Χρονοσειρές Μάθημα 3

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Χρονοσειρές Μάθημα 3"

Transcript

1 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker assumion ha he z s are muually uncorrelaed, raher han indeenden. This is adequae for linear, normal rocesses, bu he sronger indeendence assumion is needed when considering non-linear models (Chaer ). Noe ha a urely random rocess is someimes called whie noise, aricularly by engineers.. (Chaer ): When examining he roeries of non-linear models, i can be very imoran o disinguish beween indeenden and uncorrelaed random variables. In Secion 3.4., whie noise (or a urely random rocess) was defined o be a sequence of indeenden and idenically disribued (i.i.d.) random variables. This is someimes called sric whie noise (SWN), and he hrase uncorrelaed whie noise (UWN) is used when successive values are merely uncorrelaed, raher han indeenden. Of course if successive values follow a normal (Gaussian) disribuion, hen zero correlaion imlies indeendence so ha Gaussian UWN is SWN. However, wih non-linear models, disribuions are generally non-normal and zero correlaion need no imly indeendence. Wei W.W.C., Time Series Analysis, Univariae and Mulivariae Mehods,. 5:.4 Whie Noise Processes A rocess {a } is called a whie noise rocess if i is a sequence of uncorrelaed random variables from a fixed disribuion wih consan mean (usually assumed ), consan variance and zero auocovariance for lags differen from.

2 Γραμμικές στάσιμες διαδικασίες Γραμμική χρονοσειρά (στοχαστική διαδικασία) ~ WN(, ) i i i E[ ] είναι στάσιμη? i () Θεωρούμε μ= i i i i Θεωρώντας τον τελεστή υστέρησης: ( B) ( B) ib i i Γραμμικό φίλτρο ( B) Αν για i< i Γραμμική χρονοσειρά ως i i i i i i i i ( B) ( B) κινούμενου μέσου MA( ) [moving average rocess] αυτοπαλινδρόμησης AR( ) [auoregressive rocess] είναι αντιστρέψιμη το τυχαίο στοιχείο μπορεί να εκφρασθεί ως προς την ( B) παρούσα και τις προηγούμενες ( B) παρατηρήσεις

3 Αυτοπαλινδρομούμενες διαδικασίες αυτοπαλινδρόμηση AR( ) i i i Περιορίζουμε την αυτοπαλινδρόμηση στους πιο πρόσφατους όρους ( B B B ) Συνθήκη στασιμότητας ~ WN(, ) ( B) Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() i ( B) B B B ( B) B χαρακτηριστικό πολυώνυμο Ρίζες του ( ) να είναι έξω από το μοναδιαίο κύκλο ή Ρίζες του να είναι εντός του μοναδιαίου κύκλου i i

4 Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() Διαδοχικές προς τα πίσω αντικαταστάσεις: 4 i i Var[ ] ( ) Αυτοσυσχέτιση? (υποθέτουμε στασιμότητα) i i i E[ ] E[ ] E[ ] ( ) ( ) E[ ] E[ ] E[ ] ( ) ( ) () Συνθήκη στασιμότητας: ~ WN(, ) () ().5.5 () ()

5 Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() ~ WN(, ) Συνθήκη στασιμότητας Ρίζες του ( B) B B να είναι εκτός του μοναδιαίου κύκλου ή εναλλακτικά οι ρίζες του Ρίζες: B, 4 B, να είναι εντός του μοναδιαίου κύκλου? 3 Saionariy condiion for AR() real disinc roos comlex roos real single roo δύο πραγματικές ρίζες: 4 μία διπλή πραγματική ρίζα: συζυγείς μιγαδικές ρίζες: 4 Συζυγείς μιγαδικές ρίζες σε AR() ορίζουν ψευδο-περιοδικότητα στην αυτοσυσχέτιση

6 Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() Αυτοσυσχέτιση? (υποθέτουμε στασιμότητα) E[ ] E[ ] E[ ] E[ ] () () () () E[ ] E[ ] E[ ] E[ ] () () () () Για υστέρηση τ: ( ) ( ) ( ) μπορεί να υπολογιστεί επαναληπτικά ( B B ) χαρακτηριστικό πολυώνυμο ( ) πραγματικές ρίζες: εκθετική πτώση μιγαδικές ρίζες: φθίνουσα ημιτονοειδή συνάρτηση διασπορά () ()

