ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0"

Transcript

1 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα αυτή, όπως είναι φυσικό, εμφανίζεται και στις ασκήσεις, κρίθηκε σκόπιμο να γραφτεί η παρούσα εργασία με σκοπό να βοηθήσει τους μαθητές της Γ Λυκείου να εμπεδώσουν έννοιες και διαδικασίες του κλάδου αυτού των Μαθηματικών. Εισαγωγή: Η πιθανότητα (Probability) είναι μία συνάρτηση Ρ σύμφωνα με την οποία υ- ποσύνολα (ενδεχόμενα) του δειγματικού χώρου Ω ενός πειράματος τύχης αντιστοιχίζονται σε πραγματικούς αριθμούς του διαστήματος [0, ]. Ο αυστηρός μαθηματικός ορισμός της έννοιας της πιθανότητας, που είναι δεκτός σήμερα, είναι ο αξιωματικός ορισμός, ο οποίος δόθηκε από τον Kolmogorov το 9. Ο γενικός αξιωματικός ορισμός στηρίζεται στη Θεωρία Μέτρου και ο ορισμός του σχολικού βιβλίου είναι μία περίπτωση του ορισμού αυτού. Μία δε ειδική περίπτωση του αξιωματικού ορισμού του βιβλίου (ισοπίθανα απλά ενδεχόμενα) είναι ο κλασσικός ορισμός της πιθανότητας, που διατυπώθηκε από τον Laplac το. Σε ένα πείραμα τύχης (π. τ.), ενώ δεν ισχύει ο αιτιοκρατικός νόμος, δηλαδή δε μπορούμε να προβλέψουμε με βεβαιότητα το αποτέλεσμα, ισχύει ο νόμος της στατιστικής τάξης (ομαλότητας), που σημαίνει ότι αν εκτελεσθεί το π. τ. πολλές φορές κάτω από τις ίδιες συνθήκες, τότε η σχετική συχνότητα πραγματοποίησης ενός ενδεχομένου Α τείνει να σταθεροποιηθεί σε ένα αριθμό, Ρ(Α), που εκφράζει την πιθανότητα πραγματοποίησης του ενδεχομένου Α. Στην εργασία αυτή τις ασκήσεις που λύνουμε, για καλύτερη εμπέδωση των διαδικασιών, τις ταξινομούμε σε τρεις κατηγορίες που είναι: ) Ασκήσεις στις οποίες ζητείται ο υπολογισμός της πιθανότητας ενός ενδεχομένου. ) Ασκήσεις στις οποίες ζητείται η α- πόδειξη ανισοτήτων που περιέχουν πιθανότητες ενδεχομένων και ) Γενικές θεωρητικές ασκήσεις. Α Υπολογισμός μιας πιθανότητας: Σε πολλές ασκήσεις Πιθανοτήτων ζητείται η πιθανότητα ενός ενδεχομένου. Το ενδεχόμενο αυτό συνήθως διατυπώνεται με λόγια και μπορεί να παράγεται πρωτογενώς από το δειγματικό χώρο ή να παράγεται από άλλα ενδεχόμενα των οποίων γνωρίζουμε τις πιθανότητες. Στην πρώτη περίπτωση ο υπολογισμός της πιθανότητας του ενδεχομένου γίνεται άμεσα με τη βοήθεια των ορισμών, ενώ στη δεύτερη έμμεσα με τη βοήθεια των κανόνων. Ι. Άμεσος υπολογισμός της πιθανότητας: Στην περίπτωση αυτή πρέπει πρώτα από όλα να κατανοήσουμε το πείραμα τύχης και να βρούμε ένα δειγματικό χώρο που το περιγράφει λαμβάνοντας υπόψη και το ενδεχόμενο του οποίου θέλουμε να υπολογίσουμε την πιθανότητα. Κατόπιν βρίσκουμε το ενδεχόμενο με αναγραφή των στοιχείων του (ευνοϊκές περιπτώσεις) και τέλος υπολογίζουμε την πιθανότητά του, είτε με τον κλασικό ορισμό, αν τα απλά ενδεχόμενα είναι ισοπίθανα, είτε με τον αξιωματικό ορισμό, αν τα απλά ενδεχόμενα δεν είναι ισοπίθανα. Παραστατικά η όλη διαδικασία αποδίδεται με το παρακάτω σχήμα: Πείραμα τύχης - Δειγματικός χώρος Εύρεση του ενδεχομένου με αναγραφή Υπολογισμός της πιθανότητας

