09_Μη παραμετρικοί έλεγχοι υποθέσεων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "09_Μη παραμετρικοί έλεγχοι υποθέσεων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ."

Transcript

1 Ν161_(6)_Στατιστική στη Φυσική Αγωγή 09_Μη παραμετρικοί έλεγχοι υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Όταν δεν υπάρχουν διαθέσιμες πληροφορίες για την κατανομή των πληθυσμών, από τους οποίους προέρχονται τα προς έλεγχο δείγματα, δεν μπορούν να εφαρμοστούν τα παραμετρικά τεστ Τα μη παραμετρικά τεστ χρησιμοποιούνται 1. όταν ο πληθυσμός ΔΕΝ ακολουθεί κανονική κατανομή. σε δεδομένα κατάταξης (π.χ. η κατάταξη ενός ατόμου στο δείγμα) 1

2 Η έννοια της κατάταξης Στα μη παραμετρικά τεστ υπάρχει ένας στερεότυπος τρόπος κατάταξης των τιμών. 1. Ιεραρχούμε τις τιμές κατ αύξουσα σειρά. Π.χ. οι τιμές μς, 4, 3, 5, 3, 4, 8 και 6 ιεραρχούνται κατά αύξουσα σειρά ως, 3, 3, 4, 4, 5, 6, 8. Αριθμοί (κατά αύξουσα σειρά) ) Καταγράφουμε την «κατάταξη» αυτών των αριθμών. Π.χ. 1η, η, 3η, 4η, 5η, 6η, 7η, 8η σειρά «κατάταξης». Αριθμοί (κατά αύξουσα σειρά) Κατάταξη

3 3. Ο αριθμός της «κατάταξης» του κάθε στοιχείου (αριθμού) δηλώνει την «τάξη» του κάθε ατόμου. Προσοχή όμως στην περίπτωση ίδιων μετρήσεων (επιδόσεων). τα άτομα που έχουν την ίδια επίδοση (μέτρηση) θα έχουν ως «τάξη» την μέση τιμή της «κατάταξής» τους. Αριθμοί (κατά αύξουσα σειρά) Κατάταξη Τάξη 1 (+3)/= (+3)/= (4+5)/= (4+5)/= Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων μετρήσεων μέσω μη παραμετρικού ελέγχου - Utest των Mann -Whitney Όταν τα δύο δείγματα προέρχονται από πληθυσμούς που δεν ακολουθούν την κανονική κατανομή ή δεν είναι γνωστή η κατανομή των πληθυσμών, δεν μπορεί να εφαρμοστεί το παραμετρικό t τεστ Θα πρέπει να χρησιμοποιηθεί το μη παραμετρικό U test των Mann - Whitney. Ελέγχει: αν υπάρχει διαφορά στις κατανομές των δύο δειγμάτων (όχι αν υπάρχει διαφορά στις μέσες τιμές των δύο δειγμάτων) 6 3

4 Πολύ μικρά δείγματα (Ν < 8) Παράδειγμα: Οι επιδόσεις μιας ομάδας Α (Ν 1 = 4) σε ένα τεστ ευστοχίας και οι επιδόσεις μιας άλλης ομάδας Β (Ν = 6) στο ίδιο τεστ ευστοχίας παρουσιάζονται στον παρακάτω πίνακα. ομάδα Α Ν 1 = 4 ομάδα Β Ν = 6 ενδιαφερόμαστε να μάθουμε αν τα δύο δείγματα προέρχονται από την ίδια κατανομή ή όχι, σε επίπεδο σημαντικότητας α = ομάδα Α Ν 1 = 4 ομάδα Β Ν = 6 1. Ενώνουμε τα δύο δείγματα Α και Β σε ένα ενιαίο δείγμα (Α+Β) και σε αυτό το νέο δείγμα κάνουμε την κατάταξη των επιδόσεων όλων των ατόμων κατά αύξουσα σειρά. τιμή δείγμα Β Α Β Β Α Α Β Β Β Α 8 4

5 . Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) τιμή δείγμα Β Α Β Β Α Α Β Β Β Α κατάταξη τάξη (7+8)/= 7.5 (7+8)/= Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) τιμή δείγμα Β Α Β Β Α Α Β Β Β Α κατάταξη τάξη (7+8)/= 7.5 (7+8)/=

6 . Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) τιμή δείγμα Β Α Β Β Α Α Β Β Β Α κατάταξη τάξη (7+8)/= 7.5 (7+8)/= Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) τιμή δείγμα Β Α Β Β Α Α Β Β Β Α κατάταξη τάξη (7+8)/= 7.5 (7+8)/=

7 . Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) τιμή δείγμα Β Α Β Β Α Α Β Β Β Α κατάταξη τάξη (7+8)/= 7.5 (7+8)/= Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) τιμή δείγμα Β Α Β Β Α Α Β Β Β Α κατάταξη τάξη (7+8)/= 7.5 (7+8)/=