7 Αυτοσυσχέτιση.5 (α) λ =.8+.5i λ =.8-.5i () =.6 = (γ) λ =.8 λ =.8 () =.6 = (ε) λ =.8 λ =.95 () =.75 = (ζ) λ =-.8 λ =.95 () =.5 =.76 () () (β) λ =-.8+.5i λ =-.8-.5i (δ) λ =-.8 λ =-.8.5 () =-.6 = () =-.6 =-.64 () () () () (στ) λ =.8 λ =-.95 (η) λ =-.8 λ = () =-.5 =.76.5 () =-.75 =-.76 () ()

8 Συνθήκη στασιμότητας Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() ( B B B ) ~ WN(, ) Ρίζες του ( B) B B B να είναι εκτός του μοναδιαίου κύκλου Αυτοσυσχέτιση? (υποθέτουμε στασιμότητα) Για υστέρηση τ: E[ ] E[ ] E[ ] E[ ] E[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) B πραγματικές ρίζες: εκθετική πτώση μιγαδικές ρίζες: φθίνουσα ημιτονοειδή συνάρτηση 7 Συνθήκες στασιμότητας για τους συντελεστές φ, φ, φ 3, της διαδικασίας AR(3)

9 Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() Εξισώσεις Yule-Walker 3 Διασπορά () () ( )

10 Εξισώσεις Yule-Walker k k k 3 Μερική αυτοσυσχέτιση k k k k k 3 k k 33 3 kk Για κάθε k υπολογίζουμε τον συντελεστή k kk k k3 k k k3 k k k k3 k k k k3 μερική αυτοσυσχέτιση για υστέρηση (τάξη) k Επαναληπτικός αλγόριθμος των Durbin-Levinson οι συντελεστές του AR(),,,, υπολογίζονται επαναληπτικά, όπου για κάθε τάξη k οι συντελεστές υπολογίζονται από τους συντελεστές τάξης k-

11 (,) (,) (,) (,) (,) (,) (,) (,) Μερική αυτοσυσχέτιση (α) λ =.8+.5i λ =.8-.5i (γ) λ =.8 λ =.8 (ε) λ =.8 λ =.95 (ζ) λ =-.8 λ =.95 () =.6 () =.6 () =.75 () =.5.5 = = = = (β) λ =-.8+.5i λ =-.8-.5i (δ) λ =-.8 λ =-.8 (στ) λ =.8 λ =-.95 (η) λ =-.8 λ = () =-.6 = () =-.6 = () =-.5 =.76.5 () =-.75 = Μαρκοβιανές διαδικασίες, ιδιότητες, διαφορές και ομοιότητες με AR διαδικασίες Εκτίμηση τάξης Μαρκοβιανής διαδικασίας, διαφορές και ομοιότητες με εκτίμησης τάξης AR διαδικασίας

12 Διαδικασίες κινούμενου μέσου ii κινούμενου μέσου MA( ) i Περιορίζουμε του όρους του λευκού θορύβου στους q πιο πρόσφατους όρους ~ WN(, ) i i q q B B B ( B) ( q q ) Διαδικασία κινούμενου μέσου τάξης q, ΜΑ(q) ( ) B B B B χαρακτηριστικό πολυώνυμο ΜΑ(q) είναι στάσιμη? q q ΜΑ(q) είναι αντιστρέψιμη αν ( B) Συνθήκη αντιστρεψιμότητας Ρίζες του ( ) να είναι έξω από το μοναδιαίο κύκλο

13 Διαδικασία κινούμενου μέσου τάξης, MA() Συνθήκη αντιστρεψιμότητας: ~ WN(, )... ( )... () 3... ()? / Για κάποιο υπάρχουν δύο λύσεις για θ? και μόνο η μία θα πληρεί τη συνθήκη αντιστρεψιμότητας Παράδειγμα και / έχουν την ίδια αυτοσυσχέτιση Αν η ρίζα του B είναι έξω από το μοναδιαίο κύκλο η ρίζα του / B είναι μέσα στο μοναδιαίο κύκλο

14 Διαδικασία κινούμενου μέσου τάξης, MA() (,) (,) Μερική αυτοσυσχέτιση.8 () (), 4 () ,3 4 6 ( ), ( ), () () - ϕ ττ του ΜΑ() φθίνει όπως ρ τ του AR() () ρ τ του ΜΑ() φθίνει όπως ϕ ττ του AR() - αλλά για MA(), ρ τ και ϕ ττ είναι πάντα