2 Τα παραπάνω θα γίνουν περισσότερο κατανοητά με τα παραδείγματα που ακολουθούν.. Επιλέγουμε τυχαία ένα φυσικό αριθμό. Να βρείτε: (i) την πιθανότητα ο αριθμός αυτός να διαιρείται με το (ii) την πιθανότητα να διαιρείται με το 7 (iii) την πιθανότητα να διαιρείται συγχρόνως με το και το 7. (i) Έστω Α το ενδεχόμενο: «Ο φυσικός αριθμός διαιρείται με το». Ο δειγματικός χώρος του πειράματος τύχης θεωρητικά είναι όλο το ΙΝ, οπότε το Α θα είναι το σύνολο των πολλαπλασίων του. Παρατηρούμε όμως ότι και τα δύο αυτά σύνολα έχουν άπειρο πλήθος στοιχείων, πράγμα που δημιουργεί πρόβλημα στον υπολογισμό της πιθανότητας. Γι αυτό λοιπόν, επειδή μας ενδιαφέρει εάν ο αριθμός που επιλέγεται διαιρείται με το και όχι ο αριθμός καθαυτός, ως αποτέλεσμα του πειράματος τύχης μπορούμε να θεωρήσουμε το υπόλοιπο της διαίρεσης του αριθμού αυτού με το. Έτσι ο δειγματικός χώρος του π. τ. είναι το σύνολο Ω = {0,, } και το ενδεχόμενο Α το σύνολο Α = {0}. Επειδή η επιλογή γίνεται με τυχαίο τρόπο και λόγω της περιοδικότητας των φυσικών αριθμών ως προς τα υπόλοιπα της διαίρεσής τους με το, τα απλά ενδεχόμενα είναι ισοπίθανα, οπότε έχουμε: Ρ(Α) = /. (ii) Όμοια με το (i). Εδώ είναι Ω = {0,,,, 4,, 6}και αν Β είναι το ενδεχόμενο: «Ο φυσικός αριθμός διαιρείται με το 7», τότε Β = {0}, οπότε Ρ(Β) = /7. (iii) Τώρα ζητάμε την πιθανότητα του ενδεχομένου Α Β. Δε μπορούμε όμως να υπολογίσουμε την πιθανότητα του ενεχομένου αυτού με τη βοήθεια των προηγούμενων δειγματικών χώρων, επειδή, όπως προκύπτει από τα (i) και (ii), τα Α και Β δεν είναι ενδεχόμενα του ίδιου δειγματικού χώρου. Πρέπει επομένως να βρούμε ένα κοινό δειγματικό χώρο του οποίου ενδεχόμενα να είναι τα Α και Β. Προς τούτο, κάθε φορά που επιλέγεται ένας φυσικός αριθμός, μπορούμε να σημειώνουμε με μορφή διατεταγμένου ζεύγους τα υπόλοιπα που αφήνει η διαίρεσή του με το (πρώτο μέλος) και με το 7 (δεύτερο μέλος). Όλα αυτά τα διατεταγμένα ζεύγη φαίνονται στον παρακάτω πίνακα διπλής εισόδου. με το με το (0, 0) (0, ) (0, ) (0, ) (0, 4) (0, ) (0, 6) (, 0) (, ) (, ) (, ) (, 4) (, ) (, 6) (, 0) (, ) (, ) (, ) (, 4) (, ) (, 6) Ο κοινός δειγματικός χώρος Ω λοιπόν είναι το σύνολο των διατεταγμένων ζευγών του πίνακα αυτού με Ν(Ω) =. Παρατηρούμε ότι τα παραπάνω ενδεχόμενα Α και Β ως υποσύνολα του νέου δειγματικού χώρου είναι: Α = {(0, 0), (0, ), (0, ), (0, ), (0, 4), (0, ), (0, 6)} & Β = {(0, 0), (, 0), (, 0)} με Ν(Α) = 7 και Ν(Β) =, οπότε: Ρ(Α) = 7/ = / [δείτε και ερώτημα (i)] και Ρ(Β) = / = /7 [δείτε και ερώτημα (ii)]. Τώρα έχουμε: Α Β = {(0, 0)}, οπότε: Ρ(Α Β) = /.

3 . Για ένα ευρωπαϊκό κύπελλο έχουν προκριθεί στις ομάδες δύο ελληνικές. Σύμφωνα με την κλήρωση οι ομάδες αυτές, για την πρόκριση στην επόμενη φάση της διοργάνωσης, θα παίξουν με δύο ξένες ομάδες. Αν όλες οι ομάδες έχουν την ίδια πιθανότητα πρόκρισης, να βρείτε την πιθανότητα μία τουλάχιστον ελληνική ομάδα να προκριθεί στην επόμενη φάση της διοργάνωσης. Έστω ε και ε οι δύο ελληνικές ομάδες και ξ, ξ οι δύο ξένες ομάδες που θα παίξουν αντίστοιχα με τις δύο ελληνικές. Το πείραμα τύχης εδώ είναι οι μεταξύ τους αγώνες. Να σημειώσουμε ότι κάθε αγώνας έχει το χαρακτηριστικό στοιχείο ενός πειράματος τύχης, που είναι η αδυναμία μας να προβλέψουμε με βεβαιότητα το αποτέλεσμα. Έστω Α λοιπόν το ενδεχόμενο: «Μία τουλάχιστον ελληνική ομάδα προκρίνεται στην επόμενη φάση». Το τελικό αποτέλεσμα από τους δύο αγώνες είναι η πρόκριση δύο ομάδων στην επόμενη φάση, οπότε ο δειγματικός χώρος, που περιέχει όλα τα δυνατά αποτελέσματα πρόκρισης, είναι: Ω = {(ε, ξ ), (ε, ε ), (ξ, ε ), (ξ, ξ ) }. Αφού όλες οι ομάδες έχουν την ίδια πιθανότητα πρόκρισης, όλα τα απλά ενδεχόμενα είναι ισοπίθανα, οπότε το καθένα έχει πιθανότητα ίση με /4. Το ενδεχόμενο Α τώρα με αναγραφή των στοιχείων του είναι: Α = {(ε, ξ ), (ε, ε ), (ξ, ε ) }. Επομένως Ρ(Α) = /4. Σημείωση: Αν κάποιος θεωρήσει ως αποτέλεσμα του π. τ. τον αριθμό των ελληνικών ομάδων που θα προκριθούν στην επόμενη φάση (καμία, μία ή δύο) τότε ο δειγματικός χώρος είναι: Ω = {0ε, ε, ε}. Αυτός ο δειγματικός χώρος όμως θέλει προσοχή γιατί τα απλά ενδεχόμενα δεν είναι ισοπίθανα, αφού το αποτέλεσμα ε προκύπτει με δύο τρόπους. Γι αυτό λοιπόν συνιστούμε να χρησιμοποιείτε τον πρώτο δειγματικό χώρο, που είναι πιο αναλυτικός και με ισοπίθανα απλά ενδεχόμενα.. Δίνεται η τυχαία εξίσωση: x + κx + λ = 0, όπου οι αριθμοί κ και λ ορίζονται αντίστοιχα με τη βοήθεια δύο διαδοχικών ρίψεων ενός «αμερόληπτου» ζαριού. Να βρείτε την πιθανότητα η εξίσωση αυτή να έχει ρητές ρίζες. Την παραπάνω εξίσωση την χαρακτηρίζουμε ως τυχαία, επειδή οι αριθμοί κ και λ ορίζονται με τυχαίο τρόπο και συγκεκριμένα με τη ρίψη ενός αμερόληπτου ζαριού. Έστω Α το ενδεχόμενο: «Η εξίσωση αυτή έχει ρητές ρίζες». Εδώ το πείραμα τύχης είναι οι δύο διαδοχικές ρίψεις του ζαριού όπου το αποτέλεσμα της πρώτης ρίψης ορίζει το κ και της δεύτερης το λ. Επομένως ο δειγματικός χώρος Ω είναι το σύνολο των διατεταγμένων ζευγών των αποτελεσμάτων των δύο ρίψεων. Είναι Ν(Ω) = 6 (δείτε σχολικό βιβλίο, σελ., εφαρμογή ). Για να έχει η εξίσωση ρητές ρίζες (μία διπλή ή δύο διαφορετικές) πρέπει η διακρίνουσα, κ -4λ, της εξίσωσης να είναι ίση με το τετράγωνο ενός ακέραιου αριθμού. Στην περίπτωση αυτή προφανώς θα ισχύει 0 Δ. Στον παρακάτω πίνακα φαίνονται όλα τα ζεύγη που ικανοποιούν την παραπάνω συνθήκη. Δ (, ) (, ) (κ, λ) (4, ) (, 4) (6, ) - (4, 4) (, 6) Επομένως το ενδεχόμενο Α με αναγραφή των στοιχείων του είναι: Α = {(, ), (4, 4), (, ), (, 6), (4, ), (, 4), (6, )}. Παρατηρούμε ότι Ν(Α) = 7, οπότε Ρ(Α) = 7/6, αφού τα απλά ενδεχόμενα είναι ισοπίθανα, επειδή το ζάρι είναι αμερόληπτο.