8 . Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) τιμή δείγμα Β Α Β Β Α Α Β Β Β Α κατάταξη τάξη (7+8)/= 7.5 (7+8)/= Υπολογίζουμε το άθροισμα της τάξης των ατόμων του δείγματος Α, (Τ1), όπως έχουν καταταγεί στο ενιαίο δείγμα (Α+Β) Τ1= = 3 και το άθροισμα της τάξης των ατόμων του δείγματος Β, (Τ), όπως έχουν καταταγεί στο ενιαίο δείγμα (Α+Β) Τ= = 3 15 Υπολογίζουμε τις ποσότητες N1 (N1 1) UA N1N T1 4 (4 1) Ν 1 = 4 Ν = 6 Τ 1 = 3 N (N 1) UB N1N T Ν 1 = 4 Ν = 6 6 (6 1) Τ =

9 Υπολογίζουμε τις ποσότητες N1 (N1 1) UA N1N T1 4 (4 1) Ν 1 = 4 Ν = 6 Τ 1 = 3 N (N 1) UB N1N T Ν 1 = 4 Ν = 6 6 (6 1) Τ = H τιμή U που είναι η μικρότερη μεταξύ U A και U Β,{U=min (U A,U Β )}, δηλαδή U= min (11,13) = 11 συγκρίνεται με την κρίσιμη τιμή U, η οποία εντοπίζεται στους αντίστοιχους πίνακες. 17 το μέγεθος του μεγαλύτερου δείγματος είναι Ν= 6 Στον συγκεκριμένο υποπίνακα στην διασταύρωση της στήλης Ν1= 4 και U= 11, εντοπίζεται η πιθανότητα p= 0.457, που είναι μεγαλύτερη από α= 0.05 (p > α). Συνεπώς, γίνεται αποδεκτή η μηδενική υπόθεση, σύμφωνα με την οποία τα δύο ανεξάρτητα δείγματα προέρχονται από την ίδια κατανομή, δηλαδή δεν υπάρχουν διαφορές στις κατανομές των δύο δειγμάτων. 18 9

10 Δείγματα μεταξύ 9 και 0 Παράδειγμα: Δύο ομάδες αθλητών μαθαίνουν μια κινητική δεξιότητα με δύο διαφορετικούς τρόπους. Οι επιδόσεις της πρώτης ομάδας Α (Ν1= 1) σε ένα τεστ ευστοχίας και οι επιδόσεις της άλλης ομάδας Β (Ν= 9) στο ίδιο τεστ ευστοχίας παρουσιάζονται στον παρακάτω πίνακα. ομάδα Α Ν 1 = 1 ομάδα Β Ν = 9 ενδιαφερόμαστε να μάθουμε αν τα δύο ανεξάρτητα δείγματα προέρχονται από την ίδια κατανομή ή όχι, σε επίπεδο σημαντικότητας α = ομάδα Α Ν 1 = 1 ομάδα Β Ν = 9 1. Ενώνουμε τα δύο δείγματα Α και Β σε ένα ενιαίο δείγμα (Α+Β) και σε αυτό το νέο δείγμα κάνουμε την κατάταξη των επιδόσεων όλων των ατόμων κατά αύξουσα σειρά. τιμή δείγμ α A Β Β Α Α Β Α A Β Α Α Β Β Α Α Β Β Α Α Β Α 0 10

11 . Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) 1. Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) τιμή δείγμα A Β Β Α Α Β Α A Β Α Α Β Β Α Α Β Β Α Α Β Α Κατά ταξη τάξη τιμή δείγμα A Β Β Α Α Β Α A Β Α Α Β Β Α Α Β Β Α Α Β Α Κατά ταξη τάξη

12 . Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) 3. Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) τιμή δείγμα A Β Β Α Α Β Α A Β Α Α Β Β Α Α Β Β Α Α Β Α Κατά ταξη τάξη τιμή δείγμα A Β Β Α Α Β Α A Β Α Α Β Β Α Α Β Β Α Α Β Α Κατά ταξη τάξη

13 . Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) 5. Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) τιμή δείγμα A Β Β Α Α Β Α A Β Α Α Β Β Α Α Β Β Α Α Β Α Κατά ταξη τάξη τιμή δείγμα A Β Β Α Α Β Α A Β Α Α Β Β Α Α Β Β Α Α Β Α Κατά ταξη τάξη Υπολογίζουμε το άθροισμα της τάξης των ατόμων του δείγματος Α, (Τ1), όπως έχουν καταταγεί στο ενιαίο δείγμα (Α+Β) 6 13