15 Διαδικασία κινούμενου μέσου τάξης, MA() B ( ), ~ WN(, ) ( B) B B χαρακτηριστικό πολυώνυμο MA() είναι πάντα στάσιμη MA() είναι αντιστρέψιμη αν οι ρίζες του θ(β) είναι εκτός του μοναδιαίου κύκλου Διασπορά ( ) Αυτοσυσχέτιση ( ) Συνθήκες αντιστρεψιμότητας για τους συντελεστές θ, θ, καθώς και για τις αυτοσυσχετίσεις ρ, ρ, της διαδικασίας MA() Μερική αυτοσυσχέτιση, 3 ( ) 3,3 ( ),... πολύπλοκη έκφραση

16 λ =.8+.5i λ =.8-.5i Αυτοσυσχέτιση () =.6 =-.89. () (,) λ =-.8+.5i λ =-.8-.5i () =-.6 = () (,) λ =.8 λ = () (,) (,) λ =.8 λ =-.95 () =.75 = () =-.5 =.76. () Μερική αυτοσυσχέτιση () =.6 = () =-.6 = () =.75 = () =-.5 = ϕ ττ του ΜΑ() φθίνει όπως ρ τ του AR() - ρ τ του ΜΑ() φθίνει όπως ϕ ττ του AR() - αλλά για MA(), ρ τ και ϕ ττ είναι πάντα.5

17 Διαδικασία κινούμενου μέσου τάξης q, MA(q) ( B) q q ~ WN(, ) ( ) χαρακτηριστικό πολυώνυμο q B B B qb Διασπορά ( ) q Αυτοδιασπορά q ( q q),,, q Αυτοσυσχέτιση q q q,,, q q Η μερική αυτοσυσχέτιση φθίνει με μορφή που καθορίζεται από τις ρίζες του χαρακτηριστικού πολυωνύμου Οι εκφράσεις των ϕ ττ ως προς τους συντελεστές θ, θ,..., θ q είναι πολύπλοκες

Χρονοσειρές Μάθημα 2. Μη-στασιμότητα. Τάση? Εποχικότητα / περιοδικότητα? Ασταθή διασπορά? Αυτοσυσχέτιση?

Χρονοσειρές Μάθημα 2. Μη-στασιμότητα. Τάση? Εποχικότητα / περιοδικότητα? Ασταθή διασπορά? Αυτοσυσχέτιση? AE index General Index of Comsumer Prices Χρονοσειρές Μάθημα General Index of Comsumer Prices, period Jan - Aug 5 5 Μη-στασιμότητα 5 Τάση? Εποχικότητα / περιοδικότητα? 5 4 5 6 4 Auroral Elecroje Index

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 5ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης.

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 5

Χρονοσειρές - Μάθημα 5 Χρονοσειρές - Μάθημα 5 Εκτίμηση μοντέλου MA(q) στοχαστική διαδικασία AR() X X X X Z Z ~ WN(, Z) στοχαστική διαδικασία MA(q) X Z Z Z Z q q στοχαστική διαδικασία ARMA(,q) X X X X Z Z Z Z q q Εκτίμηση διαδικασίας

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 4

Χρονοσειρές - Μάθημα 4 Χρονοσειρές - Μάθημα 4 Sysem is a se of ieracig or ierdeede comoes formig a iegraed whole. Fields ha sudy he geeral roeries of sysems iclude sysems heory, cybereics, dyamical sysems, hermodyamics ad comlex

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Διαφορική Παλµοκωδική Διαµόρφωση (DPCM)

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Διαφορική Παλµοκωδική Διαµόρφωση (DPCM) EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Διαφορική Παλµοκωδική Διαµόρφωση (DCM) Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Προεπισκόπηση Διαφορική Παλµοκωδική Διαµόρφωση

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ ΚΕΦΑΛΑΙΟ ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ Στο κεφάλαιο αυτό θα μελετήσουμε κάποια βασικά χαρακτηριστικά των χρονοσειρών μέσα από πραγματικά παραδείγματα. Συγκεκριμένα θα μελετήσουμε στοιχεία μη-στασιμότητας,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 1

Χρονοσειρές Μάθημα 1 Χρονοσειρές Μάθημα Μάθημα του προπτυχιακού προγράμματος σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ (ΤΗΜΜΥ) ΑΠΘ Κουγιουμτζής Δημήτρης Αν. Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις:

2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: Στοχαστικά σήµατα Έννοια του στοχαστικού σήµατος Θερούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: & α Γνρίζουµε µε απόλυτη βεβαιότητα (µε πιθανότητα ένα), ότι η αρχική

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Στάσιμα στοχαστικά μοντέλα μιας μεταβλητής

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Στάσιμα στοχαστικά μοντέλα μιας μεταβλητής Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Στάσιμα στοχαστικά μοντέλα μιας μεταβλητής Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

2 Ανάλυση Χρονοσειρών στο Πεδίο των Συχνοτήτων

2 Ανάλυση Χρονοσειρών στο Πεδίο των Συχνοτήτων Ανάλυση Χρονοσειρών στο Πεδίο των Συχνοτήτων Η ανάλυση χρονοσειρών στο πεδίο των συχνοτήτων είναι συμπληρωματική της ανάλυσης στο πεδίο του χρόνου, αλλά μπορεί να διερευνήσει χαρακτηριστικά που δεν εντοπίζονται

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 6

Χρονοσειρές Μάθημα 6 Χρονοσειρές Μάθημα 6 Πρόβλεψη Χρονικών Σειρών Μοντέλα για χρονικές σειρές AR, MA, ARMA, ARIMA, SARIMA πρόβλεψη Πολλές εφαρμογές Δείκτης και όγκος συναλλαγών Χρηματιστηρίου Αξιών Αθηνών ΧΑΑ Θα μπορούσαμε

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑΤΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΑΝΑΛΥΣΗ ΜΟΝΤΕΛΩΝ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑΤΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΑΝΑΛΥΣΗ ΜΟΝΤΕΛΩΝ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑΤΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΘΕΜΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΑΝΑΛΥΣΗ ΜΟΝΤΕΛΩΝ

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 7. Μη-γραμμική ανάλυση χρονοσειρών

Χρονοσειρές - Μάθημα 7. Μη-γραμμική ανάλυση χρονοσειρών Χρονοσειρές - Μάθημα 7 Μη-γραμμική ανάλυση χρονοσειρών Γραμμική ανάλυση / Γραμμικά μοντέλα αυτοσυσχέτιση AR μοντέλο ARMA(p,q) μοντέλο x x px p z z z q q Πλεονεκτήματα:. Απλά 2. Κανονική διαδικασία, ανεπτυγμένη

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΗ-ΚΑΝΟΝΙΚΩΝ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕΣΩ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΕ ΚΑΝΟΝΙΚΕΣ ΧΡΟΝΟΣΕΙΡΕΣ

ΓΡΑΜΜΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΗ-ΚΑΝΟΝΙΚΩΝ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕΣΩ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΕ ΚΑΝΟΝΙΚΕΣ ΧΡΟΝΟΣΕΙΡΕΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανελληνίου Συνεδρίου Στατιστικής (24), σελ. 243-25 ΓΡΑΜΜΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΗ-ΚΑΝΟΝΙΚΩΝ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕΣΩ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΕ ΚΑΝΟΝΙΚΕΣ ΧΡΟΝΟΣΕΙΡΕΣ Κουγιουµτζής

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION)

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION) ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION) Μέθοδοςεκθετικήςεξομάλυνσης Μια άλλη τεχνική για δεδομένα με

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών Χρονοσειρές, Μέρος Β Πρόβλεψη Χρονικών Σειρών Ο βασικός σκοπός της μελέτης των μοντέλων για χρονικές σειρές (όπως AR, MA, ARMA, ARIMA, SARIMA) είναι η πρόβλεψη (redco, forecasg) Η πρόβλεψη των μελλοντικών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ Κουγιουμτζής Δημήτρης

ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ Κουγιουμτζής Δημήτρης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ Μάθημα του μεταπτυχιακού προγράμματος ειδίκευσης Στατιστική και Μοντελοποίηση του Τμήματος Μαθηματικών ΑΠΘ Κουγιουμτζής Δημήτρης Αν. Καθηγητής

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΗΣ ΕΙΔΙΚΕΥΣΗΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ ΘΕΜΑ: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ ΚΑΙ

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης & Συνδιασποράς 5.7: Μετάδοση Στοχαστικής

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Μοντέλα χρονολογικών σειρών Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10: Θόρυβος (Πηγές Θορύβου, Κατανομή Poisson, Λευκός Θόρυβος, Ισοδύναμο

Διαβάστε περισσότερα

Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών

Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών Φοιτητής: Μαρκόπουλος

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΙ ΠΡΟΓΝΩΣΗ Ενότητα 3: Υδρολογική πρόγνωση 3.2. Μοντέλα Χρονοσειρών

ΥΔΡΟΛΟΓΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΙ ΠΡΟΓΝΩΣΗ Ενότητα 3: Υδρολογική πρόγνωση 3.2. Μοντέλα Χρονοσειρών Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΙ ΠΡΟΓΝΩΣΗ Ενότητα 3: Υδρολογική πρόγνωση 3.2. Μοντέλα Χρονοσειρών Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΝΑΛΥΣΗ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ: ΠΡΟΒΛΕΠΟΝΤΑΣ ΤΟ ΜΕΛΛΟΝ, ΚΑΤΑΝΟΩΝΤΑΣ ΤΟ

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

.Π.Μ.Σ.: ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ

.Π.Μ.Σ.: ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ.Π.Μ.Σ.: ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ Ανάλυση Χρονοσειρών και Έλεγχοι

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΡΩΤΟ-ΔΕΥΤΕΡΟ-ΣΤΑΣΙΜΟΤΗΤΑ- ΕΠΟΧΙΚΟΤΗΤΑ-ΚΥΚΛΙΚΗ ΤΑΣΗ ΧΡΗΣΙΜΟΙΟΡΙΣΜΟΙ Χρονολογική Σειρά (χρονοσειρά)

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Εκτίµηση Φάσµατος ιδάσκων: Ν. Παπανδρέου (Π.. 47/8) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής CEID 7-8 Μη παραµετρικές µέθοδοι: Περιοδόγραµµα Φάσµα ισχύοςµιας

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές. ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής

Στοχαστικά Σήµατα και Εφαρµογές. ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής Στοχαστικά Σήµατα & Εφαρµογές Βέλτιστα Φίλτρα Wiener ιδάσκων: Ν. Παπανδρέου (Π.. 7/8) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής CEID 7-8 Εισαγωγή ιατύπωση του προβλήµατος: οθέντος των από

Διαβάστε περισσότερα

Κεφάλαιο 7 ΑΝΑΛΥΣΗ ΒΙΟΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ ΣΤΟ ΠΕ ΙΟ ΤΟΥ ΧΡΟΝΟΥ

Κεφάλαιο 7 ΑΝΑΛΥΣΗ ΒΙΟΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ ΣΤΟ ΠΕ ΙΟ ΤΟΥ ΧΡΟΝΟΥ Κεφάλαιο 7 ΑΝΑΛΥΣΗ ΒΙΟΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ ΣΤΟ ΠΕ ΙΟ ΤΟΥ ΧΡΟΝΟΥ 7.. Εισαγωγή Όλοι οι ζώντες οργανισµοί, από τα κύτταρα µέχρι τα διάφορα όργανα, παράγουν σήµατα βιολογικής προέλευσης. Τέτοια σήµατα µπορεί να

Διαβάστε περισσότερα

Ανάλυση και Πρόβλεψη Χρονοσειρών

Ανάλυση και Πρόβλεψη Χρονοσειρών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Ανάλυση και Πρόβλεψη Χρονοσειρών Διπλωματική εργασία της Γεωργίας Μαργιά

Διαβάστε περισσότερα

Έλεγχος αιτιότητας κατά Granger σε πολύ-μεταβλητές χρονοσειρές με εποχικότητα και εφαρμογή στην αγορά ηλεκτρικής ενέργειας της Ιταλίας.

Έλεγχος αιτιότητας κατά Granger σε πολύ-μεταβλητές χρονοσειρές με εποχικότητα και εφαρμογή στην αγορά ηλεκτρικής ενέργειας της Ιταλίας. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ MΟΝΤΕΛΟΠΟΙΗΣΗ Έλεγχος αιτιότητας κατά Granger σε πολύ-μεταβλητές χρονοσειρές με εποχικότητα και εφαρμογή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

min Προσαρμογή AR μοντέλου τάξη p, εκτίμηση παραμέτρων Προσδιορισμός τάξης AR μοντέλου συσχέτιση των χωρίς τη συσχέτιση με

min Προσαρμογή AR μοντέλου τάξη p, εκτίμηση παραμέτρων Προσδιορισμός τάξης AR μοντέλου συσχέτιση των χωρίς τη συσχέτιση με = φ + φ + + φ + Προσδιορισμός τάξης AR μοντέλου Προσαρμογή AR μοντέλου - μερική αυτοσυσχέτιση για υστέρηση τ: = φ + w, = φ + φ + w,, = φ + φ + φ + w,3,3 3,3 3 ˆ φ, kk, τάξη, εκτίμηση παραμέτρων συσχέτιση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual

Διαβάστε περισσότερα

Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. κ Μηx. Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Μονάδα Προβλέψεων & Στρατηγικής Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Ανάλυση Χρονοσειρών. Κεφάλαιο Ανάλυση Χρονοσειρών

Ανάλυση Χρονοσειρών. Κεφάλαιο Ανάλυση Χρονοσειρών Κεφάλαιο 22 Ανάλυση Χρονοσειρών 22.1 Ανάλυση Χρονοσειρών Με τον όρο Χρονοσειρά εννοούµε µια σειρά από παρατηρήσεις που παίρνονται σε ορισµένες χρονικές στιγµές ή περιόδους που ισαπέχουν µεταξύ τους. Υπάρχουν

Διαβάστε περισσότερα

Γραμμικά Μοντέλα Χρονοσειρών και Αυτοσυσχέτισης ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σταυρούλα Γαζή

Γραμμικά Μοντέλα Χρονοσειρών και Αυτοσυσχέτισης ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σταυρούλα Γαζή ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ.Π.Μ.Σ. : «ΜΑΘΗΜΑΤΙΚΑ των ΥΠΟΛΟΓΙΣΤΩΝ και των ΑΠΟΦΑΣΕΩΝ» Κατεύθυνση : ΣΤΑΤΙΣΤΙΚΗ και ΕΠΙΧΕΙΡΙΣΙΑΚΗ ΕΡΕΥΝΑ Γραμμικά Μοντέλα Χρονοσειρών και

Διαβάστε περισσότερα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο

Διαβάστε περισσότερα

ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ, Υ ΡΑΥΛΙΚΩΝ ΚΑΙ ΘΑΛΑΣΣΙΩΝ ΕΡΓΩΝ ΜΑΘΗΜΑ: ΣΤΟΧΑΣΤΙΚΗ Υ ΡΟΛΟΓΙΑ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2001 ΟΝΟΜΑΤΕΠΩΝΥΜΟ -----------------------------------------------------------------------------------

Διαβάστε περισσότερα

Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή.

Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή. Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή. Τόγιας Παναγιώτης ΤΕΙ Δυτικής Ελλάδας ptogias@outlook.com Μαργαρίτης Σωτήρης ΤΕΙ

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10 Θόρυβος (Noise) καθ. Βασίλης Μάγκλαρης maglaris@etmode.tua.gr www.etmode.tua.gr

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ ΤΑΣΗΣ

ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ ΤΑΣΗΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.409-46 ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 6: ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Ακαδηµαϊκό Έτος 26 27, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΑ ΠΡΟΒΛΕΨΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΟΖΟΝΤΟΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ουράνη Μαρία Επιβλέπων : Νικόλαος

Διαβάστε περισσότερα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο στο Μέλλον Η ορθολογική

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουλίου Θέμα ( μονάδες) 4 Θεωρούμε τον Ευκλείδειο χώρο και τον υποχώρο του V που παράγεται

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης (Correlation) & Συνδιασποράς (Covariance)

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 4 Πάτρα 2008 Ντετερμινιστικά Moving Average Μοντέλα Ισχύει:

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis)

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis) ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis) Δρ Ιωάννης Δημόπουλος Καθηγητής Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας Τι είναι η χρονολογική σειρά Χρονολογική σειρά ή Χρονοσειρά

Διαβάστε περισσότερα

S D. y[n] x [n] y. s D2. Microphone feedback into amplifier

S D. y[n] x [n] y. s D2. Microphone feedback into amplifier Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ : Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 3: Συστήματα διακριτού χρόνου!"#!"#! "#$% Σημειώσεις διαλέξεων

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΠΡΟΒΛΕΨΗΣ ΧΡΟΝΟΣΕΙΡΩΝ: ΧΡΟΝΟΣΕΙΡΕΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΟΙΚΟΝΟΜΙΑ

ΜΕΘΟΔΟΙ ΠΡΟΒΛΕΨΗΣ ΧΡΟΝΟΣΕΙΡΩΝ: ΧΡΟΝΟΣΕΙΡΕΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΟΙΚΟΝΟΜΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ.Π.Μ.Σ: «ΜΑΘΗΜΑΤΙΚΑ των ΥΠΟΛΟΓΙΣΤΩΝ και των ΑΠΟΦΑΣΕΩΝ» Κατεύθυνση: ΣΤΑΤΙΣΤΙΚΗ και ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΜΕΘΟΔΟΙ ΠΡΟΒΛΕΨΗΣ ΧΡΟΝΟΣΕΙΡΩΝ: ΧΡΟΝΟΣΕΙΡΕΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΟΙΚΟΝΟΜΙΑ

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση

Διαβάστε περισσότερα

Έλεγχος των Phillips Perron

Έλεγχος των Phillips Perron ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.

Διαβάστε περισσότερα

Granger Αιτιότητα και Πρόβλεψη σε Πολυ-μεταβλητές Χρονοσειρές Χαρακτηριστικών Ταλάντωσης

Granger Αιτιότητα και Πρόβλεψη σε Πολυ-μεταβλητές Χρονοσειρές Χαρακτηριστικών Ταλάντωσης Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 9 ου Πανελληνίου Συνεδρίου Στατιστικής (006), σελ 47-54 Granger Αιτιότητα και Πρόβλεψη σε Πολυ-μεταβλητές Χρονοσειρές Χαρακτηριστικών Ταλάντωσης Βλάχος Ιωάννης,

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 9: Αυτοσυσχέτιση Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΟΓΔΟΟ-ΥΠΟΔΕΙΓΜΑΤΑ ARIMA & ΜΗ ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΤΥΧΑΙΑΔΙΑΔΡΟΜΗ (RANDOM WALK) Έστω η αυτοπαλίνδρομη

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Στοχαστικές Διαδικασίες 2 Στοχαστική Διαδικασία Στοχαστικές Ανελίξεις Α. Αλεξίου 3 Στοχαστική Διαδικασία ως συλλογή από συναρτήσεις χρόνου

Διαβάστε περισσότερα

Analyze/Forecasting/Create Models

Analyze/Forecasting/Create Models (εκδ 11) (εκδ 11) Σχολή Κοινωνικών Επιστημών Τμήμα Οικονομικών Επιστημών 24 Οκτωβρίου 2014 1 / 12 Εισαγωγή (εκδ 11) 1 2 2 / 12 ΧΣ (εκδ 11) ΧΣ μέσω υποδειγμάτων ARIM A/SARIM A Αϕου δημιουργήσουμε τον χώρο

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΥΔΡΟΛΟΓΙΚΩΝ ΧΡΟΝΙΚΩΝ ΣΕΙΡΩΝ

ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΥΔΡΟΛΟΓΙΚΩΝ ΧΡΟΝΙΚΩΝ ΣΕΙΡΩΝ Διατμηματικό πρόγραμμα μεταπτυχιακών σπουδών ΥΔΡΑΥΛΙΚΗ ΜΗΧΑΝΙΚΗ Δρ Βασίλειος Κιτσικούδης και Δρ Σπηλιώτης Μιχάλης ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΥΔΡΟΛΟΓΙΚΩΝ ΧΡΟΝΙΚΩΝ ΣΕΙΡΩΝ ΞΑΝΘΗ, 2015 Παραδείγματα από Τριβέλλα Θ.

Διαβάστε περισσότερα

Έλεγχος Τυχαιοποίησης για την Ταυτοποίηση του Συστήματος μη-γκαουσιανής Χρονοσειράς

Έλεγχος Τυχαιοποίησης για την Ταυτοποίηση του Συστήματος μη-γκαουσιανής Χρονοσειράς Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 19 ου Πανελληνίου Συνεδρίου Στατιστικής (2006), σελ 249-256 Έλεγχος Τυχαιοποίησης για την Ταυτοποίηση του Συστήματος μη-γκαουσιανής Χρονοσειράς Δ. Κουγιουμτζής 1,

Διαβάστε περισσότερα

Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης

Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης

Διαβάστε περισσότερα

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ, Σχ. Μηχ. Μηχ. ΕΜΠ 1 Αριθμητική Επίλυση Μη-Γραμμικών

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ Μάθηµα: Εφαρµοσµένη Οικονοµετρία (Aκαδηµαϊκό έτος: 2008-2009) Σπύρος Σκούρας Ονοµατεπώνυµο: ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΙΟΥΛΙΟΥ 2009

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Lecture 2: ARMA Models

Lecture 2: ARMA Models Leture 2: ARMA Models Bus 41910, Autumn Quarter 2008, Mr Ruey S Tsay Autoregressive Moving-Average (ARMA) models form a lass of linear time series models whih are widely appliable and parsimonious in parameterization

Διαβάστε περισσότερα

Θεωρία Στοχαστικών Σηµάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών στοχαστικών διεργασιών

Θεωρία Στοχαστικών Σηµάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών στοχαστικών διεργασιών ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Θεωρία Στοχαστικών Σηµάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών στοχαστικών διεργασιών Βιβλιογραφία Ενότητας Benvento []: Κεφάλαιo Widrow [985]:

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 3: Τυχαίες Διαδικασίες Διακριτού Χρόνου Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Εισαγωγή στις

Διαβάστε περισσότερα

ΕΠΑΝΑ ΕΙΓΜΑΤΟΛΗΨΙΑ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕ ΜΝΗΜΗ ΜΑΚΡΑΣ ΙΑΡΚΕΙΑΣ ΚΑΙ ΕΦΑΡΜΟΓΗ

ΕΠΑΝΑ ΕΙΓΜΑΤΟΛΗΨΙΑ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕ ΜΝΗΜΗ ΜΑΚΡΑΣ ΙΑΡΚΕΙΑΣ ΚΑΙ ΕΦΑΡΜΟΓΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ Γεωργία Κιούση ΕΠΑΝΑ ΕΙΓΜΑΤΟΛΗΨΙΑ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕ ΜΝΗΜΗ ΜΑΚΡΑΣ ΙΑΡΚΕΙΑΣ ΚΑΙ ΕΦΑΡΜΟΓΗ ιπλωµατική

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Ανάλυση και μοντελοποίηση χρονοσειρών ανύψωσης της ελεύθερης επιφάνειας της θάλασσας

Ανάλυση και μοντελοποίηση χρονοσειρών ανύψωσης της ελεύθερης επιφάνειας της θάλασσας 7 \ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ & ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ Ανάλυση και μοντελοποίηση χρονοσειρών ανύψωσης

Διαβάστε περισσότερα

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας Ροπογεννήτριες (mome geerig fucios), πιθανογεννήτριες (robbiliy geerig fucios) και χαρακτηριστικές συναρτήσεις (chrcerisic fucios) Η ροπογεννήτρια συνάρτηση της τμ είναι η πραγματική συνάρτηση πραγματικής

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares) ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων RLS Rcrsiv Last Sqars 27 iclas sapatslis

Διαβάστε περισσότερα

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ» ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ (-6-) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Α. Αν η συνάρτηση είναι παραγωγίσιμη σ ένα σημείο του πεδίου ορισμού της, να γραφεί η εξίσωση της εφαπτομένης της

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Μπακαλάκος Ευάγγελος

Μπακαλάκος Ευάγγελος Μπακαλάκος Ευάγγελος Σχεση πραγματικής και χρηματιστηριακής οικονομίας 2003-2012 Δυο περιόδοι προ και κατά διάρκεια της κρίσης 4 μεταβλητές 5 στατιστικά υποδείγματα Χρηματοπιστωτικής-τραπεζικής κρίσης

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΣΗΜΕΙΟΥ ΑΛΛΑΓΗΣ ΤΑΣΗΣ ΣΕ ΧΡΟΝΟΣΕΙΡΕΣ

ΑΝΙΧΝΕΥΣΗ ΣΗΜΕΙΟΥ ΑΛΛΑΓΗΣ ΤΑΣΗΣ ΣΕ ΧΡΟΝΟΣΕΙΡΕΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής (7), σελ 3- ΑΝΙΧΝΕΥΣΗ ΣΗΜΕΙΟΥ ΑΛΛΑΓΗΣ ΤΑΣΗΣ ΣΕ ΧΡΟΝΟΣΕΙΡΕΣ Θ. Βαφειάδης, Ε. Μπόρα-Σέντα, Δ. Κουγιουμτζής Μαθηματικό Τμήμα, Αριστοτέλειο

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Κεϕάλαιο 6. Χρονοσειρές

Κεϕάλαιο 6. Χρονοσειρές Κεϕάλαιο 6 Χρονοσειρές Στο προηγούµενο κεϕάλαιο µελετήσαµε τη σχέση ενός µεγέθους µε άλλα µεγέθη καθώς και την εξάρτηση του µεγέθους (της εξαρτηµένης τυχαίας µεταβλητής) από άλλα µεγέθη (τις ανεξάρτητες

Διαβάστε περισσότερα

Ανάλυση χρονοσειρών ΚΕΦΑΛΑΙΟ 8. Εισαγωγή

Ανάλυση χρονοσειρών ΚΕΦΑΛΑΙΟ 8. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Ανάλυση χρονοσειρών Εισαγωγή Η ανάλυση χρονοσειρών αποσκοπεί στην ανεύρεση των χαρακτηριστικών εκείνων που συµβάλουν στην κατανόηση της ιστορικής συµπεριφοράς µιας µεταβλητής και επιτρέπουν

Διαβάστε περισσότερα