4 4 ΙΙ. Έμμεσος υπολογισμός της πιθανότητας: Εδώ πρέπει, αν το ενδεχόμενο δεν είναι διατυπωμένο με μαθηματικό τρόπο, να το διατυπώνουμε πρώτα με μαθηματικό τρόπο και κατόπιν να υπολογίζουμε την πιθανότητά του με τους κανόνες λογισμού των πιθανοτήτων, δηλαδή να ακολουθούμε το παρακάτω διάγραμμα: Λεκτική διατύπωση του ενδεχομένου Μαθηματική διατύπωση του ενδεχομένου Υπολογισμός της πιθανότητας Για τη μαθηματική διατύπωση ενός ενδεχομένου καλό είναι να το αναλύουμε έτσι που να είναι πιο φανερός ο μαθηματικός τρόπος έκφρασής του. Αν χρειασθεί δε να το αναδιατυπώνουμε χρησιμοποιώντας τις λογικές πράξεις: (i) Άρνηση (όχι, δεν ) που αντιστοιχεί στο συμπλήρωμα ενός συνόλου, (ii) Σύζευξη (και ) που αντιστοιχεί στην τομή συνόλων και (iii) Διάζευξη (ή ) που αντιστοιχεί στην ένωση συνόλων. Ας δούμε καλύτερα το επόμενο παράδειγμα. 4. Το 60% των μαθητών μιας πόλης έχουν κινητό τηλέφωνο. Το 40% έχουν η- λεκτρονικό υπολογιστή (Η.Υ.) και το % και τα δύο. Αν επιλέξουμε τυχαία ένα μαθητή της πόλης αυτής, να βρείτε τις πιθανότητες ο μαθητής αυτός: (i) να έχει ένα μόνο από τα δύο (ii) να μην έχει κανένα από τα δύο και (iii) να έχει το πολύ ένα από τα δύο. Έστω Α το ενδεχόμενο: «Ο μαθητής έχει κινητό τηλέφωνο» και Β το ενδεχόμενο: «Ο μαθητής έχει Η.Υ.». Σύμφωνα με τα δεδομένα του προβλήματος έχουμε: Ρ(Α) = 0,6 Ρ(Β) = 0,4 και Ρ(Α Β) = 0,. Τώρα έχουμε: (i) Το ενδεχόμενο: «Έχει ένα μόνο από τα δύο» μπορεί να διατυπωθεί και ως εξής: «Έχει κινητό και όχι Η.Υ. ή έχει Η.Υ. και όχι κινητό», του οποίου η μαθηματική έκφραση είναι: (Α Β ) (Β Α ) = (Α-Β) (Β-Α). Επειδή τώρα τα ενδεχόμενα Α-Β και Β-Α είναι ασυμβίβαστα, σύμφωνα με τον απλό προσθετικό νόμο έχουμε: Ρ[(Α-Β) (Β-Α)] = Ρ(Α-Β) + Ρ(Β-Α) = Ρ(Α) + Ρ(Β) Ρ(Α Β) = 0,6 + 0,4 0, = 0, (ii) Το ενδεχόμενο: «Δεν έχει κανένα από τα δύο» σημαίνει «όχι κινητό και όχι Η.Υ.», που με μαθηματική γλώσσα αποδίδεται ως εξής: Α Β. Επειδή όμως δεν είναι προφανής ο υπολογισμός της πιθανότητας του ενδεχομένου αυτού, μπορούμε να σκεφθούμε ως εξής: Αν είχε τουλάχιστον ένα από τα δύο, τότε θα πραγματοποιούταν η ένωση, Α Β, των ενδεχομένων αυτών. Τώρα όμως που δεν έχει κανένα σημαίνει ότι πραγματοποιείται το συμπληρωματικό της ένωσης, δηλαδή το ενδεχόμενο: (Α Β). Παρατηρούμε λοιπόν ότι ισχύει: Α Β = (Α Β). Επομένως έχουμε: Ρ(Α Β ) = Ρ[(Α Β) ] = - Ρ(Α Β) = Ρ(Α) Ρ(Β) + Ρ(Α Β) = 0,6 0,4 + 0, = 0,