14 . Με βάση την κατάταξη των επιδόσεων, προσδιορίζουμε την τάξη της κάθε τιμής στο συνολικό δείγμα (Α+Β) τιμή δείγμα A Β Β Α Α Β Α A Β Α Α Β Β Α Α Β Β Α Α Β Α Κατά ταξη τάξη Υπολογίζουμε το άθροισμα της τάξης των ατόμων του δείγματος Α, (Τ1), όπως έχουν καταταγεί στο ενιαίο δείγμα (Α+Β) Τ1= = και το άθροισμα της τάξης των ατόμων του δείγματος Β, (Τ), όπως έχουν καταταγεί στο ενιαίο δείγμα (Α+Β) Τ= = 96 7 Υπολογίζουμε τις ποσότητες N1 (N1 1) UA N1N T1 1(1 1) Ν 1 = 1 Ν = 9 Τ 1 = 135 N (N 1) UB N1N T 9(9 1) Ν 1 = 1 Ν = 9 Τ =

15 Υπολογίζουμε τις ποσότητες N1 (N1 1) UA N1N T1 1(1 1) Ν 1 = 1 Ν = 9 Τ 1 = 135 N (N 1) UB N1N T 9(9 1) Ν 1 = 1 Ν = 9 Τ = 96 9 Υπολογίζουμε τις ποσότητες N1 (N1 1) UA N1N T1 1(1 1) Ν 1 = 1 Ν = 9 Τ 1 = 135 N (N 1) UB N1N T 9(9 1) Ν 1 = 1 Ν = 9 Τ = 96 H τιμή U που είναι η μικρότερη μεταξύ U A και U Β,{U=min (U A,U Β )}, δηλαδή U= min (51,57) = 51 συγκρίνεται με την κρίσιμη τιμή U, η οποία εντοπίζεται στους αντίστοιχους πίνακες

16 Από τον πίνακα για Ν1=1 και Ν=9, προκύπτει ότι για επίπεδο σημαντικότητας α= 0.05 η κρίσιμη τιμή είναι Uo= 6. Εφόσον Uo= 6 < U=51 αποδεχόμαστε τη μηδενική υπόθεση, σύμφωνα με την οποία τα δύο δείγματα α προέρχονται από την ίδια κατανομή και κατά συνέπεια η μέθοδος εξάσκησης της δεξιότητας δεν έχει σημασία. 31 Για μεγάλα δείγματα (Ν>0) Όταν ένα τουλάχιστον από τα δύο δείγματα (Ν 1 και Ν ) είναι μεγάλο (>0) τότε η τιμή U, η οποία υπολογίζεται όπως προηγουμένως, μετασχηματίζεται σε z N N 1 U N1 N (N1 N 1 1) και ο έλεγχος γίνεται με την τυπική κανονική κατανομή 3 16

17 Παράδειγμα: Έχουμε δύο ανεξάρτητα δείγματα μεγέθους Ν 1 = 35 και Ν = 4 και μετά από τα βήματα 1, και 3 βρήκαμε ότι έχουν Τ 1 = 1615 και Τ = Για να ελεγχθεί η μηδενική υπόθεση, σε επίπεδο σημαντικότητας α= 0.05, σύμφωνα με την οποία τα δύο δείγματα προέρχονται από την ίδια κατανομή, υπολογίζουμε τις ποσότητες N1 (N1 1) UA N1N T1 35(35 1) N (N 1) UB N1N T 4(4 1) χρησιμοποιώντας την μικρότερη U τιμή, προκύπτει z N1 N U N1 N (N1 N 1 1) (35 4 1) Εφόσον, πρόκειται για δίπλευρο έλεγχο, το εμβαδόν κάτω από την καμπύλη της z τυπικής κατανομής θα είναι: 0.5 (0.05/) = =

18 Ητιμή βρίσκεται στην διασταύρωση της γραμμής που αντιστοιχεί στην τιμή 1.9 και της στήλης που αντιστοιχεί στην τιμή 6. Το 95% του πληθυσμού βρίσκεται μεταξύ των τιμών z = 1.96 και z= ηη υπολογιζόμενη z τιμή βρίσκεται στην κρίσιμη περιοχή απόρριψης κατά συνέπεια απορρίπτεται η μηδενική υπόθεση σύμφωνα με την οποία δεν δύο δείγματα προέρχονται από την ίδια κατανομή. Αντίθετα γίνεται αποδεκτή η εναλλακτική υπόθεση, σύμφωνα με την οποία τα δύο δείγματα προέρχονται από διαφορετικές κατανομές

