Cursul 4. Matrice. Rangul unei matrice. Rezolvarea sistemelor de ecuaţii liniare. Metoda eliminării a lui Gauss

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Cursul 4. Matrice. Rangul unei matrice. Rezolvarea sistemelor de ecuaţii liniare. Metoda eliminării a lui Gauss"

Transcript

1 Lector univ dr Cristin Nrte Cursul 4 Mtrice Rngul unei mtrice Rezolvre sistemelor de ecuţii linire Metod eliminării lui Guss Definiţie O mtrice m n este o serie de mn intrări, numite elemente, rnjte în m linii şi n colone În czul în cre o mtrice se noteză cu A, elementul din rândul i şi colon j se noteză cu ij şi mtrice se scrie Exemple de mtrice Mtrice x 2 Mtrice x Mtrice 2x2 Mtrice x A m n O mtrice pătrtică este o mtrice în cre numărul de linii m este egl cu numărul de colone n Eglitte două mtrice Eglitte două mtrice însemnă că, dcă A şi B sunt egle, tunci fiecre este o copie identică celeillte mn Ex A şi 2 B Aflţi x stfel încât A=B 0 x 2 Adunre două mtrice Adunre de mtrice A şi B este definită numi în czul mtricele u celşi număr de rânduri şi cu celşi număr de colone Să considerăm A i j şi

2 Lector univ dr Cristin Nrte B b i j să fie mtrice m n Mtrice m n formtă încât elementul din lini i şi colon j este ij bij pentru fiecre i şi j este mtrice A + B Ex Pentru 2 0 A, B, AB 2 5 Înmulţire unei mtrice cu sclri Să considerăm mtrice m n, A i j şi λ un sclr (rel su complex) În czul în cre A este înmulţit cu λ, şi se scrie λa, fiecre element din A este înmulţit cu λ pentru obţine mtrice m n, A i j Ex Pentru =2 şi A , A Înmulţire mtricelor Este importnt să observţi că, tunci când produsul AB este definit, produsul BA este în generl diferit su pote să nici nu fie definit Se pot înmulţi mtrice de tip mxn cu mtrice nxp, ir rezulttul este o mtrice de tip mxp Ex 0 2 A, B Rezulttul este AB ( ) Tem Fie A, B, C, D Determinţi cre înmulţiri pot fi 0 efectute şi în cest cz clculţi: AB, BA, AC, CA, ABC, CAB, AD, DA, CD, DC, ACD, DAC Trnspus unei mtrice Să considerăm mtrice m n, nottă de nxm, T A A Atunci trnspus lui A, T A este mtrice obţinută schimbând liniile în colone pentru produce o mtrice ji i j Ex 2 T A, A 4 2 4

3 Lector univ dr Cristin Nrte 2 0, T A A 0 2 Determinntul unei mtrice Fiecre mtrice pătrtică, re c element socit un singur număr determinnt l lui A Dcă A este o n n mtrice, determinntul lui A este indict prin fişre elementelor lui A între două bre verticle, după cum urmeză: n n nn Ex Determinnt de ordinul 2 2 ( 4) Determinnt de ordinul ( ) 0 4 ( ) Rngul unei mtrice Fie A M mn, o mtrice nenulă Spunem că mtrice A re rngul r şi notăm rng A r, dcă A re un minor nenul de ordin r, ir toţi minorii lui A de ordin mi mre decât r (dcă există) sunt nuli Aplicţie Clculţi rngul mtricelor 0 2 A 0, 2 2 B 0 4, C 0 2 4, 0 D 4 2 Invers unei mtricedcă det A 0, tunci A este inversbilă şi A det A A * Ex Clculţi invers mtricei A 2

4 Lector univ dr Cristin Nrte 2 det A 6 5 0, deci A este inversbilă T A 2 Complemenţii lgebrici ( ) ( ) ( ) ( ) * 2 A 2 2 A Aplicţie Clculţi invers mtricei 0 2 A Aplicţie l spţii vectorile Fie B={ e (,), e 2 (2,) } şi B ={ f (,), f 2 (,8) } ) Să se verifice dcă sistemele de vectori B şi B formeză bze b) Să se găsescă mtrice de trecere din bz B în bz B c) Dcă x[ B'] (2,), găsiţi coordontele lui x în bz B d) Dcă x[ B] (, 0), găsiţi coordontele lui x în bz B Sisteme de ecuţii linire Form generlă unui sistem de m ecuţii linire cu n necunoscute este: x 2 x2 nxn b 2x 22x2 2nxn b2 x x x b m m2 2 mn n m () unde: x, x, 2 x n sunt necunoscutele sistemului,

5 Lector univ dr Cristin Nrte numerele ij, i, m, j, n sunt coeficienţii necunoscutelor, b, b, 2 b m sunt termenii liberi i sistemului Unui sistem linir îi sociem următorele mtrice: 2 A m 2 22 m2 n 2n mtrice sistemului, mn b b2 mtrice termenilor liberi b m x x2 mtrice necunoscutelor, x n ~ 2 A m 2 22 m2 n 2n mn b b2 mtrice extinsă sistemului cre se obţine b m dăugând l mtrice A colon termenilor liberi Definiţi Se numeşte soluţie sistemului de ecuţii linire un sistem ordont de n numere, 2, t n stfel încât înlocuind necunoscutele x, x2, xn respectiv prin,, 2 n este verifictă fiecre din ecuţiile sistemului Definiţi 2 Un sistem este comptibil dcă re cel puţin o soluţie, comptibil determint dcă re soluţie unică, comptibil nedetermint dcă re o infinitte de soluţii, incomptibil dcă nu re soluţii Metode de rezolvre sistemelor linire

6 Lector univ dr Cristin Nrte ) Metod lui Crmer permite rezolvre sistemelor linire de n ecuţii cu n necunoscute vând determinntul socit mtricei sistemului nenul Teorem Dcă sistemul x 2 x2 nxn b x x x b x x x b n n 2 n n2 2 nn n n (2) re determinntul nenul, tunci soluţi s utilizând metod lui Crmer este x,, x, n unde x xi, i n, x i, i, n fiind determinntul obţinut din prin înlocuire colonei i, corespunzătore coeficienţilor necunoscutei x i, i, n cu colon termenilor liberi, dică n 2 n2, i n, i b n, i , i b2 2, i 2n xi b n, i n nn 2) Metodă de rezolvre sistemelor linire de m ecuţii cu n necunoscute ) Se determină rng A 2) Se lege un minor principl p 2 r r r r 2 rr ) Se precizeză: necunoscutele principle x,, xr şi secundre x r, xr 2, xn şi de semene ecuţiile principle (ecuţiile,2, r ) şi ecuţiile secundre (celellte m r ecuţii) Dcă există ecuţii secundre se clculeză minorii crcteristici (minorul obţinut din minorul principl, prin bordre cestui cu elementele corespunzătore le colonei termenilor liberi şi câte un din liniile rămse); numărul minorilor crcteristici este egl cu numărul ecuţiilor secundre şi este egl cu m r

7 4) Se stbileşte dcă sistemul () este comptibil Lector univ dr Cristin Nrte Teorem 2 (Teorem lui Rouche) Un sistem de ecuţii este comptibil dcă şi numi dcă toţi minorii crcteristici sunt nuli Teorem (Teorem Kronecker Cpelli) Condiţi necesră şi suficientă c sistemul să fie comptibil este c rnga rnga 5) Dcă sistemul este comptibil soluţi s se obţine prin rezolvre sistemului principl formt din ecuţiile rezultte trecând în membrul drept termenii cre conţin necunoscutele secundre şi tribuind cestor necunoscute secundre vlori rbitrre): - dcă numărul necunoscutelor secundre este 0 sistemul este comptibil determint; - dcă există necunoscute secundre, sistemul este comptibil nedetermint; numărul necunoscutelor secundre rtă grdul de nedeterminre ) Metod trnsformărilor elementre (Metod eliminării lui Guss) Metod trnsformărilor elementre este de fpt procedeul de reducere necunoscutelor, scris, eventul, sub formă mtricelă În czul sistemelor de două ecuţii cu două necunoscute, cestă metodă este de fpt metod reducerii Există tipuri de trnsformări elementre Schimbre două ecuţii; Înmulţire unei ecuţii cu un sclr nenul; Adunre unei ecuţii înmulţite cu un sclr l o ltă ecuţie 2xy 4 Exemplul Rezolvţi sistemul x y 5 Sistemul Mtrice extinsă şi trnsformările elementre 2xy 4 x y

8 Lector univ dr Cristin Nrte 2xy 4 5 y 7 2 L L x y x 5 4 y 5 x y Exemplul 2 Rezolvţi sistemul x y z x y 2z 2 x 2y z Soluţie x y z x y 2z 2 x 2y z x y z 2y z 5 y 4z L 2 L L L L L 2 2

9 Lector univ dr Cristin Nrte x y z 2y z z x y 25 x 9 2y 5 y 25 9 z z Clculul inversei unei mtrice prin metod trnsformărilor elementre Aplicţie Să se determine inversele mtricelor ) b) A A L2 L2 L L2 L2 2 Soluţie ) L L 0 L L L Deci A 5 2

10 Lector univ dr Cristin Nrte L2 L2 L b) L L L L L L L2 L2 7 2 L2 L2 L L L L L L2 L Deci A Clculul rngului unei mtrice prin metod trnsformărilor elementre Se efectueză trnsformări elementre supr mtricei până când tote elementele devin nule cu excepţi unor elemente de pe digonl principlă cre devin unu Rngul mtricei este numărul elementelor de pe digonl principlă Aplicţie Determinţi rngul mtricelor ) A 2 4 ; b) A ; c) 2 A 2 2 Soluţie ) L L L L L 2 2 C2 C2 2C 0 rng A=

11 Lector univ dr Cristin Nrte b) c) L2 L2 L L L C2 C2 4C 2 2 L 5 2 L2 2L L L L L 2 L L L2 L2 2 2 L L 20 7 C2 C2 2C C C C C C C rng A = rng A= În prctică, pentru rezolvre unui sistem de ecuţii linire, procedăm stfel: se efectueză trnsformări elementre supr mtricei extinse până când tote elementele de sub digonl principlă devin nule Pe prcursul lgoritmului pot păre următorele situţii: coeficienţii unei ecuţii devin toţi nuli, ir termenul liber corespunzător este nenul, cz în cre sistemul este incomptibil; coeficienţii unei ecuţii sunt toţi nuli şi termenul liber corespunzător este nul, tunci ecuţi respectivă este consecinţă celorllte (deci inutilă) Metod trnsformărilor elementre constă în reducere sistemului (2) l un sistem mi simplu, urmând pşii Psul Se schimbă ecuţiile între ele stfel încât prim necunoscută x re coeficientul nenul în prim ecuţie, dică 0 Psul 2 Pentru fiecre i>, se plică operţi L L L i i i

12 Lector univ dr Cristin Nrte Adică se înlocuieşte ecuţi i cu ecuţi obţinută din înmulţire primei ecuţii cu i, înmulţire celei de i ecuţii cu şi dunre cestor Se obţine sfel o formă echivlentă sistemului (ie re ceeşi soluţie) x x 2 2 nxn b x x b ' ' ' 2 j2 j 2 2n n 2 x x b ' ' ' mj2 j 2 mn n m x j 2 este prim necunoscută cu coeficient nenul dintr-o ltă ecuţie în fră de prim Se continuă procedeul până când se junge l form echivlentă x x 2 2 nxn b x x b 2 j2 j 2 2n n 2 x x b rjr j r rn n r () Am nott coeficienţii cu celeşi litere c în sistemul (2), dr în mod evident ei reprezintă lţi sclri Aplicţi Să se rezolve sistemul x2y x6y9 Soluţie 2 L2L Deorece ultim linie este numi cu zerouri, însemnă că ecuţi corespunzătore este inutilă În cest cz, r=<2=n, deci sistemul este comptibil nedetermint cu 2-= necunoscute secundre Fie cest y Atunci soluţi sistemului re form 2 y, y, y

13 Lector univ dr Cristin Nrte Aplicţi 2 Să se rezolve sistemul x 2y 4 x 6y 9 Soluţie 2 4 L2L Sistemul este incomptibil Aplicţi Să se rezolve sistemul 2x y 2z w x 2y z 2w 4 x y z w 5 Soluţie L L2 L L2 L 2L2 L L 2L Sistemul este deci incomptibil Aplicţi 4 Să se rezolve sistemul x 2y z 4 x y z 2x5y4z 2x 6y 2z 22 Soluţie L2 L L2 L 2L L L4 2L L L L L L4 2L L

14 Lector univ dr Cristin Nrte x 2y z 4 Deci, sistemul este echivlent cu y4z 7 Din ultim ecuţie, flăm z= Înlocuind în 2z 2 dou ecuţie, se obţine y=, ir poi, din prim ecuţie x= Deci, sistemul re soluţie unică, ir soluţi sistemului este,, Aplicţi 5 Să se rezolve sistemul x 2y 2z w 2 2x 4y z 4w 5 5x 0y 8z w 2 Soluţie L 2L2 L L2 2L L2 L 5L L Deci r=2<4=n Avem 4-2=2 necunoscute secundre Sistemul re form echivlentă x 2y 2z w 2 z2w Soluţi sistemului este 4 2 y w, y, 2 w, w, y, w Interpretre geometrică Pentru un sistem de două ecuţii cu două necunoscute pot păre trei situţii ) Sistemul este incomptibil; b) Sistemul re soluţie unică; x b y c x b y c 2 2 2

15 Lector univ dr Cristin Nrte c) Sistemul este comptibil nedetermint Reprezentre grfică în pln unei ecuţii de form x by c este o dreptă Interpretre geometrică situţiilor de mi sus este ) Cele două drepte sunt prlele; b) Cele două drepte se intersecteză într-un singur punct; c) Cele două drepte coincid Temă Să se rezolve sistemele ) b) c) d) x 2y z x y 2z 7 ; 5x y 4z 2 2x y 2z 0 x 2y 2z ; 5x 4y z 4 x 2y z 6 2x y 4z 2 4x y 2z 4 x y 4z 2w 5 2y 5z w 2 yz 4

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA FINALĂ - 22 mai 2010

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI ETAPA FINALĂ - 22 mai 2010 ETAPA FINALĂ - mi 00 BAREM DE CORECTARE CLASA A IX A. Pe o dreptă se consideră 00 puncte, cre formeză 009 segmente, fiecre de cm. Pe primul segment, desupr dreptei, construim un pătrt, pe l doile segment,

Διαβάστε περισσότερα

CAPITOLUL 1. ELEMENTE DE ALGEBRA

CAPITOLUL 1. ELEMENTE DE ALGEBRA CAPITOLUL. ELEMENTE DE ALGEBRA. Mulţimi Definiţi.. (Cntor) Prin mulţime se înţelege un nsmlu de oiecte ine determinte şi distincte, cre formeză o entitte. Oiectele cre formeză o mulţime se numesc elementele

Διαβάστε περισσότερα

CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE. 6.1 Forme liniare

CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE. 6.1 Forme liniare Algebră liniră CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE 6 Forme linire Fie V un spţiu vectoril peste un corp K Definiţi 6 Se numeşte formă liniră su funcţionlă liniră o plicţie f : V K cre stisfce

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu

Διαβάστε περισσότερα

Seminariile 1 2 Capitolul I. Integrale improprii

Seminariile 1 2 Capitolul I. Integrale improprii Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

sin d = 8 2π 2 = 32 π

sin d = 8 2π 2 = 32 π .. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],

Διαβάστε περισσότερα

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere

Διαβάστε περισσότερα

TITULARIZARE 2002 Varianta 1

TITULARIZARE 2002 Varianta 1 TITULARIZARE 2002 Vrint 1 A. Omotetii plne: definiţie, oricre două triunghiuri omotetice sunt semene, mulţime omotetiilor de celşi centru formeză un grup belin izomorf cu grupul multiplictiv l numerelor

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Tit Tihon CNRV Roman FISA DE EVALUARE A UNITATII DE INVATARE. Caracteristici vizibile observate PUNCTAJ ACORDAT

Tit Tihon CNRV Roman FISA DE EVALUARE A UNITATII DE INVATARE. Caracteristici vizibile observate PUNCTAJ ACORDAT Tit Tihon CNRV Romn FISA DE EVALUARE A UNITATII DE INVATARE Nr. crt 5 6 7 8 9 0 Nr. crt Nr. crt Crcteristici vizibile observte PUNCTAJ ACORDAT preciere D+ Nu Observţii privind preciere folosire mnulului

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1. Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Lucian Maticiuc SEMINAR 1 3. Capitolul I: Integrala definită. Primitive. 1. Să se arate că. f (x) dx = 0. Rezolvare:

Lucian Maticiuc SEMINAR 1 3. Capitolul I: Integrala definită. Primitive. 1. Să se arate că. f (x) dx = 0. Rezolvare: Cpitolul I: Integrl definită. Primitive Conf. dr. Lucin Mticiuc Fcultte de Hidrotehnică, Geodezie şi Ingineri Mediului Anliz Mtemtică II, Semestrul II Conf. dr. Lucin MATICIUC. Să se rte că Rezolvre: SEMINAR

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr Lucian MATICIUC http://mathettituiasiro/maticiuc/ CURS I II Matrice şi determinanţi Sisteme de ecuaţii

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA ETOE ŞI ETAPE ECESARE PETRU ETERIAREA UGHIULUI A OUĂ PLAE PROF. IACU ARIA, ŞCOALA ROUL LAEA, ORAVIłA, CARAŞ- SEVERI (). Unghi diedru. Fie α şi β două semiplne vând ceeşi frontieră (muchie)d. Se numeşte

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

CURS I II. Capitolul I: Integrala definită. Primitive. 1 Integrabilitate Riemann. Criterii de integrabilitate

CURS I II. Capitolul I: Integrala definită. Primitive. 1 Integrabilitate Riemann. Criterii de integrabilitate Cpitolul I: Integrl definită. Primitive Conf. dr. Lucin Mticiuc Fcultte de Hidrotehnică, Geodezie şi Ingineri Mediului Anliz Mtemtică II, Semestrul II Conf. dr. Lucin MATICIUC CURS I II Cpitolul I: Integrl

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

GEOMETRIE ANALITICĂ. Capitolul 5 VECTORI LIBERI. #1. Spaţiul vectorial al vectorilor liberi

GEOMETRIE ANALITICĂ. Capitolul 5 VECTORI LIBERI. #1. Spaţiul vectorial al vectorilor liberi GEOMETRIE ANALITICĂ Cpitolul 5 VECTORI LIBERI # Spţiul vectoril l vectorilor liberi Fie E spţiul tridimensionl l geometriei elementre orientt Definiţii Pentru oricre două puncte A B E considerăm segmentul

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I.

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I. ANALIZĂ MATEMATICĂ pentru exmenul licenţă, mnul vlbil începând cu sesiune iulie 23 Specilizre Mtemtică informtică coordontor: Dorel I. Duc Cuprins Cpitolul. Serii de numere rele. Noţiuni generle 2. Serii

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

ME.09 Transformate Fourier prin sinus şi cosinus

ME.09 Transformate Fourier prin sinus şi cosinus ME.9 Trnsformte Fourier prin sinus şi cosinus Cuvinte cheie Trnsformre Fourier prin cosinus, trnsformre Fourier prin sinus, trnsformt Fourier prin sinus, trnsformt Fourier prin cosinus, formule de inversre,

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Integrale generalizate (improprii)

Integrale generalizate (improprii) Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

1.4 Schimbarea bazei unui spaţiu vectorial

1.4 Schimbarea bazei unui spaţiu vectorial Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

GHEORGHE PROCOPIUC ANALIZĂ MATEMATICĂ

GHEORGHE PROCOPIUC ANALIZĂ MATEMATICĂ GHEORGHE PROCOPIUC ANALIZĂ MATEMATICĂ IAŞI, 2002 Cuprins 1 ELEMENTE DE TEORIA SPAŢIILOR METRICE 6 1.1 Introducere................................... 6 1.1.1 Elemente de teori teori mulţimilor.................

Διαβάστε περισσότερα

III. Reprezentarea informaţiei în sistemele de calcul

III. Reprezentarea informaţiei în sistemele de calcul Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea

Διαβάστε περισσότερα

ANEXA., unde a ij K, i = 1, m, j = 1, n,

ANEXA., unde a ij K, i = 1, m, j = 1, n, ANEXA ANEXĂ MATRICE ŞI DETERMINANŢI Fie K u corp şi m N* = N \ {} Tbloul dreptughiulr A = ude ij K i = m j = m m m se umeşte mtrice de tip (m ) cu elemete di corpul K Mulţime mtricelor cu m liii şi coloe

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs

Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Adriana-Ioana Lefter MATEMATICĂ (ALGEBRĂ ŞI ECUAŢII DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Cuprins Partea 1 ALGEBRĂ 1 Capitolul 1 Matrice şi determinanţi 3 11 Corpuri 3 12 Matrice 4 13

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Utilizarea algebrelor Boole în definirea şi funcţionarea. Circuitelor combinaţionale cu porţi; Circuitelor combinaţionale cu contacte.

Utilizarea algebrelor Boole în definirea şi funcţionarea. Circuitelor combinaţionale cu porţi; Circuitelor combinaţionale cu contacte. Prelegere 6 În cestă prelegere vom învăţ despre: Utilizre lgerelor Boole în definire şi funcţionre Circuitelor cominţionle cu porţi; Circuitelor cominţionle cu contcte. 6.1 Circuite cominţionle Vom defini

Διαβάστε περισσότερα

Sala: Octombrie 2014 SEMINAR 1: ALGEBRĂ. este un Q-spaţiu vectorial, faţă de operaţiile uzuale de adunare şi înmulţire cu un număr raţional.

Sala: Octombrie 2014 SEMINAR 1: ALGEBRĂ. este un Q-spaţiu vectorial, faţă de operaţiile uzuale de adunare şi înmulţire cu un număr raţional. Sala: Octombrie 24 SEMINAR : ALGEBRĂ Conf univ dr: Dragoş-Pătru Covei Programul de studii: CE, IE, SPE Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat distribuit

Διαβάστε περισσότερα

1. INTRODUCERE Ce ar trebui să ne reamintim

1. INTRODUCERE Ce ar trebui să ne reamintim . INTRDUCERE.. Ce r trebui să ne remintim Mecnic Teoretică pote fi împărţită după ntur problemei ce se studiză în trei părţi. Aceste coincid cu ordine de priţie şi de dezvoltre Mecnicii: Sttic re c obiective:

Διαβάστε περισσότερα

Soluţiile problemelor propuse în nr. 2/2010

Soluţiile problemelor propuse în nr. 2/2010 Soluţiile problemelor propuse în nr. /00 Clsele primre P.96. Mior rnjeză ptru mărgele, două lbe şi două glbene, un lângă lt, pe o ţă. În câte feluri pote rnj Mior mărgelele? (Cls I) Inst. Mri Rcu, Işi

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire 4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

IV.3. Factorul de condiţionare al unei matrice

IV.3. Factorul de condiţionare al unei matrice IV.3. Fctorul de codiţiore l uei mtrice defieşte pri Defiiţie. Fctorul de codiţiore l uei mtrice pătrte A M, (R) se cod(a) = A A - ude este o orm opertorilă mtricei A (de exemplu, su ). Pri coveţie cod(a)

Διαβάστε περισσότερα

I. PROGRAMARE LINIARA. 4. Metoda simplex

I. PROGRAMARE LINIARA. 4. Metoda simplex 38 I. PROGRAMARE LINIARA 4. Metod simplex Deorece ştim că dcă progrmul în formă stndrd (P) re optim finit o soluţie optimă v fi cu necesitte o soluţie de bză şi deci v fi socită unei bze B*, este nturl

Διαβάστε περισσότερα

TEMA 5: DERIVATE ŞI DIFERENȚIALE

TEMA 5: DERIVATE ŞI DIFERENȚIALE TEMA 5: DERIVATE ŞI DIFERENȚIALE 35 TEMA 5: DERIVATE ŞI DIFERENȚIALE Obiective: Deinire principlelor proprietăţi mtemtice le uncţiilor, le itelor de uncţii şi le uncţiilor continue Deinire principlelor

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Axiomele geometriei în plan şi în spańiu

Axiomele geometriei în plan şi în spańiu xiomele geometriei în pln şi în spńiu 1 xiomele geometriei în pln şi în spńiu unoştinńele de geometrie cumulte în clsele gimnzile pot fi încdrte într-un sistem logic de propozińii mtemtice: xiome, definińii,

Διαβάστε περισσότερα

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI"

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI INSPECTORATUL ŞCOLAR JUDEŢEAN IAŞI CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA JUDEŢEANĂ 8 mrtie 04 Profil rel, specilizre ştiinţele nturii FACULTATEA CONSTRUCŢII DE MAŞINI ŞI MANAGEMENT

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Anexa B2 Elemente de reprezentare grafică în plan şi în spaţiu.

Anexa B2 Elemente de reprezentare grafică în plan şi în spaţiu. Anex B Elemente de reprezentre grfică în pln şi în spţiu. 1. Tipuri de sisteme de coordonte. Coordonte crteziene Fie xoy un sistem de coordonte crteziene în pln. Fie P un punct în pln vând coordontele

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

CURS 5 Spaţii liniare. Spaţiul liniar R n

CURS 5 Spaţii liniare. Spaţiul liniar R n CURS 5 Spaţii liniare. Spaţiul liniar R n A. Arusoaie arusoaie.andreea@gmail.com andreea.arusoaie@info.uaic.ro Facultatea de Informatică, Universitatea Alexandru Ioan Cuza din Iaşi 30 Octombrie 2017 Structura

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

CAPITOLUL VII EXTINDERI ALE CONCEPTULUI DE INTEGRALĂ DEFINITĂ

CAPITOLUL VII EXTINDERI ALE CONCEPTULUI DE INTEGRALĂ DEFINITĂ CAPITOLUL VII EXTINDERI ALE CONCEPTULUI DE INTEGRALĂ DEFINITĂ În teori Integrlei definite numită şi Integrl Riemnn, s- urmărit c, l numite funcţii rele de o vriilă relă, dte pe mulţimi din R, după o schemă

Διαβάστε περισσότερα