5 (iii) Για τη μαθηματική διατύπωση του ενδεχομένου: «Έχει το πολύ ένα» σκεπτόμαστε ως εξής: Το ενδεχόμενο: «Έχει το πολύ ένα» σημαίνει ότι έχει ένα μόνο ή κανένα, όχι και τα δύο. Αν είχε και τα δύο, τότε θα πραγματοποιούταν η τομή, Α Β, των ενδεχομένων αυτών. Τώρα όμως που δεν τα έχει και τα δύο σημαίνει ότι πραγματοποιείται το συμπληρωματικό της τομής, δηλαδή το ενδεχόμενο (Α Β). Αξίζει να σημειωθεί ότι το παραπάνω ενδεχόμενο είναι ισοδύναμο με το ενδεχόμενο: «Ένα τουλάχιστον από τα δύο δεν το έχει» δηλαδή «Δεν έχει κινητό ή δεν έχει Η.Υ.», που είναι το ενδεχόμενο Α Β, δηλαδή ισχύει: Α Β = (Α Β). Έχουμε λοιπόν: Ρ(Α Β ) = Ρ[(Α Β) ] = Ρ(Α Β) = 0, = 0,7. Έστω τα ενδεχόμενα Α και Β του ίδιου δειγματικού χώρου με Ρ ( Α) =, Ρ ( Β) = και Ρ ( =. 4 α. Να υπολογίσετε την πιθανότητα της τομής, Α Β, των ενδεχομένων Α και Β. β. Είναι τα ενδεχόμενα Α και Β ασυμβίβαστα; γ. Να υπολογίσετε την πιθανότητα να πραγματοποιείται μόνο το Α. α. Από τον προσθετικό νόμο, Ρ(Α Β) = Ρ(Α) + Ρ(Β) - Ρ(Α Β), ισοδύναμα έχουμε: Ρ(Α Β) = Ρ(Α) + Ρ(Β) - Ρ(Α Β). Αντικαθιστώντας τα δεδομένα στην τελευταία ισότητα παίρνουμε: Ρ ( Α Β) = + =. 4 6 β. Επειδή Ρ( Α Β) = 0 είναι Α Β Φ, οπότε τα ενδεχόμενα Α και Β δεν είναι 6 ασυμβίβαστα. γ. Πραγματοποιείται μόνο το Α σημαίνει: «Πραγματοποιείται το Α και όχι το Β», που με μαθηματικό τρόπο εκφράζεται ως εξής: Α Β ή Α Β. Επομένως σύμφωνα με τον ο κανόνα έχουμε: Ρ( Α Β ) = Ρ( Α Β) = Ρ( Α) Ρ( Α Β) = =. 6 6 Β Ασκήσεις με ανισότητες: Στην κατηγορία αυτή θα δούμε ασκήσεις που αναφέρονται σε ανισοτικές σχέσεις που περιέχουν πιθανότητες ενδεχομένων, οι οποίες προκύπτουν με καθαρά πιθανοθεωρητικό τρόπο, δηλ. με τη βοήθεια των κανόνων και των σχέσεων της Θεωρίας Πιθανοτήτων. Οι σχέσεις αυτές συνήθως περιέχουν ένωση και τομή μεταξύ ενδεχομένων. Έτσι θυμίζουμε ότι ισχύουν οι σχέσεις: Α Β Α και Α Β Β από τις οποίες σύμφωνα με τον 4 ο κανόνα παίρνουμε: Ρ(Α Β) Α) & Ρ(Α Β) Β) () Ακόμη έχουμε: Ρ(Α Β) = Ρ(Α) + Ρ(Β) - Ρ(Α Β) από όπου προκύπτει ότι: Ρ(Α) + Ρ(Β) - Α Β) ()

6 6 Τώρα από (), () και επειδή Ρ(Α Β) 0 παίρνουμε: max(0, Ρ(Α) + Ρ(Β) ) Α Β) min(ρ(α), Ρ(Β)) () όπου max(α, β) παριστάνει τον μεγαλύτερο αριθμό από τους α και β, ενώ min(α, β) τον μικρότερο. Για παράδειγμα, max(4, 7) = 7 και min(6, ) =. Επίσης ισχύουν και οι σχέσεις Α Α Β και Β Α Β οπότε: Ρ(Α) Α Β) & Ρ(Β) Α Β) (4). Ακόμη από τον προσθετικό νόμο των πιθανοτήτων προκύπτει ότι: Ρ(Α Β) Α) + Ρ(Β) (). Τέλος από (4), () και επειδή Ρ(Α Β) έχουμε: max(ρ(α), Ρ(Β)) Α Β) min(ρ(α) + Ρ(Β), ) (6) Βέβαια σε κάθε άσκηση πρέπει να αποδεικνύονται οι παραπάνω σχέσεις αφού δεν αναφέρονται στο βιβλίο. Χαρακτηριστικές είναι οι επόμενες ασκήσεις. 6. Αν Α και Β είναι δύο ενδεχόμενα του ίδιου δειγματικού χώρου με και Ρ ( Β) =, να αποδείξετε ότι: 40 Α Β). Ρ ( Α) = (Είναι φανερό ότι η άσκηση αυτή αποτελεί εφαρμογή της (). Όμως, όπως αναφέραμε, πρέπει να γίνει πλήρης απόδειξη αφού δεν αναφέρεται στο σχολικό βιβλίο). Ως γνωστόν Α Β Α και Α Β Β, οπότε, σύμφωνα με τον 4 ο κανόνα και τα δεδομένα της άσκησης παίρνουμε: Ρ(Α Β) Ρ (Α) και Ρ(Α Β) Ρ (Β) Επομένως Ρ(Α Β) και Ρ(Α Β) και επειδή έχουμε (ισχυρότερη συνθήκη): Ρ ( Α Β) () Επίσης από τη σχέση Ρ ( έχουμε: Ρ(Α) + Ρ(Β) - Ρ(Α Β) ή ισοδύναμα Ρ(Α) + Ρ(Β) - Α Β). Αντικαθιστώντας τις πιθανότητες των Α και Β στην τελευταία σχέση παίρνουμε: + Α Β) ή Α Β) () 40