19 Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων μετρήσεων μέσω μη παραμετρικού ελέγχου - Wilcoxon test Εξαρτημένες μετρήσεις: το κάθε άτομο (μέλος του δείγματος), μετριέται δύο φορές, δηλαδή κάτω από δύο διαφορετικές συνθήκες μέτρησης ή σε δύο διαφορετικές χρονικές στιγμές, προκύπτει ένα ζεύγος παρατηρήσεων (μετρήσεων). 37 Παράδειγμα 1: Σε μια ομάδα αθλητών μπορεί να μετρηθούν οι επιδόσεις τους στην σκόπευση «παρουσία θεατών» και «χωρίς παρουσία θεατών». Σε μια τέτοια περίπτωση, το κάθε άτομο (μέλος τους δείγματος) αξιολογείται σε δύο διαφορετικές πειραματικές συνθήκες δύο διαφορετικές πειραματικές συνθήκες. Παράδειγμα : Ένας προπονητής, επιθυμώντας να αξιολογήσει την επίδραση μιας μεθόδου προπόνησης για την βελτίωση της ευστοχίας των αθλητών του, μετράει την ευστοχία τους μέσω ενός τεστ ευστοχίας «πριν» και «μετά» την εφαρμογή της μεθόδου προπόνησης. Σε μια τέτοια περίπτωση, το κάθε άτομο (μέλος τους δείγματος) αξιολογείται στην ίδια εξαρτημένη μεταβλητή (τεστ ευστοχίας) σε δύο διαφορετικές χρονικές στιγμές

20 Όταν τα δύο δείγματα προέρχονται από πληθυσμούς που δεν ακολουθούν την κανονική κατανομή ή δεν είναι γνωστή η κατανομή των πληθυσμών, δεν μπορεί να εφαρμοστεί το παραμετρικό t τεστ Θα πρέπει να χρησιμοποιηθεί το μη παραμετρικό Wilcoxon test. 39 Παράδειγμα: Οι επιδόσεις 1 αθλητών μετρήθηκαν «πριν» και «μετά» την εφαρμογή μιας μεθόδου σκόπευσης. α/α αθλητή "πριν" "μετά" Δεν γνωρίζουμε την κατανομή του πληθυσμού (ή ο πληθυσμός δεν ακολουθεί την κανονική κατανομή). Να ελεγχθεί, σε επίπεδο σημαντικότητας α= 0.05, 00 αν υπάρχει στατιστικά σημαντική διαφορά μεταξύ των ζευγαρωτών επιδόσεων. 40 0

21 α/α αθλητή "πριν" "μετά" Σχηματίζουμε τη διαφορά των ζευγαρωτών παρατηρήσεων με το πρόσημο της. 41 α/α αθλητή "πριν" "μετά" Σχηματίζουμε τη διαφορά των ζευγαρωτών παρατηρήσεων με το πρόσημο της. α/α αθλητή "πριν" "μετά" Διαφορά

22 α/α αθλητή "πριν" "μετά" Σχηματίζουμε τη διαφορά των ζευγαρωτών παρατηρήσεων με το πρόσημο της. α/α αθλητή "πριν" "μετά" Διαφορά Κατατάσσουμε τις απόλυτες τιμές των διαφορών (όχι τις μηδενικές διαφορές) κατά αύξουσα σειρά και προσδιορίζουμε την τάξη τους α/α αθλητή "πριν" "μετά" Διαφορά Διαφορά Αύξουσα σειρά Κατάταξη Τάξη (1++3)/ (1++3)/ (1++3)/ = 3= 3= =5 3=5 3=5 44

23 . Κατατάσσουμε τις απόλυτες τιμές των διαφορών (όχι τις μηδενικές διαφορές) κατά αύξουσα σειρά και προσδιορίζουμε την τάξη τους α/α αθλητή "πριν" "μετά" Διαφορά Διαφορά Αύξουσα σειρά Κατάταξη Τάξη (1++3)/ (1++3)/ (1++3)/ = 3= 3= =5 3=5 3=5 45. Κατατάσσουμε τις απόλυτες τιμές των διαφορών (όχι τις μηδενικές διαφορές) κατά αύξουσα σειρά και προσδιορίζουμε την τάξη τους α/α αθλητή "πριν" "μετά" Διαφορά Διαφορά Αύξουσα σειρά Κατάταξη Τάξη (1++3)/ (1++3)/ (1++3)/ = 3= 3= =5 3=5 3=5 46 3

24 . Κατατάσσουμε τις απόλυτες τιμές των διαφορών (όχι τις μηδενικές διαφορές) κατά αύξουσα σειρά και προσδιορίζουμε την τάξη τους α/α αθλητή "πριν" "μετά" Διαφορά Διαφορά Αύξουσα σειρά Κατάταξη Τάξη (1++3)/ (1++3)/ (1++3)/ = 3= 3= =5 3=5 3=5 47. Κατατάσσουμε τις απόλυτες τιμές των διαφορών (όχι τις μηδενικές διαφορές) κατά αύξουσα σειρά και προσδιορίζουμε την τάξη τους α/α αθλητή "πριν" "μετά" Διαφορά Διαφορά Αύξουσα σειρά Κατάταξη Τάξη (1++3)/ (1++3)/ (1++3)/ = 3= 3= =5 3=5 3=5 48 4

25 . Κατατάσσουμε τις απόλυτες τιμές των διαφορών (όχι τις μηδενικές διαφορές) κατά αύξουσα σειρά και προσδιορίζουμε την τάξη τους α/α αθλητή "πριν" "μετά" Διαφορά Διαφορά Αύξουσα σειρά Κατάταξη Τάξη (1++3)/ (1++3)/ (1++3)/ = 3= 3= =5 3=5 3=5 49. Κατατάσσουμε τις απόλυτες τιμές των διαφορών (όχι τις μηδενικές διαφορές) κατά αύξουσα σειρά και προσδιορίζουμε την τάξη τους α/α αθλητή "πριν" "μετά" Διαφορά Διαφορά Αύξουσα σειρά Κατάταξη Τάξη (1++3)/ (1++3)/ (1++3)/ = 3= 3= =5 3=5 3=5 50 5

26 . Κατατάσσουμε τις απόλυτες τιμές των διαφορών (όχι τις μηδενικές διαφορές) κατά αύξουσα σειρά και προσδιορίζουμε την τάξη τους α/α αθλητή "πριν" "μετά" Διαφορά Διαφορά Αύξουσα σειρά Κατάταξη Τάξη (1++3)/ (1++3)/ (1++3)/ = 3= 3= =5 3=5 3=5 51. Κατατάσσουμε τις απόλυτες τιμές των διαφορών (όχι τις μηδενικές διαφορές) κατά αύξουσα σειρά και προσδιορίζουμε την τάξη τους α/α αθλητή "πριν" "μετά" Διαφορά Διαφορά Αύξουσα σειρά Κατάταξη Τάξη (1++3)/ (1++3)/ (1++3)/ = 3= 3= =5 3=5 3=5 5 6

27 . Κατατάσσουμε τις απόλυτες τιμές των διαφορών (όχι τις μηδενικές διαφορές) κατά αύξουσα σειρά και προσδιορίζουμε την τάξη τους α/α αθλητή "πριν" "μετά" Διαφορά Διαφορά Αύξουσα σειρά Κατάταξη Τάξη (1++3)/ (1++3)/ (1++3)/ = 3= 3= =5 3=5 3=5 53. Κατατάσσουμε τις απόλυτες τιμές των διαφορών (όχι τις μηδενικές διαφορές) κατά αύξουσα σειρά και προσδιορίζουμε την τάξη τους α/α αθλητή "πριν" "μετά" Διαφορά Διαφορά Αύξουσα σειρά Κατάταξη Τάξη (1++3)/ (1++3)/ (1++3)/ = 3= 3= =5 3=5 3=5 54 7

28 άρα α/α αθλητή «πριν» «μετά» Διαφορά τάξη διαφοράς άρα α/α αθλητή «πριν» «μετά» Διαφορά τάξη διαφοράς Μετά την κατάταξη επαναφέρουμε στην τάξη το πρόσημο που υπήρχε στις τιμές της διαφοράς: α/α αθλητή "πριν" ρ "μετά" Διαφορά τάξη διαφοράς

29 4. Υπολογίζουμε το άθροισμα των θετικών τιμών τάξης (Τ+) και το άθροισμα των αρνητικών τιμών τάξης (Τ-) α/α αθλητή "πριν" "μετά" Διαφορά τάξη διαφοράς Τ+= +5+5= Υπολογίζουμε το άθροισμα των θετικών τιμών τάξης (Τ+) και το άθροισμα των αρνητικών τιμών τάξης (Τ-) α/α αθλητή "πριν" "μετά" Διαφορά τάξη διαφοράς Τ+= +5+5=1 Τ- = =

30 5. Η μικρότερη τιμή μεταξύ του αθροίσματος των θετικών τάξεων (Τ+) και του αθροίσματος των αρνητικών τάξεων (Τ-), δηλ. Τ=min (T+, T-), χρησιμοποιείται για να γίνει ο έλεγχος Τ=min (T+, T-)= min (43,1)=1 59 επιλέγουμε την στήλη που αντιστοιχεί στο προεπιλεγμένο επίπεδο σημαντικότητας (α = 0.05) και την γραμμή που αντιστοιχεί στον αριθμό των ατόμων μείον τον αριθμό των μηδενικών διαφορών Ν (= αριθμός ατόμων μείον τον αριθμό αυτών που έχουν μηδενική διαφορά) Ν=1 =10 Τκρίσιμο= 8.47 Εφόσον Τ=1 > Τκρίσιμο= 8.47 αποδεχόμαστε τη μηδενική υπόθεση, άρα δεν υπάρχει σημαντική διαφορά στις επιδόσεις 60 30

31 61 31

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό

Διαβάστε περισσότερα

04_Κανονική Τυπική κατανομή εύρεση εμβαδού. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

04_Κανονική Τυπική κατανομή εύρεση εμβαδού. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ν161_(262)_Στατιστική στη Φυσική Αγωγή 04_Κανονική Τυπική κατανομή εύρεση εμβαδού Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Κατανομές Κάθε κατανομή συχνότητας (λίστα από ζεύγη X i,

Διαβάστε περισσότερα

Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών.

Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Η μέση τιμή ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test) Σε ορισμένες περιπτώσεις απαιτείται ο έλεγχος της ύπαρξης στατιστικά

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Όπως αναφέρθηκε στο προηγούμενο κεφάλαιο σε ορισμένες

Διαβάστε περισσότερα

07_Έλεγχος_Συχνοτήτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

07_Έλεγχος_Συχνοτήτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ν161_(6)_Στατιστική στη Φυσική Αγωγή 07_Έλεγχος_Συχνοτήτων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.. 1 Σύγκριση παρατηρούμενων συχνοτήτων με τις αντίστοιχες θεωρητικές συχνότητες εωρητικές

Διαβάστε περισσότερα

Έλεγχος υποθέσεων Ι z-test & t-test

Έλεγχος υποθέσεων Ι z-test & t-test Έλεγχος υποθέσεων Ι z-test & t-test Μοντέλα στην Επιστήμη Τροφίμων 53Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών

Διαβάστε περισσότερα

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να

ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να N161 _ (262) Στατιστική στη Φυσική Αγωγή Βιβλία ή 1 ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς

Διαβάστε περισσότερα

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Πως μπορούμε να συγκρίνουμε μεταβλητές μεταξύ τους? Διαφορά συγκρίνοντας το μέσο μιας μεταβλητής (λόγος ή διάστημα) στις ομάδες πχ. t-test

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 6 η :Έλεγχοι Υποθέσεων V. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 6 η :Έλεγχοι Υποθέσεων V. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 6 η :Έλεγχοι Υποθέσεων V Διδάσκουσα: Κοντογιάννη Αριστούλα Έλεγχος υποθέσεων για τους μέσους εξαρτημένων δειγμάτων Επίδραση παρέμβασης:

Διαβάστε περισσότερα

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο Εαρινό εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

έρευνας και στατιστική» παραμετρικές συγκρίσεις»

έρευνας και στατιστική» παραμετρικές συγκρίσεις» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Μεθοδολογία έρευνας και στατιστική» Μάθημα μεταπτυχιακού κύκλου σπουδών Διάλεξη: «Μη παραμετρικές συγκρίσεις» ΔΙΔΑΣΚΩΝ: Δρ. Αθανάσιος

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Δειγματοληπτικές κατανομές

Δειγματοληπτικές κατανομές Δειγματοληπτικές κατανομές Κατανομές που χρησιμοποιούνται για τον έλεγχο υποθέσεων στα δείγματα Κανονική κατανομή (z-κατανομή) t-κατανομή Χ κατανομή F-κατανομή Ζητάμε να προσδιορίσουμε τις παραμέτρους

Διαβάστε περισσότερα

Ιατρικά Μαθηματικά & Βιοστατιστική

Ιατρικά Μαθηματικά & Βιοστατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιατρικά Μαθηματικά & Βιοστατιστική Στατιστικοί έλεγχοι για συνεχή και κατηγορικά δεδομένα Διδάσκοντες: Ευάγγελος Ευαγγέλου, Kωνσταντίνος Τσιλίδης, Ιωάννης

Διαβάστε περισσότερα

Ιωάννης Ντζούφρας. Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα. (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα δείγματα. Ανάλυση εδομένων ιαφάνεια 4-30

Ιωάννης Ντζούφρας. Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα. (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα δείγματα. Ανάλυση εδομένων ιαφάνεια 4-30 Ιωάννης Ντζούφρας Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα Ανάλυση εδομένων ιαφάνεια 4-30 Έστωότιέχουμεμετρήσειςγιαταίδιαάτομα Σε 2 παρόμοιες μεταβλητές (π.χ. Με ίδιες

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Στατιστικοί Ελεγχοι. t - Έλεγχος για τον μέσο μ ενός πληθυσμού. t-έλεγχος για την σύγκριση των μέσων δύο πληθυσμών

Στατιστικοί Ελεγχοι. t - Έλεγχος για τον μέσο μ ενός πληθυσμού. t-έλεγχος για την σύγκριση των μέσων δύο πληθυσμών Στατιστικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον μέσο μ ενός πληθυσμού Έλεγχος : t - Έλεγχος για τον μέσο μ ενός πληθυσμού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύμανση Έλεγχος 4: t-έλεγχος για την

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ IΙ ΕΙΣΗΓΗΤΡΙΑ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ********************************************************************

Διαβάστε περισσότερα

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.

Διαβάστε περισσότερα

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά

Διαβάστε περισσότερα

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος Το σύμβολο μ απεικονίζει 92.4% το μέσο όρο του πληθυσμού 121 92.4% το μέσο όρο του δείγματος 8 6.1% το μέσο όρο της κατανομής t 0 0% το μέσο όρο της κανονικής κατανομής 2 1.5% Το σύμβολο X απεικονίζει

Διαβάστε περισσότερα

Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων

Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων Επαγωγική Στατιστική Ο έλεγχος υποθέσεων είναι η δεύτερη μορφή της επαγωγικής στατιστικής. Έχει επίσης μεγαλύτερη δυνατότητα εφαρμογής. Για να κατανοήσουμε την

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Διάλεξη 8 Εφαρμογές της στατιστικής στην έρευνα - Ι. Υπεύθυνος Καθηγητής Χατζηγεωργιάδης Αντώνης

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Διάλεξη 8 Εφαρμογές της στατιστικής στην έρευνα - Ι. Υπεύθυνος Καθηγητής Χατζηγεωργιάδης Αντώνης ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Διάλεξη 8 Εφαρμογές της στατιστικής στην έρευνα - Ι Υπεύθυνος Καθηγητής Χατζηγεωργιάδης Αντώνης 1 Μέρη της Έρευνας Περιγραφική στατιστική Πολυδιάστατη στατιστική Σχέσεις μεταξύ μεταβλητών

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή 4.3.3 Ο Έλεγχος των Shapro-Wlk για την Κανονική Κατανομή Ένας άλλος πολύ γνωστός έλεγχος καλής προσαρμογής για την κανονική κατανομή, ο οποίος μπορεί να χρησιμοποιηθεί στην θέση του ελέγχου Lllefors, είναι

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΕΚΤΟ

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια Κεφάλαιο 7 Μη Παραµετρικά Κριτήρια Παραµετρικά Κριτήρια Τα παραµετρικά κριτήρια είναι στατιστικά κριτήρια που απαιτούν την ικανοποίηση συγκεκριµένων προϋποθέσεων είτε αναφορικά µε συγκεκριµένες παραµέτρους

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

T-tests One Way Anova

T-tests One Way Anova William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των

Διαβάστε περισσότερα

Έρευνα Μάρκετινγκ Ενότητα 5

Έρευνα Μάρκετινγκ Ενότητα 5 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5 : Μέθοδοι Στατιστικής Ανάλυσης Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Πολλαπλές συγκρίσεις Στην ανάλυση διακύμανσης ελέγχουμε την ισότητα

Διαβάστε περισσότερα

Κεφάλαιο 12. Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t

Κεφάλαιο 12. Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t Κεφάλαιο 12 Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t 1 Πώς δημιουργήθηκε W. S. Gosset (1908) Χημικός στη βιομηχανία Μπύρας Guiness Σύγκριση διαφόρων δειγμάτων μπύρας Δημοσίευση αποτελεσμάτων ως Student

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80.

ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80. ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑΙΟΤ ΧΟΛΗ ΕΠΙΣΗΜΩΝ ΣΗ ΔΙΟΙΚΗΗ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑ ΚΑΙ ΔΙΟΙΚΗΗ ΣΑΣΙΣΙΚΗ Ακαδ. Έτος -3 Διδάσκων: Βασίλης ΚΟΤΣΡΑ Διδάσκων επί Συμβάσει Π.Δ 47/8 v.kouras@fμe.aegea.gr Σηλ: 735457 Διωνυμικό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20, ΜΕΜ64: Εφαρμοσμένη Στατιστική 1 ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=0, X = 7.5, σ = 16, α = 5%. Πως αλλάζει το διάστημα αν

Διαβάστε περισσότερα

Ερευνητική υπόθεση. Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές.

Ερευνητική υπόθεση. Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές. Ερευνητική υπόθεση Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές. Στα πειραματικά ερευνητικά σχέδια, η ερευνητική υπόθεση αναφέρεται

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV

5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV 5. Ο ΕΛΕΓΧΟΣ SMIRNOV Έστω δύο ανεξάρτητα τυχαία δείγματα, 2,..., n και, 2,..., m n και m παρατηρήσεων πάνω στις τυχαίες μεταβλητές και, αντίστοιχα. Έστω, επίσης, ότι F (), (, ) και F (y), y (, ) είναι

Διαβάστε περισσότερα

3.4.1 Ο Συντελεστής ρ του Spearman

3.4.1 Ο Συντελεστής ρ του Spearman 3.4. Ο Συντελεστής ρ του Spearma Έστω (, ), (, ),..., (, ) ένα δείγμα παρατηρήσεων πάνω στο τυχαίο διάνυσμα (, ). Έστω ( ) ο βαθμός ή η τάξη μεγέθους της μεταβλητής όταν αυτή συγκρίνεται με τις άλλες Χ

Διαβάστε περισσότερα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

Στατιστική, Άσκηση 2. (Κανονική κατανομή)

Στατιστική, Άσκηση 2. (Κανονική κατανομή) Στατιστική, Άσκηση 2 (Κανονική κατανομή) Στον πίνακα που ακολουθεί δίνονται οι μέσες παροχές όπως προέκυψαν από μετρήσεις πεδίου σε μια διατομή ενός ποταμού. Ζητείται: 1. Να αποδειχθεί ότι το δείγμα προσαρμόζεται

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Δημήτρης Ιωαννίδης. Τμήμα Οικονομικών Επιστημών.

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Δημήτρης Ιωαννίδης. Τμήμα Οικονομικών Επιστημών. Μεθοδολογία Έρευνας: Μάθημα 3 ο ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Δημήτρης Ιωαννίδης Τμήμα Οικονομικών Επιστημών Email: dimioan@uom.gr Εμπιστευτικό Σελίδα 1 Μάθημα 5 ο Ελέγχοντας την Θεωρία ΙΙ: Στατιστικοί Έλεγχοι για

Διαβάστε περισσότερα

Η ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ

Η ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΙΑTΡΙΚΗ ΣΧΟΛΗ Η ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ Έλενα Κριτσέλη, MPH PhD Επιστημονικός Συνεργάτης Επιδημιολόγος Χρόνιων Παθήσεων, Α Πανεπιστημιακή Παιδιατρική

Διαβάστε περισσότερα

Έλεγχος καλής προσαρμογής για μια ποιοτική μεταβλητή (Nonparametric Tests Chi-Square)

Έλεγχος καλής προσαρμογής για μια ποιοτική μεταβλητή (Nonparametric Tests Chi-Square) Έλεγχος καλής προσαρμογής για μια ποιοτική μεταβλητή (Nonparametric Tests Chi-Square) Το Chi Square τεστ αποτελεί ένα μη παραμετρικό τεστ και εφαρμόζεται σε ονομαστικές μεταβλητές, βάσει των οποίων τα

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Έλεγχος των Phillips Perron

Έλεγχος των Phillips Perron ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 5

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 5 (ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 5 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

Στατιστικοί έλεγχοι για διακριτά δεδομένα

Στατιστικοί έλεγχοι για διακριτά δεδομένα Στατιστικοί έλεγχοι για διακριτά δεδομένα Διαστρωμάτωση Mantel-Haenszel test Γεωργία Σαλαντή Λέκτορας επιδημιολογίας Λεπτοσπείρωση Πιο πολλά κρούσματα στις αγροτικές περιοχές; Πόσο επί τις εκατό του πληθυσμού

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation. Σταμάτης Πουλακιδάκος

Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation. Σταμάτης Πουλακιδάκος Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation Σταμάτης Πουλακιδάκος Μερικά εισαγωγικά λόγια Οι έλεγχοι των ερευνητικών υποθέσεων πραγματοποιούνται με διάφορους στατιστικούς ελέγχους,

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA)

Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA) Κεφάλαιο 7 Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA) 7.1 Γενικότητες Η ANOVA περιλαμβάνει μία ομάδα στατιστικών μεθόδων κατάλληλων για την ανάλυση δεδομένων που προκύπτουν από πειραματικούς

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Δεδομένων

Εισαγωγή στην Ανάλυση Δεδομένων ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ .Φουσκάκης- Ασκήσεις στους Ελέγχους Υποθέσεων ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ ) Με µια νέα µέθοδο προσδιορισµού του σηµείου τήξης (σ.τ.) µετάλλων προέκυψαν οι παρακάτω µετρήσεις για το µαγγάνιο: 67,

Διαβάστε περισσότερα

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική

Διαβάστε περισσότερα

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Το 1965, από τον Conover και πάλι προτάθηκε ένας άλλος έλεγχος τύπου Smirnov για k ανεξάρτητα δείγματα. Ο έλεγχος αυτός διαφέρει από τον προηγούμενο

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Θεωρία και Εφαρμογές Επεξεργασίας Πληροφορίας 2.

Διαβάστε περισσότερα

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας

Διαβάστε περισσότερα

Ογενικός(πλήρης) έλεγχος των Dickey Fuller

Ογενικός(πλήρης) έλεγχος των Dickey Fuller ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης

Διαβάστε περισσότερα

Έλεγχος ανεξαρτησίας μεταξύ δύο ποιοτικών μεταβλητών (Crosstabs - Chi-Square Tests)

Έλεγχος ανεξαρτησίας μεταξύ δύο ποιοτικών μεταβλητών (Crosstabs - Chi-Square Tests) Έλεγχος ανεξαρτησίας μεταξύ δύο ποιοτικών μεταβλητών (Crosstabs - Chi-Square Tests) Σε αρκετές περιπτώσεις απαιτείται να ελεγχθεί αν η συχνότητα εμφάνισης κάποιων συγκεκριμένων τιμών (κατηγοριών) μιας

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο εξαρτημένων δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα