µε τη χρήση της εντολής Exit είναι: Do Εντολές της Fortran If (Λογική Συνθήκη) Exit Σηµείωση: Παρατηρούµε ότι µε τη πρώτη µορφή της Do και µε τη χρήση της εντολής Exit έχουµε επανάληψη εντολών έως ότου ικανοποιηθεί µια συνθήκη. Για να µην υποπέσουµε σε άπειρες επαναλήψεις (πρόγραµµα χωρίς τέλος), θα πρέπει Λογική Συνθήκη που οδηγεί στην έξοδο (Exit) από την ανακύκλωση, να αλλάζει σε κάθε επανάληψη τιµή, όπως επίσης και να έχει αρχική τιµή. 40

5 Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Παράδειγµα: Να γραφεί πρόγραµµα το οποίο θα διαβάζει ένα σύνολο ακεραίων αριθµών και θα υπολογίζει το άθροισµά τους έως ότου εµφανιστεί αρνητικός αριθµός Η δεύτερη µορφή της Do (Do While) Με τη δεύτερη µορφή της Do έχουµε επανάληψη εντολών όσο ικανοποιείται µια συνθήκη. Η γενική µορφή αυτής της εντολής είναι: Do While (Λογική Συνθήκη) Εντολές της Fortran Οι Εντολές της Fortran που περιλαµβάνονται σε µια εντολή Do While θα επαναλαµβάνονται µέχρις ότου η Λογική Συνθήκη γίνει ψευδής. Όσο η τιµή της Λογικής Συνθήκης παραµένει αληθής, θα επαναλαµβάνονται οι ανακυκλώσεις. Εποµένως, για να έχει κάποιο ενδιαφέρον η χρήση αυτής της εντολής και για να µην υποπέσουµε σε άπειρες επαναλήψεις (πρόγραµµα χωρίς τέλος), θα πρέπει η τιµή της Λογικής Συνθήκης να αλλάξει τιµή και να γίνει ψευδής κατά τη διάρκεια της εκτέλεσης των εντολών της Fortran, καθώς επίσης και να έχει αρχική τιµή. Αν η αρχική τιµή της Λογικής Συνθήκη είναι ψευδής δεν θα εκτελεστεί ούτε µια από τις εντολές δηλαδή, δεν θα γίνει καµία επανάληψη. Παράδειγµα: Να γραφεί πρόγραµµα το οποίο θα διαβάζει ένα σύνολο ακεραίων αριθµών και θα υπολογίζει το άθροισµά τους έως ότου εµφανιστεί αρνητικός αριθµός. (Με χρήση της εντολής Do While). Παρατηρούµε ότι ένα πρόγραµµα που γράφεται µε χρήση της Do (Exit) µπορεί να γραφεί και µε τη χρήση της Do While. Με τη µόνη διαφορά ότι ως Λογική Συνθήκη της Do While χρησιµοποιούµε την άρνηση της Λογικής Συνθήκης που µας οδηγεί σε έξοδο σε µία Do (Exit) Η τρίτη µορφή της Do (Γενική µορφή) Με τη τρίτη µορφή της Do έχουµε επανάληψη των εντολών για ένα συγκεκριµένο πλήθος φορών. Η γενική µορφή της εντολής είναι: Do i = m1, m2, m3 όπου: Εντολές της Fortran i, είναι µία ακέραια µεταβλητή που λέγεται και µεταβλητή ελέγχου. εν πρέπει ποτέ µέσα σε µια ανακύκλωση να ορίσουµε ξανά την τιµή της. Όταν τελειώσουν οι επαναλήψεις (ανακυκλώσεις) της εντολής Do µπορούµε να δώσουµε στη µεταβλητή i οποιαδήποτε νέα τιµή θέλουµε. 41

6 Εισαγωγή στη γλώσσα Fortran m1, είναι η αρχική τιµή που θα πάρει η µεταβλητή i πριν από την πρώτη εκτέλεση της εντολής Do. m2, είναι η τελική τιµή που µπορεί να πάρει η µεταβλητή i και να εκτελεστεί η επανάληψη. m3, είναι το βήµα, δηλαδή η τιµή αύξησης της µεταβλητής i σε κάθε επανάληψη της ανακύκλωσης. Μπορεί να παραληφθεί το βήµα και τότε εννοείται η µονάδα αλλά ποτέ δεν πρέπει να πάρει την τιµή µηδέν. Η γενική εντολή Do εκτελείται από τον υπολογιστή, µε τον ακόλουθο τρόπο: Περίπτωση 1 η : m 3 > 0. Αν m 1 > m 2, τότε µεταφερόµαστε εκτός της ανακύκλωσης. ιαφορετικά, η µεταβλητή i παίρνει την αρχική τιµή m 1. Εκτελούνται οι εντολές της Fortran που βρίσκονται µέσα στην εντολής Do. Στη συνέχεια, προσθέτουµε στη µεταβλητή i το βήµα m 3 και ελέγχουµε αν i m 2. Αν ικανοποιείται ο έλεγχος επαναλαµβάνεται όλη η προηγούµενη διαδικασία. Αν δεν ικανοποιείται ο έλεγχος τότε µεταφερόµαστε εκτός της ανακύκλωσης. Περίπτωση 1 η : m 3 < 0. Αν m 1 < m 2, τότε µεταφερόµαστε εκτός της ανακύκλωσης. ιαφορετικά, η µεταβλητή i παίρνει την αρχική τιµή m 1. Εκτελούνται οι εντολές της Fortran που βρίσκονται µέσα στην εντολής Do. Στη συνέχεια, προσθέτουµε στη µεταβλητή i το βήµα m 3 και ελέγχουµε αν i m 2. Αν ικανοποιείται ο έλεγχος επαναλαµβάνεται όλη η προηγούµενη διαδικασία. Αν δεν ικανοποιείται ο έλεγχος τότε µεταφερόµαστε εκτός της ανακύκλωσης. Περίπτωση 3 η : m 3 = 0. εν υπάρχει τέτοια περίπτωση. Παράδειγµα: Να εκτυπωθούν οι αριθµοί από το 1 ως το 5. Do i = 1, 5, 1 Write(*, *) i Το i παίρνει αρχική τιµή 1. Στη συνέχεια γίνεται ο έλεγχος αν το i (= 1) 5. Εφόσον η συνθήκη είναι αληθής, εκτυπώνεται το i (δηλαδή το 1). Επειδή το βήµα είναι 1, συνεπώς το i παίρνει τη τιµή i = = 2. Επαναλαµβάνεται ο έλεγχος αν i (= 2) 5 κ.τ.λ. Στο τέλος, εφόσον εκτυπωθεί και το 5, η τιµή του i αυξάνει κατά 1, δηλαδή i = που δεν είναι µικρότερο ή ίσο του 5 και συνεπώς, µεταφέρεται ο έλεγχος εκτός ανακύκλωσης. Σε ενδεχόµενη λοιπόν ερώτηση για την τιµή του i µετά την ανακύκλωση, η σωστή απάντηση θα ήταν 6 και όχι 5 όπως πιθανόν να φαινόταν. Παρατηρήσεις: Το βήµα θα πρέπει να είναι πάντα διαφορετικό από το µηδέν. Κατά τη διάρκεια της ανακύκλωσης δεν θα πρέπει να αλλάξουµε τις τιµές των m 1, m 2 και m 3. 42

7 Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Θα πρέπει να προσέχουµε να µην παραλείπουµε το βήµα όταν είναι αρνητικό π.χ. -1. Η µεταβλητή που χρησιµοποιούµε στην ανακύκλωση, καθώς και οι τιµές m 1 (αρχική τιµή), m 2 (τελική τιµή) και m 3 (βήµα), θα πρέπει να είναι ακέραιες, πρώτον, διότι διαφορετικά µπορεί να δηµιουργηθούν λάθη αποκοπής και δεύτερον, διότι σε κάποιες εκδόσεις της Fortran χρησιµοποιούνται µόνο ακέραιες µεταβλητές. Ο αριθµός των φορών που θα εκτελεστεί µια ανακύκλωση µε την γενική µορφή της εντολής Do είναι: όπου [ ] δηλώνει το ακέραιο µέρος. m2 m m3 Μπορούµε µέσα σε µια ανακύκλωση να έχουµε και άλλες ανακυκλώσεις, οι οποίες πρέπει να πληρούν τον κανόνα: Το εύρος κάθε εσωτερικής ανακύκλωσης να βρίσκεται πάντα µέσα στο εύρος της αµέσως εξωτερικής της ανακύκλωσης και να µην χρησιµοποιείται η ίδια µεταβλητή (i) ελέγχου. Όταν έχουµε πολλές ανακυκλώσεις, τη µια µέσα στην άλλη, πρώτα εκτελείται εκείνη που βρίσκεται στο εσωτερικό και στη συνέχεια µια-µια από το εσωτερικό προς το εξωτερικό εκτελούνται οι υπόλοιπες µέχρις ότου φθάσουµε στην πλέον εξωτερική ανακύκλωση. Μια εντολή Do γενικής µορφής µπορεί να γραφεί µε τη µορφή Do While ή Do (Exit). Πράγµατι, αν m 2 m 1 και m 3 0, θα έχουµε: Γενική µορφή: Μορφή Do While: Μορφή Do (Exit) Do i = m 1, m 2, m 3 Εντολές της Fortran i = m 1 Do While (i m 2 ) Εντολές της Fortran i = i + m 3 i = m 1 Do Εντολές της Fortran i = i + m 3 If (i > m 2 ) Exit 43

8 Εισαγωγή στη γλώσσα Fortran 5.3 Παραδείγµατα Παράδειγµα 1: Να γραφεί πρόγραµµα το οποίο θα διαβάζει ένα σύνολο ακεραίων αριθµών και θα υπολογίζει το άθροισµα έως ότου εµφανιστεί ένας αρνητικός αριθµός. C Program Sum_Positive1 Με χρήση της εντολής Do της µορφής Do (Exit) Integer:: x, s = 0 Do Write(*,*) Give an Integer Read(*,*) x If (x.lt.0) Exit s = s + x Write(*,*) Sum=, s C Program Sum_Positive2 Με χρήση της εντολής Do της µορφής Do While Integer:: x, s = 0 Write(*,*) 'Give an Integer' Read(*,*) x Do While (x.ge.0) s = s + x Write(*,*) 'Give an Integer' Read(*,*) x do Write(*,*) 'Sum=', s Παράδειγµα 2: Να γραφεί πρόγραµµα το οποίο θα υπολογίζει το µέγιστο κοινό διαιρέτη δύο αριθµών a, b βάσει του αναδροµικού τύπου ΜΚ (a b, b), αν a > b ΜΚ ( a,b) = ΜΚ (a,b a) αν a < b. a αν a = b 44

9 Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Program MKD Integer a, b Write(*,*) Give two integers Read(*,*) a, b Do While (a.ne.b) If (a.gt.b) Then a = a b Else b = b a if Write(*,*) MKD=, a Παράδειγµα 3: Να γραφεί πρόγραµµα που θα υπολογίζει το ελάχιστο κοινό πολλαπλάσιο δύο αριθµών a, b βάσει του εξής αλγορίθµου: Τοποθετούµε στη θέση του a το µεγαλύτερο από τους 2 αριθµούς και στη θέση του b το µικρότερο. Αν ο a είναι πολλαπλάσιο του b, τότε ο a είναι το ΕΚΠ, διαφορετικά διπλασιάζουµε, τριπλασιάζουµε κ.τ.λ. τον a, έως ότου το πολλαπλάσιο του a να είναι και πολλαπλάσιο του b. Το πρώτο πολλαπλάσιο του a που είναι και πολλαπλάσιο του b, είναι το ΕΚΠ που ψάχνουµε. Program EKP Integer a, b, temp, i Write(*,*) Give two integers Read(*,*) a, b If (a.lt.b) Then temp = a a = b b = temp if i = 1 Do While (MOD(i*a,b).NE.0) i = i + 1 Write(*,*) EKP=,i*a 45

10 Εισαγωγή στη γλώσσα Fortran Παράδειγµα 4: Ο υπολογισµός της τετραγωνικής ρίζας του πραγµατικού αριθµού a γίνεται από τον αναδροµικό τύπο: 1 a x = + n x n 1. 2 x n 1 Να γραφεί πρόγραµµα που θα υπολογίζει την τετραγωνική ρίζα ενός πραγµατικού αριθµού a µε ακρίβεια ε = 10-6 a, αν πάρουµε ως αρχική τιµή της προσέγγισης το x 0 =. 3 Program Tetragoniki_Riza Real e Parameter (e = ) Real a, xold, xnew Write(*,*) 'Give a real' Read(*,*) a xold = a/3 xnew = (1./2)*(xold+a/xold) Do While (ABS(xnew-xold).GE.e) xold = xnew xnew = (1./2)*(xold+a/xold) Write(*,*) Tetragoniki Riza =, xnew Παράδειγµα 5: Να γραφεί πρόγραµµα που θα υπολογίζει το άθροισµα: S = Program Athroisma Integer:: s = 0, i Do i = 1, 100 s = s + i Write(*,*) S=, s 46

11 Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Παράδειγµα 6: Να γραφεί πρόγραµµα που θα υπολογίζει το N! (N! = 1*2* *N) Program Paragontiko Real*8:: p = 1 Integer i, n Write(*,*) Give the n Read(*,*) n If (n.lt.0) Then Write(*,*) Error, n must be positive Else if (n.eq.0) Then Write(*,*) 0! = 1 Else Do i = 1, n p = p * i Write(*,*) n,!=, p if Παρατήρηση: Κανονικά η µεταβλητή p στην οποία θα αποθηκεύονται τα µερικά γινόµενα θα έπρεπε να είναι ακέραια αφού έχουµε γινόµενα ακεραίων αριθµών. Όµως, όπως είδαµε ( 3.2), ακόµα και Integer*4 να δηλώσουµε την µεταβλητή p, το εύρος τιµών της µεταβλητής θα κυµαίνεται από έως Επειδή, όσο µεγαλώνει το n τόσο πιο πολύ µεγαλώνει η τιµή της µεταβλητής p, δηλώνουµε τη µεταβλητή p ως Real*8 για να έχει µεγαλύτερο εύρος τιµών. Παράδειγµα 7: Να γραφεί πρόγραµµα που θα διαβάζει από το πληκτρολόγιο το πλήθος N > 2 αριθµών και στη συνέχεια αφού διαβασθούν οι N αριθµοί να υπολογισθούν και να εµφανιστούν τα εξής: α) ο µεγαλύτερος αριθµός, β) ο µικρότερος αριθµός και γ) ο µέσος όρος τους. 47

12 Εισαγωγή στη γλώσσα Fortran Program Max_Min_Average Real x, s, max, min Integer i, n C Έλεγχος ότι η τιµή του Ν θα είναι µεγαλύτερη από 2 Do Write(*,*) Give the N Read(*,*) n If (n.gt.2) Exit Write(*,*) Give a number Read(*,*) x s = x max = x min = x Do i = 2, n Write(*,*) Give a number Read(*,*) x If (max.lt.x) max = x If (min.gt.x) min = x s = s + x Write(*,*) MAX=, max Write(*,*) MIN=,min Write(*,*) AVERAGE=, s/n Παράδειγµα 8: Να γραφεί πρόγραµµα που θα εµφανίζει τη γνωστή προπαίδεια. Program Propaideia Integer i, j Do i = 1, 10 Do j = 1, 10 Write(*,*) i, *, j, =, i*j 48

13 Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Παράδειγµα 9: Να γραφεί πρόγραµµα που θα βρίσκει και θα εµφανίζει τους ακέραιους αριθµούς a, b, c (Πυθαγόρειοι αριθµοί) που ανήκουν στο διάστηµα [1, 10] και ικανοποιούν την ιδιότητα: a 2 + b 2 = c 2. Program Pythagorioi_Arithmoi1 Integer a, b, c Do a = 1, 10 Do b = 1, 10 Do c = 1, 10 If ((a**2+b**2).eq.(c**2)) Then Write(*,*) a, b, c if Παρατήρηση: Παρατηρούµε ότι στο αποτέλεσµα του προηγούµενου προγράµµατος εµφανίζονται ίδιες τριάδες αριθµών µε διαφορετική βέβαια σειρά. Μπορούµε να τροποποιήσουµε το παραπάνω πρόγραµµα (δες το παρακάτω πρόγραµµα) έτσι ώστε να µην έχουµε επανάληψη τριάδων. Program Pythagorioi_Arithmoi2 Integer a, b, c Do a = 1, 10 Do b = a, 10 Do c = b, 10 If ((a**2+b**2).eq.(c**2)) Then Write(*,*) a, b, c if 49

14 Εισαγωγή στη γλώσσα Fortran 50

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

1. ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C++

1. ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C++ Email: liliadis@fmenr.duth.gr 1. ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C++ Τα προγράµµατα αποτελούνται από εντολές οι οποίες γράφονται σε έναν απλό επεξεργαστή που προσφέρει και το Περιβάλλον της Visual C++. Οι εντολές

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

ΦΥΣ 145 - Διαλ.03. Ø Εντολές ελέγχου και λογικής. Ø Εντολές µεταφοράς. Ø Βρόγχοι επανάληψης εντολών. Ø Βρόγχοι επανάληψης µε λογικές σχέσεις

ΦΥΣ 145 - Διαλ.03. Ø Εντολές ελέγχου και λογικής. Ø Εντολές µεταφοράς. Ø Βρόγχοι επανάληψης εντολών. Ø Βρόγχοι επανάληψης µε λογικές σχέσεις ΦΥΣ 145 - Διαλ.03 1 Ø Εντολές ελέγχου και λογικής Ø Εντολές µεταφοράς Ø Βρόγχοι επανάληψης εντολών Ø Βρόγχοι επανάληψης µε λογικές σχέσεις Εντολές Ελέγχου και Λογικής ΦΥΣ 145 - Διαλ.03 2 q Τα assignment

Διαβάστε περισσότερα

ΠΡΟΓΡΜΜΑΤΑ ΣΕ C. Γράψτε σε γλώσσα προγραμματισμού C τη συνάρτηση:

ΠΡΟΓΡΜΜΑΤΑ ΣΕ C. Γράψτε σε γλώσσα προγραμματισμού C τη συνάρτηση: ΠΡΟΓΡΜΜΑΤΑ ΣΕ C Γράψτε σε γλώσσα προγραμματισμού C τη συνάρτηση: int b_to_d(int dyad[16]) που δέχεται ως είσοδο έναν θετικό ακέραιο δυαδικό αριθμό με τη μορφή πίνακα δυαδικών ψηφίων και επιστρέφει τον

Διαβάστε περισσότερα

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ 1 1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ ΜΚ ΕΚΠ ΑΝΑΛΥΣΗ ΑΡΙΘΜΟΥ ΣΕ ΓΙΝΟΜΕΝΟ ΠΡΩΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΘΕΩΡΙΑ 1. Πολλαπλάσια του α : Είναι οι αριθµοί που προκύπτουν αν πολλαπλασιάσουµε τον α µε όλους τους φυσικούς. Είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΠΕΜΠΤΟ Triggers, Stored procedures Γιώργος Μαρκοµανώλης Περιεχόµενα Triggers-Ενηµέρωση δεδοµένων άλλων πινάκων... 1 Ασφάλεια...

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Σκοπός του μαθήματος Σκοπός του παρόντος μαθήματος είναι να μάθετε να κάνετε εισαγωγή δεδομένων σε πίνακες και περαιτέρω επεξεργασία

Διαβάστε περισσότερα

Εκτέλεση της εντολής1 και στη συνέχεια εκτέλεση της ΕΝΟΤΗΤΑΣ και της εντολής2 όσο η ΣΥΝΘΗΚΗ είναι αληθής.

Εκτέλεση της εντολής1 και στη συνέχεια εκτέλεση της ΕΝΟΤΗΤΑΣ και της εντολής2 όσο η ΣΥΝΘΗΚΗ είναι αληθής. ΟΙ 3 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΟΜΕΣ ΣΤΗΝ ΓΛΩΣΣΑ C Η εντολή for: Η γενικευμένη σύνταξη της εντολής είναι: for (εντολή1; ; εντολή2) ΕΝΟΤΗΤΑ Η ΕΝΟΤΗΤΑ μπορεί να είναι μία ή περισσότερες εντολές (block) μέσα

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Βασικά στοιχεία ενός προγράµµατος της γλώσσας Fortran

Κεφάλαιο 3ο: Βασικά στοιχεία ενός προγράµµατος της γλώσσας Fortran Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 3ο: Βασικά στοιχεία ενός προγράµµατος της γλώσσας Fortran 3.1 Μορφή Προγράµµατος Τα προγράµµατα Fortran γράφονται σε αρχείο

Διαβάστε περισσότερα

Μιχάλης Αρταβάνης κλάδου Πληροφορικής ΠΕ19

Μιχάλης Αρταβάνης κλάδου Πληροφορικής ΠΕ19 Φυλλάδιο Ασκήσεων 1 - οµές Επανάληψης Ασκ1. Πόσες φορές θα εκτελεστούν οι επαναληπτικές δοµές στα παρακάτω τµήµατα αλγορίθµων; x 5 Όσο (x > 0) x x - 1 x 5 Όσο (x >= 0) x x - 1 x -5 Όσο (x >= 0) x x - 1

Διαβάστε περισσότερα

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-6 και

Διαβάστε περισσότερα

Fortran και Αντικειμενοστραφής προγραμματισμός. www.corelab.ntua.gr/courses/fortran_naval/naval

Fortran και Αντικειμενοστραφής προγραμματισμός. www.corelab.ntua.gr/courses/fortran_naval/naval Fortran και Αντικειμενοστραφής προγραμματισμός Διδάσκοντες: www.corelab.ntua.gr/courses/fortran_naval/naval Άρης Παγουρτζής (pagour@cs.ntua.gr) (Επίκουρος Καθηγητής ΣΗΜΜΥ ) Δώρα Σούλιου (dsouliou@mail.ntua.gr)

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέµα 1 ο Α. Να απαντήσετε τις παρακάτω ερωτήσεις τύπου Σωστό Λάθος (Σ Λ) 1. Σκοπός της συγχώνευσης 2 ή περισσοτέρων ταξινοµηµένων πινάκων είναι η δηµιουργία

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ,

Διαβάστε περισσότερα

Κεφάλαιο 8.6. Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο 8.6. Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 8.6 Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 16-1 Πίνακες - Επανάληψη Στην προηγούµενη διάλεξη κάναµε µια εισαγωγή στην δοµή δεδοµένων Πίνακας Σε ένα πίνακα ένα σύνολο αντικειµένων

Διαβάστε περισσότερα

Άσκηση 1 (α) Να διατυπώσετε την πιο κάτω λογική έκφραση στη Visual Basic κάνοντας χρήση μεταβλητών:

Άσκηση 1 (α) Να διατυπώσετε την πιο κάτω λογική έκφραση στη Visual Basic κάνοντας χρήση μεταβλητών: Άσκηση 1 (α) Να διατυπώσετε την πιο κάτω λογική έκφραση στη Visual Basic κάνοντας χρήση μεταβλητών: (Μον.2) Η ηλικία είναι μεταξύ των 15 και 18 συμπεριλαμβανομένων (β) Αν Χ= 4, Υ=2, Κ=2 να βρείτε το αποτέλεσμα

Διαβάστε περισσότερα

Τεχνικές Προγραμματισμού

Τεχνικές Προγραμματισμού Νικόλαος Β. Πλατής Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής Τεχνικές Προγραμματισμού Μάρτιος 2001 1. Εισαγωγή 1.1 Βασικές έννοιες Η επιστήμη της Πληροφορικής μελετά την επίλυση προβλημάτων με τη βοήθεια

Διαβάστε περισσότερα

ΕΠΛ031 - Εισαγωγή στον Προγραμματισμό

ΕΠΛ031 - Εισαγωγή στον Προγραμματισμό Επικοινωνία Προγράμματος Περιβάλλοντος ΕΠΛ031 Εισαγωγή στον Προγραμματισμό Επικοινωνία Προγράμματος Περιβάλλοντος Λογικές Μονάδες Μεταφορά εδομένων Μορφοποίηση εδομένων Νέαρχος Πασπαλλής Επισκέπτης Ακαδημαϊκός

Διαβάστε περισσότερα

1ο. Η αριθµητική του υπολογιστή

1ο. Η αριθµητική του υπολογιστή 1ο. Η αριθµητική του υπολογιστή 1.1 Τί είναι Αριθµητική Ανάλυση Υπάρχουν πολλά προβλήµατα στη µαθηµατική επιστήµη για τα οποία δεν υπάρχουν αναλυτικές εκφράσεις λύσεων. Στις περιπτώσεις αυτές έχουν αναπτυχθεί

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2010 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. ίνονται τα παρακάτω τµήµατα αλγορίθµου σε φυσική γλώσσα. 1. Αν η

Διαβάστε περισσότερα

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές αλγοριθμικές δομές

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές αλγοριθμικές δομές Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές αλγοριθμικές δομές Βασικές Αλγοριθμικές Δομές 2 Εισαγωγή Οι αλγοριθμικές δομές εκφράζουν διαφορετικούς τρόπους γραφής ενός αλγορίθμου.

Διαβάστε περισσότερα

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος 1. Πως ορίζεται και τι σημαίνει ο όρος flop στους επιστημονικούς υπολογισμούς. Απάντηση: Ο όρος flop σημαίνει floating point operation

Διαβάστε περισσότερα

Α3. Ποια είναι τα πλεονεκτήματα του Δομημένου προγραμματισμού; (Μονάδες 10)

Α3. Ποια είναι τα πλεονεκτήματα του Δομημένου προγραμματισμού; (Μονάδες 10) ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08 / 02 / 2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ Γ.ΝΙΤΟΔΑΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Ο Α. Να χαρακτηρίσετε µε σωστό ή λάθος τις παρακάτω προτάσεις: 1. Ανοικτά είναι τα προβλήµατα που δεν

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ Σελίδα 1 από 12 www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ Σε συνεργασία µε τις εκδόσεις ΕΛΛΗΝΟΕΚ ΟΤΙΚΗ κυκλοφορούν τα βοηθήµατα «Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΤΕΤΑΡΤΟ Insert, Update, Delete, Ένωση πινάκων Γιώργος Μαρκοµανώλης Περιεχόµενα Group By... 1 Having...1 Οrder By... 2 Εντολή Insert...

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Κεφάλαιο 10ο: ιαδικασιακός

Κεφάλαιο 10ο: ιαδικασιακός Diadikasiakos_Programmatismos.nb Κεφάλαιο 0ο: ιαδικασιακός Προγραµµατισµός 0. Ανάθεση τιµών σε µεταβλητές Ο τελεστής ανάθεσης (=, :=) χρησιµοποιείται για να τοποθετήσουµε το αποτέλεσµα µιας έκφρασης (τιµή

Διαβάστε περισσότερα

ιαχείριση Πληροφοριών στο ιαδίκτυο

ιαχείριση Πληροφοριών στο ιαδίκτυο ιαχείριση Πληροφοριών στο ιαδίκτυο Εργαστήριο (Φυλλάδιο 8) ΤΕΙ Καβάλας - Σχολή ιοίκησης & Οικονοµίας Τµήµα ιαχείρισης Πληροφοριών ιδάσκων: Μαρδύρης Βασίλειος, ιπλ. Ηλ. Μηχανικός & Μηχ. Υπολογιστών, MSc

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Τα δεδομένα στη C++ χωρίζονται σε 3 κατηγορίες: τους αριθμούς (numbers), τους χαρακτήρες (characters) και τις συμβολοσειρές (strings).

Τα δεδομένα στη C++ χωρίζονται σε 3 κατηγορίες: τους αριθμούς (numbers), τους χαρακτήρες (characters) και τις συμβολοσειρές (strings). Για να λύσουμε ένα πρόβλημα στη C++ χρειαζόμαστε δυο βασικές έννοιες. Η μια είναι οι οδηγίες εντολές, ο αλγόριθμος δηλαδή, που πρέπει να ακολουθήσουμε για να λύσουμε το πρόβλημά μας και η άλλη είναι τα

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Εισαγωγή στην FORTRAN. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Εισαγωγή στην FORTRAN. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στην FORTRAN Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 Fortran FORmula TRANslation: (Μία από τις πρώτες γλώσσες τρίτης γενιάς) Εκδόσεις FORTRAN (1957) FORTRAN II (1958) FORTRAN III

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ

ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ42 - ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΛΟΓΙΣΜΙΚΟΥ 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΑΚΑ ΗΜΑΪΚΟΥ ΕΤΟΥΣ 2009-2010 2 oς Τόµος ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ ΕΡΓΑΣΙΑ 2 i. υναµική τεχνική επικύρωσης:

Διαβάστε περισσότερα

3. Σηµειώσεις Access. # Εισαγωγή ψηφίου ή κενού διαστήµατος. Επιτρέπονται τα ση-

3. Σηµειώσεις Access. # Εισαγωγή ψηφίου ή κενού διαστήµατος. Επιτρέπονται τα ση- Μάθηµα 3 Προχωρηµένες ιδιότητες πεδίων Μάσκες εισαγωγής Οι ιδιότητες Μορφή και Μάσκα εισαγωγής περιγράφονται µαζί γιατί έχουν κοινά χαρακτηριστικά που αφορούν την εµφάνιση. Με την ιδιότητα Μορφή καθορίζουµε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 Α.

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 Α. ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 Α. 1. Αν το Α έχει την τιµή 10 και το Β την τιµή 20 τότε η έκφραση (Α > 8 ΚΑΙ Β < 20) Ή (Α > 10 Ή Β = 10) είναι αληθής 2. Σε περίπτωση εµφωλευµένων βρόχων, ο εσωτερικός

Διαβάστε περισσότερα

Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015

Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Βάλβης Δημήτριος Μηχανικός Πληροφορικής ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ 1 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη

Διαβάστε περισσότερα

ÏÅÖÅ. Β. Να αναφέρετε τις κυριότερες τυποποιηµένες τεχνικές σχεδίασης αλγορίθµων. ΜΟΝΑ ΕΣ 3

ÏÅÖÅ. Β. Να αναφέρετε τις κυριότερες τυποποιηµένες τεχνικές σχεδίασης αλγορίθµων. ΜΟΝΑ ΕΣ 3 1 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 Ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό

Διαβάστε περισσότερα

7. Βασικά στοιχεία προγραµµατισµού.

7. Βασικά στοιχεία προγραµµατισµού. 7. Βασικά στοιχεία προγραµµατισµού. ΗΜ01-Θ1Γ Δίνονται οι παρακάτω έννοιες: 1. Λογικός τύπος δεδοµένων 2. Επιλύσιµο 3. Ακέραιος τύπος δεδοµένων 4. Περατότητα 5. Μεταβλητή 6. Ηµιδοµηµένο 7. Πραγµατικός τύπος

Διαβάστε περισσότερα

ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑ Ρ Μ Α ΜΑΤΙ Τ ΣΜΟΣ

ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑ Ρ Μ Α ΜΑΤΙ Τ ΣΜΟΣ Τμήμα Εφαρμοσμένης Πληροφορικής ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εξάμηνο Α' Φύλλο Ασκήσεων 3 ΔΟΜΕΣ ΕΠAΝΑΛΗΨΗΣ Διδάσκοντες: Μάγια Σατρατζέμη, Αλέξανδρος Χατζηγεωργίου, Ηλίας Σακελλαρίου, Στέλιος Ξυνόγαλος

Διαβάστε περισσότερα

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Σκοπός Να αναπτύξουν ένα πρόγραμμα όπου θα επαναλάβουν τα βήματα ανάπτυξης μιας παραθυρικής εφαρμογής.

Διαβάστε περισσότερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήμερα Διάλεξη 9 - Δευτέρα while() τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: ΠΛΗΡΟΦΟΡΙΚΗ Ημερομηνία και ώρα εξέτασης: Τρίτη, 6 Ιουνίου 2006 07:30 10:30

Διαβάστε περισσότερα

Α4. Δίδεται ο παρακάτω αλγόριθμος

Α4. Δίδεται ο παρακάτω αλγόριθμος Διαγώνισμα 2014-15 Ανάπτυξη Εφαρμογών σε Πραγματικό Περιβάλλον Επώνυμο Όνομα Εξεταζόμενο μάθημα Γ Λυκείου Κυριακή 02/11/2014 Τμήμα Ημερομηνία Τάξη Θέμα Α A1. Επιλέξτε Σωστό ή Λάθος για τις παρακάτω προτάσεις:

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΟΣ ΟΔΗΓΟΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C

ΣΥΝΟΠΤΙΚΟΣ ΟΔΗΓΟΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C ΣΥΝΟΠΤΙΚΟΣ ΟΔΗΓΟΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C 1 Εισαγωγή Ο προγραμματισμός είναι μια διαδικασία επίλυσης προβλημάτων με χρήση Η/Υ. Ένα πρόγραμμα είναι ένα σύνολο εντολών κάποιας γλώσσας προγραμματισμού,

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ 1 ΘΕΜΑ 1 o Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στην κόλλα σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1 5 και δίπλα τη λέξη

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ Α3. α. (σελ. 183-184) Στοίβα: ώθηση, απώθηση Ουρά:

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο Ι. Να αντιστοιχίσετε τους παρακάτω όρους. Στη στήλη Β περισσεύει μια επιλογή. (6 Μονάδες) 1 - Β 2 - Α 3

Διαβάστε περισσότερα

Προγραμματισμός Ι. Ασκήσεις. Τζάλλας Αλέξανδρος, Καθηγητής Εφαρμογών. Τμ. Μηχανικών Πληροφορικής Τ.Ε.

Προγραμματισμός Ι. Ασκήσεις. Τζάλλας Αλέξανδρος, Καθηγητής Εφαρμογών. Τμ. Μηχανικών Πληροφορικής Τ.Ε. Τζάλλας Αλέξανδρος, Καθηγητής Εφαρμογών Τμ. Μηχανικών Πληροφορικής Τ.Ε. Άρτα, Μάιος 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Προγραµµατιστική Εργασία 1 ο Μέρος

Προγραµµατιστική Εργασία 1 ο Μέρος Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 4 Νοεµβρίου 2011 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2011-12 ιδάσκουσα: Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 1 ο Μέρος Ηµεροµηνία

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΚΠΑΙΔΕΥΤΙΚΉ ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να γράψετε

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

III. Πως μετατρέπεται το πηγαίο πρόγραμμα σε εκτελέσιμο πρόγραμμα;

III. Πως μετατρέπεται το πηγαίο πρόγραμμα σε εκτελέσιμο πρόγραμμα; ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Τι πρέπει να ικανοποιεί ένα κομμάτι κώδικα ώστε να χαρακτηριστεί ως υποπρόγραμμα; Τα υποπρογράμματα πρέπει

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ

ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ 9 40 4 ΒΑΣΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ 4 4 ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ. Να βρείτε την αριθµητική τιµή των παραστάσεων. i) α -α 6α, ii) 4α, για α iii) αβ α β (αβ),

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Σύνολο χαρακτήρων της Pascal Για

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÁÈÇÍÁ ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÁÈÇÍÁ ΑΠΑΝΤΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α1. 1. Λάθος 2. Λάθος 3. Σωστό 4. Λάθος 5. Σωστό Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 19 Απριλίου

Διαβάστε περισσότερα

2015 1-5 1. 5 5 4. 10 2. . 3. 6 3. . 6

2015 1-5 1. 5 5 4. 10 2. . 3. 6 3. . 6 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµίας από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη ΣΩΣΤΟ, αν

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα 1: Α. Η «σύγκριση» λειτουργιών ανθρώπου και υπολογιστή επιφέρει βέβαια µια τεράστια ποιοτική διαφορά υπέρ του ανθρώπου. I. Ποια είναι η διαφορά

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους.

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους. Να βρεθεί ΠΓΠ ώστε να ελαχιστοποιηθεί το κόστος µεταφοράς (το πρόβληµα βασίζεται σε αυτό των Aarik και Randolph, 975). Λύση: Για κάθε δυϊλιστήριο i (i=, 2, ) και πόλη j (j=, 2,, 4), θεωρούµε την µεταβλητή

Διαβάστε περισσότερα

Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 3

Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 3 Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 3 Κεφάλαιο 3 Οργάνωση και Λειτουργία Επεξεργαστών Σκοπός του κεφαλαίου αυτού είναι να περιγράψει την εσωτερική οργάνωση των υπολογιστών,

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Ν Ι Κ Ο Λ Α Ο Σ Π. Κ Υ Ρ Α Ν Α Κ Ο Σ ΤΟΠΟΓΡΑΦΟΣ ΜΗΧΑΝΙΚΟΣ Ε.Μ.Π. Εργολ. ηµοσίων Eργων ΜΗΧΑΝΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ ΕΛ.ΚΕ.ΠΑ. ΕΠΙΜΕΤΡΗΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ

Ν Ι Κ Ο Λ Α Ο Σ Π. Κ Υ Ρ Α Ν Α Κ Ο Σ ΤΟΠΟΓΡΑΦΟΣ ΜΗΧΑΝΙΚΟΣ Ε.Μ.Π. Εργολ. ηµοσίων Eργων ΜΗΧΑΝΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ ΕΛ.ΚΕ.ΠΑ. ΕΠΙΜΕΤΡΗΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ 7 Ν Ι Κ Ο Λ Α Ο Σ Π. Κ Υ Ρ Α Ν Α Κ Ο Σ ΤΟΠΟΓΡΑΦΟΣ ΜΗΧΑΝΙΚΟΣ Ε.Μ.Π. Εργολ. ηµοσίων Eργων ΜΗΧΑΝΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ ΕΛ.ΚΕ.ΠΑ. ErgoMetr ΕΠΙΜΕΤΡΗΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Νέο σύγχρονο πρόγραµµα γενικών επιµετρήσεων σε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 16 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0 Σελίδα από 53 Κεφάλαιο 3 Πίνακες Περιεχόµενα 3 Ορισµοί Επεξεργασµένα Παραδείγµατα Ασκήσεις 3 3 Πράξεις µε Πίνακες Πρόσθεση Πινάκων Πολλαπλασιασµός Πίνακα µε Αριθµό Πολλαπλασιασµός Πινάκων ιωνυµικό Ανάπτυγµα

Διαβάστε περισσότερα

Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Αλγόριθμος Ψησταριάς (Bakery Algorithm) Αλγόριθμος 2- επεξεργαστών

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΛΥΚΕΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 10 /6 / 2015 ΒΑΘΜΟΣ:... ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

Διαβάστε περισσότερα

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών»)

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών») Πρώτοι αριθµοί: Τι µας λέει στο βιβλίο (σελ.25-26): 1. Μου αρέσουν οι πρώτοι αριθµοί, γι αυτό αρίθµησα µε πρώτους τα κεφάλαια. Οι πρώτοι αριθµοί είναι αυτό που αποµένει όταν αφαιρέσεις όλα τα στερεότυπα

Διαβάστε περισσότερα

ΕΠΛ031 - Εισαγωγή στον Προγραμματισμό

ΕΠΛ031 - Εισαγωγή στον Προγραμματισμό Εισαγωγή στην Fortran ΕΠΛ031 Εισαγωγή στον Προγραμματισμό Νέαρχος Πασπαλλής Επισκέπτης Ακαδημαϊκός (Λέκτορας) nearchos@cs.ucy.ac.cy Γραφείο #B120, Τηλ. ext. 2744 FORTRAN: Ιστορική Αναδρομή 1954 1957, πρώτος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 2.1 Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 1) Η τιμή του χ είναι,χ Ητιμή του χ είναι 5 Ηεντολή εμφανίζει ότι υπάρχει στα διπλά εισαγωγικά ως έχει.

Διαβάστε περισσότερα