7 7 Τέλος, συνδυάζοντας τις () και () τελικά παίρνουμε: 40 Α Β). 7. Αν Α και Β είναι δύο ενδεχόμενα του ίδιου δειγματικού χώρου με Ρ ( Α) = 7 και Ρ ( Β) =, να αποδείξετε ότι:. 4 (Και εδώ είναι φανερό ότι η άσκηση αυτή αποτελεί εφαρμογή της (6). Όμως πρέπει να γίνει πλήρης απόδειξη αφού δεν αναφέρεται στο σχολικό βιβλίο). Επειδή Α Α Β και Β Α Β, σύμφωνα με τον 4 ο κανόνα και τα δεδομένα της ά- σκησης παίρνουμε: Ρ ( Α) και Ρ ( Β) Επομένως και και επειδή έχουμε (ισχυρότερη συνθήκη): () Επίσης, αντικαθιστώντας στη σχέση Ρ ( Α) + Ρ(Β) τις πιθανότητες των ενδεχομένων Α και Β παίρνουμε: 7 Ρ ( + ή Ρ( () 4 Τέλος από () και () τελικά παίρνουμε: 7. 4 Γ Γενικές ασκήσεις: Τέλος θα ασχοληθούμε με γενικές θεωρητικές ασκήσεις, οι οποίες λύνονται με εφαρμογή γνώσεων από τη Θεωρία Πιθανοτήτων καθώς και από άλλους κλάδους των Μαθηματικών. Στην περίπτωση αυτή δεν έχουμε να δώσουμε κάποια παρατήρηση ή οδηγία πέρα από το ότι πρέπει κανείς να γνωρίζει πολύ καλά τη θεωρία όλων των κλάδων των Μαθηματικών και να εξασκείται στη λύση σύνθετων προβλημάτων, που απαιτούν συνδυασμό γνώσεων από διάφορους κλάδους των Μαθηματικών. Ας δούμε λοιπόν μερικά παραδείγματα.. Έστω Α, Β δύο ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α) + Ρ(Β) Ρ(Α Β). Δίνεται ακόμα η συνάρτηση: f(x) = (x P(A B)) - (x P(A B)), x IR.

8 α. Να δείξετε ότι P(A B) P(A B). β. Να δείξετε ότι η συνάρτηση f(x) παρουσιάζει μέγιστο στο σημείο P( A) + P( B) x =. γ. Εάν τα ενδεχόμενα Α, Β είναι ασυμβίβαστα, να δείξετε ότι f(p(a)) = f(p(β)). (Εξετάσεις 00) α. Έχουμε: Ρ(Α Β) Ρ(Α Β) Ρ(Α) + Ρ(Β) - Ρ(Α Β) Ρ(Α Β) Ρ(Α) + Ρ(Β) Ρ(Α Β) που ισχύει (Υπόθεση). Άρα ισχύει και η αρχική. β. Η παράγωγος της συνάρτησης f είναι: f (x) = [x P(A B)] [x P(A B)] = [(x P(A B)) - (x P(A B)) ] = [x P(A B) + x P(A B)][x P(A B) - x + P(A B)] = [x P(A B) P(A B)][ P(A B) - P(A B)] Τώρα έχουμε: f (x) = 0 [x P(A B) P(A B)][ P(A B) - P(A B)] = 0 x P(A B) P(A B = 0 {αφού από (α) P(A B) - P(A B) 0} P( A) + P( B) x P(A) P(B) + P(A B P(A B = 0 x = Επειδή P(A B) - P(A B) 0, αφού P(A B) P(A B) γιατί A B A B, έχουμε τον παρακάτω πίνακα μονοτονίας: x - P ( A) + P( B) f f γν. αύξουσα γν. φθίνουσα + Από τον παραπάνω πίνακα συμπεραίνουμε ότι η συνάρτηση f παρουσιάζει μέγιστο στο P( A) + P( B) σημείο x =. γ. Αν τα ενδεχόμενα Α και Β είναι ασυμβίβαστα τότε: P(A B) = P(A) + P(B) και P(A B) = 0, οπότε ο τύπος της f γίνεται: f(x) = [x P(A) - P(Β)] - x. Για x = P(A) έχουμε: f(p(a)) = [P(A) P(A) - P(Β)] [P(A)] = - [P(Β)] [P(A)] () Επίσης για x = P(Β) παίρνουμε: f(p(β)) = [P(Β) P(A) - P(Β)] [P(Β)] = - [P(Α)] [P(Β)] () Συγκρίνοντας τώρα τις παραπάνω σχέσεις () και () (δεύτερα μέλη ίσα) συμπεραίνουμε ότι: f(p(a)) = f(p(β)). 9. Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου Ω με

9 9 Ρ(Α) = λ και Ρ(Β) = 7λ 6λ +, να αποδείξετε ότι λ. 4 Καταρχάς παρατηρούμε ότι για κάθε λ IR είναι λ 0 και 7λ 6λ + > 0 (Δ < 0). Αφού τα ενδεχόμενα Α και Β είναι ασυμβίβαστα έχουμε: Ρ(Α Β) = Ρ(Α) + Ρ(Β) = λ + (7λ 6λ + ) = λ 6λ + (). Επειδή τώρα η πιθανότητα ενός ενδεχομένου ανήκει στο διάστημα [0, ] πρέπει να ισχύουν και οι σχέσεις: λ (), 7λ 6λ + () και λ 6λ + (4). Τέλος, λόγω της (), παρατηρούμε ότι αν ισχύει η (4), τότε θα ισχύουν οι () και (). Ε- πομένως αρκεί να λύσουμε μόνο την ανίσωση (4). Έχουμε λοιπόν: λ 6λ + λ 6λ + 0 ( λ )( λ ) 0 λ α. Να αποδείξετε ότι για κάθε x IR ισχύει: x x +. β. Αν Α, Β δύο μεταβλητά ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ ( Α) + Ρ( Β) = να αποδείξετε ότι Α') Ρ( Β' ) < α. Παρατηρούμε ότι η σχέση x x + είναι ισοδύναμη με την x -x 0. Επομένως για να αποδείξουμε τη ζητούμενη ανισότητα μπορούμε να θεωρήσουμε τη συνάρτηση f(x) = x - x και να βρούμε την ελάχιστη τιμή της. Η παράγωγος της f είναι: f (x) = x. Εύκολα βρίσκουμε ότι f (0) = 0, f (x) < 0 αν x < 0 και f (x) > 0 αν x > 0, οπότε έ- χουμε τον παρακάτω πίνακα. x f f γν. φθίνουσα γν. αύξουσα. Από τον παραπάνω πίνακα συμπεραίνουμε ότι η f για x = 0 παίρνει την ελάχιστη τιμή της, που είναι τo f(0) = 0-0 = 0. Άρα για κάθε x IR ισχύει f(x) f(0) ή x - x 0 x x + (). β. Έχουμε διαδοχικά: Ρ(Α )Ρ(Β ) = [ - Ρ(Α)][ - Ρ(Β)] = - Ρ(Α) - Ρ(Β) + Ρ(Α)Ρ(Β) = [Ρ(Α) + Ρ(Β)] + Ρ(Α)Ρ(Β)

10 0 = + Ρ( Α) Ρ( Β) = + Ρ( Α) Ρ( Β) (), αφού Ρ(Α)Ρ(Β) 0. Αν τώρα, αντικαταστήσουμε το x στην () διαδοχικά με - P(A) και με - P(Β) παίρνουμε: -Ρ(Α) -Ρ(Α) + -Ρ(Α) - Ρ(Α) () και -Ρ(Β) -Ρ(Β) + -Ρ(Β) - Ρ(Β) (4) Επειδή Ρ(Α) 0 και - Ρ(Β) 0, μπορούμε να πολλαπλασιάσουμε κατά μέλη τις () και (4) οπότε παίρνουμε: -Ρ(Α) -Ρ(Β) [ Ρ(Α)][ Ρ(Β)] -Ρ(Α) -Ρ(Β) Ρ(Α )Ρ(Β ) -[Ρ(Α)+Ρ(Β)] Ρ(Α )Ρ(Β ) -/ Ρ(Α )Ρ(Β ) Ρ ( Α ) Ρ( Β ) () Τέλος, παρατηρούμε ότι το = δεν ισχύει ποτέ στην () (γιατί;), ενώ στη () ισχύει ό- ταν Ρ(Α) = 0 ή Ρ(Β) = 0. Άρα έχουμε: Α' ) Ρ( Β' ) <.

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Α Σ Κ Η Σ Ε Ι Σ Π Ι Θ Α Ν Ο Τ Η Τ Ω Ν ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ0 e-mail@p-theodoropoulos.gr Πρόλογος Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηµατικών µε πολλά

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ 1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Π ι θ α ν ό τ η τ ε ς : Ο τομέας των Εφαρμοσμένων Μαθηματικών, που ασχολείται με την αξιολόγηση κατάλληλων στοιχείων έτσι ώστε να είναι μετρήσιμη η προσδοκία μας για την πραγματοποίηση

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ( Version ) 2001

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ( Version ) 2001 ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ( Version 17-4--2016) 2001 ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες 8,5 Απόδειξη: Επειδή τα ενδεχόμενα

Διαβάστε περισσότερα

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ Συχνότητα Σχετική συχνότητα Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται va φορές,τότε va ο αριθμός va λέγεται συχνότητα του ενδεχομένου

Διαβάστε περισσότερα

1.1 Πείραμα Τύχης - δειγματικός χώρος

1.1 Πείραμα Τύχης - δειγματικός χώρος 1. ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Πείραμα Τύχης - δειγματικός χώρος Κάθε πείραμα στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό πείραμα. Τέτοια πειράματα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ Οµάδα η. Αν Ω={ω,ω,,ω 6 } είναι ο δ.χ ενός πειράµατος τύχης να βρείτε τις πιθανότητες Ρ(ω ),,Ρ(ω 6 ) αν είναι γνωστό ότι αυτές αποτελούν διαδοχικούς όρους αριθµητικής προόδου µε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' ) ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89 Ον/μο:.. Α Λυκείου Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις 6-0- Θέμα ο : Α.. Να δώσετε τον ορισμό της εξίσωσης ου βαθμού (μον.) Α.. Αν, ρίζες της εξίσωσης 0, να αποδείξετε ότι

Διαβάστε περισσότερα

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ 1. Ο Γυμναστής ενός λυκείου προκειμένου να στελεχώσει την ομάδα μπάσκετ του λυκείου ψάχνει στην τύχη μεταξύ των μαθητών να βρει τρεις κοντούς (Κ) και τρεις ψηλούς (Ψ). Να

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,... Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 96) Άσκηση ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Έστω οι παρατηρήσεις δυο δειγμάτων αντίστοιχα των μεταβλητών Χ και Ψ Δίνεται ότι η μέση τιμή

Διαβάστε περισσότερα

ΓΕΛ ΝΕΑΣ ΠΕΡΑΜΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ. Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών

ΓΕΛ ΝΕΑΣ ΠΕΡΑΜΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ. Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών Οι σχετικές συχνότητες πραγματοποίησης των ενδεχομένων ενός πειράματος σταθεροποιούνται γύρω από κάποιους αριθμούς

Διαβάστε περισσότερα

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3() ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version )

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version ) ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version 24-3-2016) 2001 2001 επαναληπτικές 2002 2002 επαναληπτικές 2003 2003 επαναληπτικές 2006 2006 επαναληπτικές 2005 2005 επαναληπτικές 2006 2006 επαναληπτικές 2007 2007

Διαβάστε περισσότερα

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς. Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56)

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56) ΓΕΝΙΚEΣ AΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Κώστας Βακαλόπουλος, Κώστας Παπαϊωάννου, Θανάσης Χριστόπουλος Άσκηση ( λ) λ λ 5 Δίνεται η συνάρτηση F(x) x λx. α) Να βρεθεί η F (x). Ν(Β) Άρα: Β = {5}, οπότε

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 004 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α. Να αποδείξετε ότι η παράγωγος της σταθερής συνάρτησης fxc είναι ίση µε 0. Μονάδες 8 Β. Να δώσετε τον ορισµό της συνέχειας

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα

Διαβάστε περισσότερα

ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου

ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου ΓΕΛ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : 013-014 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου Ω, τότε να αποδείξετε

Διαβάστε περισσότερα

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε ΠΙΘΑΝΟΤΗΤΕΣ Π ε ι ρ α μ α τ υ χ η ς - Δ ε ι γ μ α τ ι κ ο ς χ ω ρ ο ς. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε το αποτελεσμα,.

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΜΕΡΟΣ Α. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ 77. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ Κλασικός ορισμός πιθανότητας Αν ένα στοιχείο του συνόλου του δειγματικού χώρου επιλέγεται στην τύχη και δεν έχει κανένα πλεονέκτημα έναντι των άλλων,

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Όνομα/Επίθετο: Ζήτημα 1ο Να γράψετε στη γλώσσα των συνόλων και λεκτικά ποιο ενδεχόμενο παριστάνει κάθε ένα

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) o ΘΕΜΑ A. Aν n

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α. ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του

Διαβάστε περισσότερα

Τάξη A Μάθημα: Άλγεβρα

Τάξη A Μάθημα: Άλγεβρα Τάξη A Μάθημα: Άλγεβρα Ερωτήσεις Θεωρίας Θέματα Εξετάσεων Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Α. Θεωρία - Αποδείξεις.. Σελ. Β. Θεωρία-Ορισμοί. Σελ.16 Γ. Ερωτήσεις Σωστού Λάθους...

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f = ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 16 (version 9-6-16) 1. A Να δώσετε τον ορισμό της παραγώγου μιας συνάρτησης σε ένα σημείο x του πεδίο ορισμού της. Απάντηση: Παράγωγος μιας συνάρτησης σε ένα σημείο x του πεδίο

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΠΙΘΑΝΟΤΗΤΕΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα

Διαβάστε περισσότερα

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ ο Α.Τι λέγεται δειγµατικός χώρος ενός πειράµατος τύχης; Μονάδες. Πώς ορίζεται η διάµεσος ενός δείγµατος ν παρατηρήσεων; (ν θετικός ακέραιος) Μονάδες 4 B. Αν η

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α. Να βρείτε το πεδίο ορισμού της. x x x x β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο Δίνεται η συνάρτηση

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΛΓΕΡ ΛΥΚΕΙΟΥ ΠΙΘΝΟΤΗΤΕΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙ 1 Tα πειράματα των οποίων δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνονται (φαινομενικά τουλάχιστον) κάτω από τις ίδιες συνθήκες

Διαβάστε περισσότερα

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β) ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 04 ΘΕΜΑ ο Α. Πότε δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ονομάζονται ασυμβίβαστα;

Διαβάστε περισσότερα

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ 1 5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ 1. Ισοπίθανα απλά ενδεχόµενα Είναι τα απλά ενδεχόµενα για τα οποία κάποιο εξ αυτών δεν έχει πλεονέκτηµα έναντι των άλλων όσον αφορά την επιλογή του. Με άλλα λόγια

Διαβάστε περισσότερα

Μαθηματικός Περιηγητής σχ. έτος

Μαθηματικός Περιηγητής σχ. έτος =================================================================== ΛΥΣΕΙΣ ΤΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 06 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 3 MAΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A1. Έστω η συνάρτηση

Διαβάστε περισσότερα

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Θεωρία Πιθανοτήτων Εάν οι συνθήκες τέλεσης ενός πειράματος καθορίζουν πλήρως το αποτέλεσμα του, τότε το πείραμα λέγεται αιτιοκρατικό. Είναι γνωστό ότι το αποσταγμένο νερό βράζει στους 100 βαθμού κελσίου.

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 ÈÅÌÅËÉÏ

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 ÈÅÌÅËÉÏ Ζήτηµα ο Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 Α. α) ίνεται η συνάρτηση F() = f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () = f () + g () (Μονάδες

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Τετάρτη, 0 Μα ου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f,g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f 1 ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ Ι. Το πεδίο ορισμού της f είναι:, 1 υ -1, B. 1, Γ. -1,., 1. 1, f 1 ΙΙ. Το όριο lm είναι ίσο με: 0 Α. 0 Β. 1 Γ. -1 Δ. 1/ Ε. Τίποτε

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ Page1 ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: 1.1 Δειγματικός χώρος Ενδεχόμενα i. ΔΙΔΑΚΤΙΚΟΙ ΣΤΟΧΟΙ: 1. Προσδιορίζουν το δειγματικό χώρο ενός πειράματος τύχης και ενδεχόμενα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια: ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Σάββατο, 4 Μα ου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Για δύο ενδεχόμενα Α και Β

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος»

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος» ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν είναι δειγματικός χώρος ενός πειράματος τύχης, τότε Ρ () = 1. 2. * Αν Α είναι ενδεχόμενο ενός πειράματος τύχης τότε, 0 Ρ (Α) 1. 3. * Για το αδύνατο

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες:

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης. Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0%. Να βρείτε: i. Το πλήθος των μαθητών

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ κεφ - ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ Σε ένα συρτάρι υπάρχουν δύο κάρτες, μία άσπρη και μία κόκκινη Παίρνουμε στην τύχη μία κάρτα από το συρτάρι, καταγράφουμε το χρώμα της και την ξαναβάζουμε

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β = ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ 005 ΘΕΜΑ ο Α.. Θεωρία s s Α.. CV =, αν > 0, ενώ CV =, αν < 0. - Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. ΘΕΜΑ ο α. Πρέπει > 0, άρα A f = (0, + ). β. f () = (α

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 Ζήτηµα 1ο Α.1. Α.2. Β.1. Β.2. Β.3. Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α)

Διαβάστε περισσότερα

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης 4 5 35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης Περίληψη: Στο ένθετο αυτό περιλαμβάνονται 35 βασικές προτάσεις, μικρά λήμματα χρήσιμα για τις εξετάσεις. Μας βοηθούν να «ξεκλειδώνουμε»

Διαβάστε περισσότερα

Η πιθανότητα επομένως που ζητείται να υπολογίσουμε, είναι η P(A 1 M 2 ). Η πιθανότητα αυτή μπορεί να γραφεί ως εξής:

Η πιθανότητα επομένως που ζητείται να υπολογίσουμε, είναι η P(A 1 M 2 ). Η πιθανότητα αυτή μπορεί να γραφεί ως εξής: Άσκηση 1: Ένα κουτί περιέχει 3 άσπρες και 2 μαύρες μπάλες. Αφαιρούμε τυχαία δύο μπάλες διαδοχικά. Ποια η πιθανότητα η πρώτη μπάλα να είναι άσπρη και η δεύτερη μπάλα να είναι μαύρη; Λύση: Αρχικά ορίζουμε

Διαβάστε περισσότερα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης

Διαβάστε περισσότερα

Ορισμός της Πιθανότητας (Ι)

Ορισμός της Πιθανότητας (Ι) Ορισμός της Πιθανότητας (Ι) Κλασσικός Ορισμός Πιθανότητα ενδεχομένου Α ( ) N( ) N ( ) Ν(Α): πλήθος ευνοϊκών αποτελεσμάτων του ενδεχ. Α Ν(Ω): πλήθος συνολικών αποτελεσμάτων του δ.χ. Ω Περιορισμοί: - μόνο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 3 ΩΡΕΣ ΘΕΜΑ Ο Α ) Να αποδείξετε ότι για δυο ασυµβίβαστα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω ισχύει P( A B) = P( A) + P( B) ( µονάδες 8 ) Β ) Να δώσετε τον

Διαβάστε περισσότερα

Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn.

Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn. Άσκηση 1 Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn. B) Αν ( ), ( ), ( ), να εκφράσετε τις πιθανότητες

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΘΗΜΤΙΚ ΓΕΝΙΚΗΣ ΠΙΔΕΙΣ ΠΙΘΝΟΤΗΤΕΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου Π Ι Θ Ν Ο Τ Η Τ Ε Σ ΟΡΙΣΜΟΙ Πείραμα τύχης λέγεται το πείραμα το οποίο όσες φορές και αν επαναληφθεί (φαινομενικά τουλάχιστον

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πιθανότητες Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 7 / 0 / 0 6 Γενικής κεφάλαιο 3 94 ασκήσεις και τεχνικές σε 8 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας Α ΕΝΟΤΗΤΑ Πιθανότητες Α.1 (1.1 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα Α.2 (1.2 παρ/φος σχολικού βιβλίου) Η έννοια της πιθανότητας Α.1 Δειγματικός Χώρος. Ενδεχόμενα. Απαραίτητες γνώσεις

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΚΑΨΑΛΗΣ ΘΕΜΙΣΤΟΚΛΗΣ ΤΣΑΚΟΥΜΑΓΚΟΣ ΣΤΕΛΙΟΣ

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΚΑΨΑΛΗΣ ΘΕΜΙΣΤΟΚΛΗΣ ΤΣΑΚΟΥΜΑΓΚΟΣ ΣΤΕΛΙΟΣ ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΚΑΨΑΛΗΣ ΘΕΜΙΣΤΟΚΛΗΣ ΤΣΑΚΟΥΜΑΓΚΟΣ ΣΤΕΛΙΟΣ ΔΙΑΝΕΜΕΤΑΙ ΔΩΡΕΑΝ ΣΤΟΥΣ ΜΑΘΗΤΕΣ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ... σελ. 4 ΚΕΦΑΛΑΙΟ ο ΠΙΘΑΝΟΤΗΤΕΣ... σελ. ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων . Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων Tα διάφορα επιστημονικά μοντέλα ή πειράματα ή γενικότερα τα φυσικά φαινόμενα μπορεί να θεωρηθεί ότι εντάσσονται σε δύο μεγάλες κατηγορίες: τα προσδιοριστικά

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Άσκηση 1102 Δίνονται δύο ενδεχόμενα ενός δειγματικού χώρου Ω και οι πιθανότητες α) Να υπολογίσετε την (Μονάδες 9) β) i) Να υπολογίσετε με διάγραμμα Venn και να γράψετε στη γλώσσα των συνόλων το ενδεχόμενο:

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 102, Στρόβολος 200, Λευκωσία Τηλ. 7-2278101 Φαξ: 7-2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ -ΩΡΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 000-014 ΘΕΜΑ 4 ο 00 Έστω Α,Β δύο ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α) + Ρ(Β) Ρ(Α Β). Δίνεται ακόμα η συνάρτηση: f(x) = (x - P(AB)) 3 - (x - P(AB)) 3, x R. α. Να δείξετε ότι P(AB) P(AB). Μονάδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

Εισαγωγή στα ΣΥΝΟΛΑ. Ε.1 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Α), αν είναι αληθείς ή με (Ψ), αν είναι ψευδής

Εισαγωγή στα ΣΥΝΟΛΑ. Ε.1 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Α), αν είναι αληθείς ή με (Ψ), αν είναι ψευδής Εισαγωγή στα ΣΥΝΟΛΑ Ε. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Α), αν είναι αληθείς ή με (Ψ), αν είναι ψευδής i) Αν Α= {0,5,8,3,89}, τότε το Α. ii) Αν Α = {, {,5}, 8, 0}, τότε το Α. iii) Τα σύνολα

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα