, Άρρητοι Q β Πραγματικοί R Q Q, α β γ δ αγ βδ αδ βγ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ", Άρρητοι Q β Πραγματικοί R Q Q, α β γ δ αγ βδ αδ βγ"

Transcript

1 Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Φυσικί: IN,,,..., Ακέριι: Z...,,,,,,..., Ρητί: Q /, *, Άρρητι Q Πρτικί R QQ, εώ R R, Ισχύει: ΝQ R, Εώ ε Ν*, *, Q*, R * συλίζυε τ τίστιχ σύλ χωρίς τ ηδέ. ΤΑΥΤΟΤΗΤΕΣ ε εριττ. ή == Euler δ δ δ Lagrange ΑΝΙΣΩΣΕΙΣ. Ειτρέετι ρσθέσω ή φιρέσω ό τ δύ έλη ις ισότητς τ ίδι ριθό. Ειτρέετι λλλσιάσω, διιρέσω κι τ δύ έλη ις ισότητς ε τ ίδι θετικό ριθό, εώ ρέει λλάξω τη φρά της ισότητς υτός είι ρητικός.. Ειτρέετι υψώσω ι ισότητ σε δύη ε εριττό εκθέτη, εώ ρέει έχει θετικύς όρυς τη υψώσω σε δύη ε άρτι εκθέτη ( έχει ρητικύς όρυς κι τη υψώω σε άρτι εκθέτη ρέει της λλάξω τη φρά) 4. Ειτρέετι ρσθέσω δύ ισότητες της ίδις φράς κτά έλη 5. Ειτρέετι λλλσιάσω δύ ισότητες της ίδις φράς κτά έλη εφ όσ όλι ι όρι είι θετικί. 6. Α, θετικί κι ι δύ ή ρητικί ριθί κι ι δύ τότε ισχύει η ισδυί 7. Ισχύει η εττική ιδιότητ: Α κι τότε. Η ιδιότητ υτή υ ειτρέει «εισχύω» ι ισότητ ε κάτι ελύτερ ό τ εάλ ή κάτι ικρότερ ό τ ικρό έλς της. 8. ΙΣΧΥΟΥΝ:,,, 9. ΠΡΟΣΟΧΗ! ΔΕΝ ΑΦΑΙΡΟΥΜΕ, ΔΕΝ ΔΙΑΙΡΟΥΜΕ ΑΝΙΣΩΣΕΙΣ ΚΑΤΑ ΜΕΛΗ ΑΠΟΛΥΤΑ. Αόλυτη τιή εός ριθύ είι η όστση της εικός τυ ριθύ ό τη ρχή τυ άξ.. Η όλυτη τιή εός θετικύ ριθύ είι ίδις ριθός. Η όλυτη τιή εός ρητικύ ριθύ είι τίθετς ριθός.. ι κάθε R,,, > = 4. κι ι κάθε R ή ι κάθε R κι εικότερ: f() f() f() 5. θ θ ή θ, θ ή 6. θ θ θ, θ θ θ ή -θ, θ 7., ε ι κάθε, R. 8. Η όστση δύ ριθώ στ άξ ισύτι ε τη όλυτη τιή της διφράς τυς: d(,) ΠΡΟΣΟΧΗ! Α τότε κι ΡΙΕΣ Ορισός: Ιδιότητες:. Α ε θετικός κέρις,, ι κάθε R, τότε κι. A τότε ή,., θετικί κέριι εώ είι Με, κι,,ρ ισχύυ, R κι, θετικί κέριι,,,, θετικός, κέρις, θετικός κέρις κι,, ρ ρ, ΣΥΣΤΗΜΑΤΑ Γι τη λύση τυ ρικύ συστήτς Σ ε τη έθδ τω ριζυσώ ρίσκυε τις ρίζυσες D, D, D κι ισχύει ότι Α D έχει δική λύση τη D D κι D D, Α D κι D ή D είι δύτ, εώ D D D τότε είι δύτ ή όριστ ή έχει άειρες λύσεις. 4.7

2 Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ ΔΙΑΣΤΗΜΑΤΑ:, R/, R/, Αικτό:, Κλειστό, R/,, R/,, R/,, R/ ΣΥΝΑΡΤΗΣΕΙΣ Η όστση τω σηείω Α(, ) κι Β(, ) είι ίση ε (ΑΒ) ( ) ( )., κ.λ. Τ σηεί, είι συετρικό ως ρς: τ ε τ,, τ ε τ, τ, ε τ,, τη ευθεί ε τ, Οι ευθείες κι είι ράλληλες κι ό Οι ευθείες κι ε είι κάθετες κι ό Μι συάρτηση f λέετι άρτι κι ό ι κάθε Af ισχύει ότι: Af κι f f Η ρφική ράστση ις άρτις συάρτησης έχει άξ συετρίς τ Μι συάρτηση f λέετι εριττή κι ό ι κάθε Af ισχύει ότι: Af κι f f. Η ρφική ράστση ις εριττής συάρτησης έχει κέτρ συετρίς τ (,) Μι συάρτηση f σε έ διάστη Δ τυ εδίυ ρισύ της: Είι ήσι ύξυσ κι ό ι κάθε, Δ ισχύει ότι: Α τότε f f Είι ήσι φθίυσ κι ό ι κάθε, Δ ισχύει ότι: Α Η τί ις συάρτησης κθρίζετι ό τ ρόση τυ λόυ ετλής: λ τότε f f f f. Α C f είι η ρφική ράστση της συάρτησης f τότε η ρφική ράστση της g ε : g f c, c ρκύτει ό τη ράλληλη εττόιση της C f κτά c άδες άω g f c, c ρκύτει ό τη ράλληλη εττόιση της C f κτά c άδες ριστερά g f είι η συετρική της C f ως ρς άξ συετρίς τ. g f είι η συετρική της C f ως ρς άξ συετρίς τ. f f g f f f ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Η λυωυική συάρτηση f() Η λυωυική συάρτηση f() =,. > a> a< a= < Η λυωυική συάρτηση f() =,. > < = =- Η ρητή συάρτηση a f(), a. Οι συρτήσεις f ( ), g( ). > < =η =συ M. Πρηράκης

3 Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ ΠΟΛΥΩΝΥΜΑ Πλυώυ είι κάθε ράστση υ ρεί άρει τη ρφή: P.... ε,,..., στθερί ρτικί ριθί κι R Τ λυώυ P έχει ρίζ τ ρ κι ό Pρ δηλ κι ό P ( ρ)(). Α P, Q δύ λυώυ ε Q τότε υάρχυ δύ λυώυ () κι υ() ώστε : P Q()() υ(). Τ λυώυ () κι υ() ρίσκτι κάτς τη διίρεση P :Q() Τ λυώυ P... είι τ ηδεικό κι ό = =... = εώ δύ λυώυ είι ίσ κι ό ι συτελεστές τω άθιω όρω τυς είι ίσι. ΤΡΙΩΝΥΜΟ Τριώυ είι κάθε ράστση υ ρεί άρει τη ρφή ε. ΡΙΕΣ Δ Δ Δ Έχει δύ ρίζες άισες τις:, Δ Έχει ι διλή ρίζ τη, ΜΟΡΦΗ f() f() i Δ i Δ Δ Έχει δύ ιδικές ρίζες τις, Δ f() 4 TΟ ΠΡΟΣΗΜΟ ΤΟΥ, Τιές τυ - Πρόση τυ, ετερόση τυ όση τυ Πρόση τυ τριωύυ Δ, Τιές τυ - + Πρόση τυ όση τυ ετερόση τυ όση τυ + Δ Τιές τυ - + Πρόση τυ όση τυ όση τυ Δ Τιές τυ - + Πρόση τυ όση τυ Πρσχή!!. Α ι κάθε R είι τότε είι Δ είι. Στη ερίτωση υτή τ τριώυ όση τυ δηλδή: ι κάθε R. Ισχύει ι κάθε ρτικό ριθό κι ό ισχύει: Δ κι. Ισχύει ι κάθε ρτικό ριθό κι ό ισχύει: Δ κι, κ.λ.. 4. Τ τριώυ διτηρεί στθερό ρόση ι κάθε ρτικό κι ό ισχύει Δ Δ Η συάρτηση f, είι ρλή ε κρυφή τ σηεί,f 4 Σχέσεις ριζώ συτελεστώ: (τύι Vietta) S ρ ρ, Ρ ρρ Εώ ι εξίσωση υ έχει δσέες ρίζες ρ, ρ είι η ΤΡΙΓΩΝΟΜΕΤΡΙΑ Πίκς τριωετρικώ ριθώ: Γωί ω ηω συω εφω, 6 45, 4 σφω SP 6, 9, 8, 7, M. Πρηράκης

4 Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ Βσικί τριωετρικί τύι κι ριθί:. η συ ή η συ ή η. εφ R κ,κ : κέρις συ. η, συ, ι κάθε R, εφ R, σφ R ι συ η, R, εφ σφ σφ, Rκ, κ Z συ η 4. η() η συ συ η, συ() συσυ ηη, 5. η η συ, ι R κ,κ : κέρις εφ συ συ η συ η, εφ εφ εφ εφ εφ() εφεφ 6. συ συ συ η, συ, εφ συ (Τύι τετρωισύ): 7. εφ εφ εφ εφ, σφ η συ εφ συ η εφ εφ εφ ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ κ θ Είι: η κ, κ, η ηθ ή ε κ συ κ, κ, κ θ κ θ η κ, κ συ συθ ή ε κ κ θ η κ, κ εφ εφθ κ θ ε κ συ κ, κ σφ σφθ κ θ ε κ συ κ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΑΝΙΣΩΣΕΙΣ: λύτι ε χρήση τυ τριωετρικύ κύκλυ.. Νός ηιτόω: Σε κάθε τρίω ΑΒΓ ισχύει ότι R ηα ηβ ηγ. Νός συηιτόω: Σε κάθε τρίω ΑΒΓ ισχύει ότι συα ΑΝΑΓΩΓΗ ΣΤΟ ΠΡΩΤΟ ΤΕΤΑΡΤΗΜΟΡΙΟ Οι ωίες κ ω κι ω έχυ τυς ίδιυς τριωετρικύς ριθύς ε κ. Οι τίθετες ωίες έχυ τ ίδι συηίτ συω συω, κι τίθετυς τυς άλλυς τριωετρικύς ριθύς ηω ηω, εφω εφω, σφω σφω. Δηλδή η συάρτηση f συ, R είι άρτι, εώ ι f η, R, fεφ, κ, fσφ, κ είι εριττές συρτήσεις. Οι ωίες της ρφής ή υ ρύ άρυ τη ρφή 8 ω, ω ή 6 ω ω, έχυ τυς ίδιυς τριωετρικύς ριθύς ε τη ωί ω ε ρόση ή άλ ε τ τετρτηόρι στ ί η τελική λευρά της ωίς τέει τ τριωετρικό κύκλ, θεωρώτς ότι ω Οι ωίες της ρφής ή υ ρύ άρυ τη ρφή 9 ω, ω ή 7 ω, ω, ελλάσσυ τυς τριωετρικύς ριθύς ε τη ωί ω, δηλδή τ ηίτ ίετι συηίτ ή τίστρφ κι εφτέη ίετι συεφτέη ή τίστρφ ε ρόση ή άλ ε τ τετρτηόρι στ ί η τελική λευρά της ωίς τέει τ τριωετρικό κύκλ, θεωρώτς ότι ω ΠΡΟΟΔΟΙ Αριθητική ρόδς άζετι η κλυθί ριθώ,,...,. στη ί κάθε όρς ρκύτει ό τ ρηύε ρσθέττς τ ίδι ριθό, (διφρά), ω. Ισχύυ: = +(-)ω, Σ ( )ω, εώ κί κι ική συθήκη ι είι τρείς ριθί,, διδχικί όρι ριθητικής ρόδυ είι η Γεωετρική ρόδς άζετι η κλυθί τω η ηδεικώ ριθώ,,..., στη ί κάθε όρς ρκύτει ό τ ρηύε λλλσιάζτς τ ίδι η ηδεικό ριθό, (λός), λ. (-) λ Ισχύυ: =λ, Σ εφόσ λ κι Σ λ, εώ κί κι ική λ συθήκη ι είι τρείς η ηδεικί ριθί,, διδχικί όρι εωετρικής ρόδυ είι η M. Πρηράκης

5 Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ Οάζετι η συάρτηση f(), ρίζετι ι κάθε R κι ίρει τιές στ,. Α είι ησίως φθίυσ εώ είι ησίως ύξυσ. Ορισός τυ e: lim =, =e ΛΟΓΑΡΙΘΜΟΙ Ορισός lg θ θ ε, θ Νεέρις λάριθς λέετι λάριθς υ έχει άση τ e : ln e ε κι R. Δεκδικός λάριθς λέετι λάριθς υ έχει άση τ : lg ε κι R. Κάθε ρτικός ριθός ρεί ρφεί ως λάριθς : ι κάθε R ισχύει: lne ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Η συάρτηση f() lg, ρίζετι στ,, έχει τιές στ IR κι είι η τίστρφη της f Α είι ησίως φθίυσ, εώ είι ησίως ύξυσ ΙΔΙΟΤΗΤΕΣ: --- στις εόεες ιδιότητες όυ δε ράφετι τ εριεχόε τω λρίθω είι θετικά εώ ι άσεις θετικές κι όχι έ. ln P() lnp() ln ln e lne e ε lne P() e P() ε P lg () lg lg lg lg lg lg ε, κ κ lg ln lg ΑΛΛΑΓΗ ΒΑΣΗΣ σε λάριθ: lg, εικότερ ισχύει: lg,,, ln lg ΑΛΛΑΓΗ ΒΑΣΗΣ σε εκθετική συάρτηση : ση ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΕΚΘΕΤΙΚΗΣ ΛΟΓΑΡΙΘΜΙΚΗΣ εκθέτης εκθέτη ln(άσης) Οι συρτήσεις f() κι f() lg ε Είι τίστρφες κι έχυ ρφικές ρστάσεις υ είι συετρικές ως ρς τη ευθεί (Διλά σχήτ) ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΔΙΑΝΥΣΜΑΤΑ Α Α(, ) κι Β(, ) τότε AB, Α (,), τότε i j, e ή, e ln εώ τ έσ M τυ AB είι τ M, λ εφω, =a > =lg a =a << =lg a Έστω τ διύστ (, ) κι (, ). Tότε: Ορίζυε: συ(,) Ισχύυ (, ) ( ),, συ,, ρ (, ) (, ) det(,) // det(,) = ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ ε είι η: Α Β Γ ε A ή B. Ισχύυ: B, είι λαβ Η ευθεί (ε): Α Β Γ είι ράλληλη στ διάυσ δ ( Β,Α), στ διάυσ ε (Β, Α) κι έχει A συτελεστή διεύθυσης λ, εφόσ Β εώ είι κάθετη στ διάυσ. p (Α, Β) B Α Β Γ Η όστση εός σηείυ Μ(, ) ό τη (ε) είι: d(μ,ε) Α Β Τ εδό τυ τριώυ ΑΒΓ ε Α,, B,, Γ, είι: (ΑΒΓ) det(ab,aγ) Ο συτελεστής διεύθυσης της ευθείς υ διέρχετι ό τ A,,, M. Πρηράκης

6 Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ ΚΥΚΛΟΣ είι τ σύλ τω σηείω τυ ειέδυ Ο τ ί έχυ στθερή όστση ρ, (κτί τυ κύκλυ), ό έ στθερό σηεί Κ, (κέτρ τυ κύκλυ). Α Μ(,) υτά τ σηεί κι Κ(, ) τότε: ρ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΚΥΚΛΟΥ ABΓ ε Α Β 4Γ Α Β Τότε έχει κέτρ τ σηεί: Κ, κι κτί Α Β 4Γ ρ Η εξίσωση τυ κύκλυ στ ιδικό είεδ είι: zz ρ, ε z στθερός ιδικός ριθός κι ρ R. ΠΑΡΑΒΟΛΗ είι τ σύλ τω σηείω τυ ειέδυ Ο τ ί ισέχυ ό ι ευθεί δ, (διευθετύσ) κι έ στθερό σηεί Ε, (Εστί). p Α Μ(,) υτά τ σηεί κι δ:, Ε ( p,) τότε: dm,δ ME p. Τ άω τή είι η ρφική ράστση της συάρτησης p, εώ τ κάτω της p ε M(,) Α(,) Ο P p> M(,) Α p E, p δ: p p Α Μ(,) υτά τ σηεί κι δ :, Ε, τότε: dm,δ ME p. Αυτή η ρλή είι η ρφική ράστση της συάρτησης: p ΈΛΛΕΙΨΗ είι τ σύλ τω σηείω Μ(,) τυ ειέδυ Ο τ ί έχυ στθερό άθρισ στάσεω,, ό δύ στθερά σηεί Ε, Ε (εστίες), ( EE. Α είι E(,), E(,) τότε: ΜΕ ΜΕ Α,. Α είι E(,), E(, ) τότε: ΜΕ ΜΕ Α,. Τ άω τή της έλλειψης είι η ρφική ράστση της συάρτησης:, εώ τ κάτω της,,. Ατίστιχ ισχύυ ι τη Εκκετρότητ της έλλειψης άζετι ριθός ε. Ότ ε τότε η έλλειψη ίετι ι ελτυσέη, εώ ότ ε η έλλειψη τείει ίει κύκλς ΥΠΕΡΒΟΛΗ είι τ σύλ τω σηείω τυ ειέδυ τ ί έχυ στθερή όλυτη διφρά στάσεω,, ό δύ στθερά σηεί Ε, Ε (εστίες), ( EE ). a a Α Μ(,) υτά τ σηεί κι E(,), E(,) τότε: ΜΕ ΜΕ,. Ν Κ Α Μ(,) υτά τ σηεί κι E(, ), E(,) τότε ΜΕ ΜΕ, Α Α Ο Τ άω τή της υερλής είι η ρφική ράστση της συάρτησης: Μ Λ, εώ τ κάτω της,,,, Εκκετρότητ της υερλής άζετι ριθός ε.- Ατίστιχ ισχύυ ι τη ΑΣΥΜΠΤΩΤΕΣ ΤΗΣ ΥΠΕΡΒΟΛΗΣ είι ι κι εώ της είι ι κι. Ισσκελής υερλή λέετι η υερλή:. ΕΦΑΠΤΟΜΕΝΕΣ: τω ράω κυλώ στ σηεί τυς Α, ΚΩΝΙΚΗ ρ p p ΕΦΑΠΤΟΜΕΝΗ ρ p( ) p( ) A =p p> E(,) E, p p δ: B B M (, ) E(,) Α M. Πρηράκης

, Ακέραιοι: Z... 3, 2, 1,0,1,2,3..., Ρητοί: Q / α Ζ, β Ζ *, Άρρητοι Q. α β α β α α β α β... β. α β α β α α β α β... αβ β. α β γ αβ βγ αγ α β β γ γ α

, Ακέραιοι: Z... 3, 2, 1,0,1,2,3..., Ρητοί: Q / α Ζ, β Ζ *, Άρρητοι Q. α β α β α α β α β... β. α β α β α α β α β... αβ β. α β γ αβ βγ αγ α β β γ γ α Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Φυσικί: IN 0,,,..., Ακέριι: Z...,,,0,,,..., Ρητί: Q / Ζ, Ζ *, Άρρητι Q Πρτικί R Q Q, εώ R R, Ισχύει: Ν Ζ Q R, Εώ ε Ν*, Ζ*, Q*, R * συλίζυε τ τίστιχ

Διαβάστε περισσότερα

α β α < β ν θετικός ακέραιος.

α β α < β ν θετικός ακέραιος. Τυτότητες ( ± ) ± ( ± ) ± ± ( ± ) m (γ) γ γγ - (-)() - (-)( ) - (-)( - - - - ) Α. Βσικές γώσεις ()( - ) ()( - - - - - - ) ΜΟΝΟ ΓΙΑ ΠΕΡΙΤΤΟ. γ --γ-γ [(-) (-γ) (γ-) ] γ -γ (γ)[(-) (-γ) (γ-) ] Αισώσεις. Οι

Διαβάστε περισσότερα

ταυτότητες διάταξη α 2 +β 2 = (α+β) 2-2αβ (α+β) 2 = α 2 +β 2 +2αβ (α+β) 3 = α 3 +β 3 +3α 2 β+3αβ 2 =α 3 +β 3 +3αβ(α+β) α 3 +β 3 = (α+β) 3-3αβ(α+β)

ταυτότητες διάταξη α 2 +β 2 = (α+β) 2-2αβ (α+β) 2 = α 2 +β 2 +2αβ (α+β) 3 = α 3 +β 3 +3α 2 β+3αβ 2 =α 3 +β 3 +3αβ(α+β) α 3 +β 3 = (α+β) 3-3αβ(α+β) οι άσεις στ µθηµτικά (www. sonom.gr) τυτότητες (+) + + (+) + + + + +(+) + (+) + (+) (+) (+)() + (+)( + ) ()( ++ ) (++γ) + +γ ++γ+γ + +γ γ (++γ)( () +(γ) +(γ) ) (++γ)( + +γ γγ) ()( + + + ) Ν + (+)( + +

Διαβάστε περισσότερα

ΥΠΑΙΘ / Ψηφιακά Εκπαιδευτικά Βοηθήματα / Βασικές γνώσεις θεωρίας Μαθηματικών μέχρι την Β Λυκείου. Στοιχεία άλγεβρας

ΥΠΑΙΘ / Ψηφιακά Εκπαιδευτικά Βοηθήματα / Βασικές γνώσεις θεωρίας Μαθηματικών μέχρι την Β Λυκείου. Στοιχεία άλγεβρας ΥΠΑΙΘ / Ψηφικά Εκπιδευτικά Βηθήμτ / Βσικές ώσεις θεωρίς Μθημτικώ μέχρι τη Β Λυκείυ. Αριθμί Στιχεί άλερς Σύλ Φυσικώ ριθμώ:,,,,... Σύλ Ακέριω ριθμώ:...,,,,,,,,... Σύλ Ρητώ ριθμώ: /, κέριι με Άρρητι ριθμί:

Διαβάστε περισσότερα

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { Άρρητοι αριθμοί A: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών αριθμών R=

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ 1 01 Θετικοί ριθοί λέοτι οι ριθοί που έχου προστά τους το πρόσηο () 02 Αρητικοί ριθοί λέοτι οι ριθοί που έχου προστά τους το πρόσηο () 03 Το ηδέ είι θετικός ριθός. 04 Οόσηοι

Διαβάστε περισσότερα

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3 Βασικά σύνολα αριθμών -Σύνολο φυσικών: Ν = {0,., } ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ -Σύνολο ακεραίων: Ζ= { -.-.0.,, } Συμβολίζουμε με ν=κ και τους άρτιους και τους περιττούς αντίστοιχα. * -Σύνολο ρητών: Q =, Z &

Διαβάστε περισσότερα

Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"

Ταυτότητες. α 2 β 2 = (α β)(α + β) διαφορά τετραγώνων α 3 β 3 = (α β)(α 2 + αβ + β 2 ) διαφορά κύβων Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Τριγωοµετρικές εξισώσεις ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συχ = συθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z Βσικές τριγ. εξισώσεις ηµx = 0

Διαβάστε περισσότερα

Μαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης

Μαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης o Γεικό Λύκειο Χίω 8-9 Γ τάξη Τμήμ Μθημτικά Θετικής - Τεχολογική Κτεύθυσης γ Ασκήσεις γι λύση Μ Πγρηγοράκης Γ ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μ ΠΑΠΑΓΡΗΓΟΡΑΚΗΣ 56 Α) Ν υολογίσετε τ:

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΡΑΓΩΓΟΙ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ [f(x) + g(x)] = f (x) + g (x) (fg) (x) = f (x)g(x) + f(x)g (x) 3 f g (x) = f (x)g(x) f(x)g (x) [g(x)] ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Έστω f φ(x) τότε:

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Η

ΜΑΘΗΜΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Η ΜΑΘΗΜΑ.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Η έοι του τοικού κρόττου Προσδιορισµός τω τοικώ κρόττω Θεώρηµ Frmat Θεωρί Σχόλι Μέθοδοι Ασκήσεις Frmat Αισώσεις ΘΕΩΡΙΑ. Ορισµός Μι συάρτηση µε εδίο ορισµού Α, θ λέµε

Διαβάστε περισσότερα

γ λυκειου κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο3 ολοκληρωτικος λογισμος επιμελεια : τακης τσακαλακος T Ш τ

γ λυκειου κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο3 ολοκληρωτικος λογισμος επιμελεια : τακης τσακαλακος T Ш τ γ λυκειου ` κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο ολοκληρωτικος λογισμος ειμελει : τκης τσκλκος T Ш τ 017 ... ρχικη συρτηση... ορισμεο ολοκληρωμ... η συρτηση F()=... εμδο ειεδου χωριου T Ш τ ΟΡΙΣΜΕΝΟ

Διαβάστε περισσότερα

Τυπολόγιο Μαθηµατικών

Τυπολόγιο Μαθηµατικών Τπολόιο Μθητικώ * πιάτσης πιώτης Εδό κύκλο κτίς ρ E =πρ Ο ρ Μήκος κύκλο κτίς ρ L= πρ Ο ρ Όκος πρίστος Εδό άσης ύψος= Ε. Ε Όκος κλίδρο ε κτί άσης ρ κι ύψος V =πρ ρ Εδό πράπλερης επιφάεις κλίδρο Ε= πρ Εδό

Διαβάστε περισσότερα

Στα επόμενα παρουσιάζουμε τις τρεις βασικές μεθόδους ολοκλήρωσης των ορισμένων ολοκληρωμάτων.

Στα επόμενα παρουσιάζουμε τις τρεις βασικές μεθόδους ολοκλήρωσης των ορισμένων ολοκληρωμάτων. Σχόι Θεωρίς ο Κεφάιο Μέθοδοι οοήρωσης ι ορισέ οοηρώτ Αωιοί τύοι οοηρωάτω Θετιή Τεχοοιή Νο Κτεύθυση Στ εόε ρουσιάζουε τις τρεις σιές εθόδους οοήρωσης τω ορισέω οοηρωάτω.. Προτιή οοήρωση : Γι δύο συρτήσεις

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 )

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 ) ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ 1 ορισµοί Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 ) Γησίως αύξουσα: σε έα διάστηµα του πεδίου ορισµού της λέγεται µια συάρτηση f ότα για κάθε χ 1,χ 2 µε χ 1

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

1o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ ( ) Αριθµητική τιµή του πολυώνυµου ( ) Το πολυώνυµο ( ) = = =.

1o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ ( ) Αριθµητική τιµή του πολυώνυµου ( ) Το πολυώνυµο ( ) = = =. ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ Πλυώυµ τυ x λέγετι κάθε πράστση της µρφής : x + x ++ x+ όπυ,,,, είι στθερί πργµτικί ριθµί κι φυσικός ριθµός Τ πλυώυµ τυ x συµβλίζυµε: f( x ), g( x ), f x = x + x ++ x+ h x,, πότε γράφυµε:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Çëéáó Óêáñäáíáó - Ìáèçìáôéêïó. Στθερές. π = 03,459 6535 89793 3846 643... e = 0,788 884 59045 3536 087... e π = 3,4069 637 7969 006... π e =,4595 7783 6045 4734 75... e e = 5,546 44

Διαβάστε περισσότερα

ΜΑΡΙΑ ΓΚΟΥΝΤΑΡΟΠΟΥΛΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΡΙΑ ΓΚΟΥΝΤΑΡΟΠΟΥΛΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η διυσμτική κτί του θροίσμτος τω μιγδικώ i κι γ δi είι το άθροισμ τω διυσμτικώ κτίω τους Α M κι M γ δ είι οι εικόες τω i κι γ δi τιστοίχως

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΤΥΠΛΓΙ ΜΑΘΗΜΑΤΙΚΩΝ Βασικά σύνολα Σύνολο φυσικών: Í {,,,L} Σύνολο ακεραίων: Æ { L,,,,,, L} Σύνολο ρητών: Q / Æ, ë Æ * ë Άρρητος λέγεται ένας αριθµός που δεν µπορεί να γραφτεί µε τη µορφή κλάσµατος ακεραίων.

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2 Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ ΕΙΔΗ ΕΞΙΣΩΣΗΣ ( ΔΙΕΡΕΥΝΗΣΗ ΕΞΙΣΩΣΗΣ): i. αχ=β µε α 0 έχει µία λύση ii. 0χ=β µε β 0 αδύατη εξίσωση ( καµία λύση ) iii. 0χ=0 αόριστη εξίσωση ( άπειρες λύσεις ) ΕΙΔΗ ΣΥΣΤΗΜΑΤΟΣ (ΔΙΕΡΕΥΝΗΣΗ

Διαβάστε περισσότερα

x 1 δίνει υπόλοιπο 24

x 1 δίνει υπόλοιπο 24 ΓΕΝΙΚΕΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 3. Δίνεται το πολυώνυμο P() 6 α β το οποίο έχει παράγοντα το και όταν διαιρείται με το δίνει υπόλοιπο i. Να δείξετε ότι: α και β 6 ii. Να λύσετε την εξίσωση

Διαβάστε περισσότερα

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1 Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος 014-15 ΜΑΝΩΛΗ ΨΑΡΡΑ Μανώλης Ψαρράς Σελίδα 1 Α ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΗ 1 η Να λυθούν γραφικά τα συστήματα: y y6 y 5 1 : 1 : 3 : y 6 0 y 5

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ 00-08 α φάση Συναρτήσεις Θεωρούμε τη συνάρτηση Α, 6 wwwaskisopolisgr f κ, με 4,4 και κ η οποία διέρχεται από το σημείο και τμήμα της γραφικής της παράστασης φαίνεται

Διαβάστε περισσότερα

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Πρόσημο τριγωνομετρικών αριθμών Το ρόσημο των τριγωνομετρικών αριθμών μιας γωνίας (ή τόξου) καθ αό το τεταρτημόριο στο οοίο βρίσκεται

Διαβάστε περισσότερα

3x 2x 1 dx. x dx. x x x dx.

3x 2x 1 dx. x dx. x x x dx. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση (Υολογισμός του f () d Βσιζόμενος σε Ιδιότητες Ή στην Αρχική της f, η οοί Βρίσκετι ό Κνόνες Πργώγισης) Ν υολογίσετε το ολοκλήρωμ ( + ) d (Θέμ Β) Άσκηση (Υολογισμός του f () d

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑΤΑ (των οποίων πρέπει να ξέρουμε & τις αποδείξεις) από το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου

ΘΕΩΡΗΜΑΤΑ (των οποίων πρέπει να ξέρουμε & τις αποδείξεις) από το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου Θεωρήμτ θετικής-τεχολογικής κτεύθυσης ΘΕΩΡΗΜΑΤΑ (τω οποίω πρέπει ξέρουμε & τις ποδείξεις πό το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου υ υ όπου υ το υπόλοιπο της διίρεσης του με

Διαβάστε περισσότερα

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων : π α) f() = + ηµ β) g() = + συν( ) 6 π π γ) f() = ηµ( ) δ) g() = συν( ) Να γίνει η µελέτη και η γραφική παράσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Στθερές. π = 03,459 6535 89793 3846 643... e = 0,788 884 59045 3536 087... e π = 3,4069 637 7969 006... π e =,4595 7783 6045 4734 75... e e = 5,546 44 7964 90... = 0,44 3563 73095

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 3ο Κεφάλαιο - Τριγωνομετρία - Βασικές τριγωνομετρικές ταυτότητες. , να βρεθούν

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 3ο Κεφάλαιο - Τριγωνομετρία - Βασικές τριγωνομετρικές ταυτότητες. , να βρεθούν ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Κ Ε Φ Α Λ Α Ι Ο 3ο - Φ Υ Λ Λ Ο Νο ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ. Αν 3 και < x < 3, να βρεθούν οι ΠΡΟΣΟΧΗ : Βασικές Τριγωνομετρικές Ταυτότητες

Διαβάστε περισσότερα

( ) Λ αφού αν διαιρέσουμε με το 2 τους όρους του 2 ης εξίσωσης το σύστημα γίνεται Ρ =

( ) Λ αφού αν διαιρέσουμε με το 2 τους όρους του 2 ης εξίσωσης το σύστημα γίνεται Ρ = 17 ο Γενικό Λύκειο Αθηνών Σχολικό έτος 01-015 ΤΑΞΗ:B' Λυκείου ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΑΛΓΕΒΡΑ :Αθήνα 8-6-015 ΘΕΜΑ 1ο Α. Nα αοδείξετε ότι αν ένα ολυώνυμο

Διαβάστε περισσότερα

Κλασικός Ορισμός Πιθανοτήτας. Κανόνες Λογισμού των Πιθανοτήτων

Κλασικός Ορισμός Πιθανοτήτας. Κανόνες Λογισμού των Πιθανοτήτων P(A) Κλσικός Ορισός Πιθοτήτς Πλήθος Ευοϊκώ Περιπτώσεω Πλήθος Δυτώ Περιπτώσεω P(Ω) = Ρ() = 0 Γι κάθε εδεχόεο Α ισχύει: 0 Ρ(Α) Ν(Α) Ν(Ω) Κόες Λογισού τω Πιθοτήτω Γι συίστ / ξέ εδεχόε:. Ρ(ΑΒ) = Ρ(Α) + Ρ(Β)

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ Επιμέλει - Κ Μυλωάκης Ν δείξετε ότι: ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ i γ δi γ δ δ γ i Γι το πολλπλσισμό δύο μιγδικώ i κι γ δi έχουμε: i γ δi γ δi i γ δi γ δi γi i δi γ δi γi δi γ δi γi δ γ δ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016 ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 06 version -6-06 Παρακάτω υπάρχουν θέματα θεωρίας και ασκήσεις που καλύπτουν πιστεύω σε μεγάλο βαθμό την εξεταστέα ύλη. Εχουν στόχο να μας βοηθήσουν να θυμηθούμε την

Διαβάστε περισσότερα

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1 ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

ν παραγοντες 1 ( ) β β α β α α α γ + β γ = α+ γ γ

ν παραγοντες 1 ( ) β β α β α α α γ + β γ = α+ γ γ B ΓΥΜΝΑΣΙΟΥ υάµεις Ορισµός =... πργοτες 1 = = 1µε Ιδιότητες µ = µ : = µ ( ) = = = ( ) µ µ + µ = µε µε, Αλγερικές πρστάσεις Επιµεριστική ιδιότητ γωγή οµοίω όρω. γ + γ = + γ ( ) Χρήσιµες ιδιότητες τω πράξεω

Διαβάστε περισσότερα

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αποδείξεις Θεωρίς Γ Λυκείου Κτεύθυσης Θέμ 1 ο [σελ 167 σχ. Βιβλίου] P 1 Έστω το πολυώυμο Έχουμε 1 1 1 lim P lim... AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα Θέμ: Ολοκληρώμτ Υολογισμός ολοκληρωμάτων Μέθοδοι ολοκλήρωσης Εμβδά Η συνάρτηση ου ορίζετι ό ολοκλήρωμ Ενλητικές σκήσεις ολοκληρωμάτων ΥΠΟΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΜΕ ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη.

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη. ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Δυνάμεις με ρητό ή άρρητο εκέτη. Με την οήει των ορίων κι των δυνάμεων με ρητό εκέτη ορίζετι κι η δύνμη, με > 0 κι. Ισχύουν κι σε υτή την περίπτωση

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Τι οομάζετι πληθυσμός μις σττιστικής έρευς; Οομάζετι το σύολο τω τικειμέω (έμψυχω ή άψυχω γι τ οποί συλλέγοτι στοιχεί.. Τι οομάζετι άτομο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ (1) Να ανάγετε τους πιο κάτω τριγωνομετρικούς αριθμούς σε τριγωνομετρικούς αριθμούς οξειών γωνιών: α) 160 β) 135 γ) 150 δ) ( 120

ΑΣΚΗΣΕΙΣ (1) Να ανάγετε τους πιο κάτω τριγωνομετρικούς αριθμούς σε τριγωνομετρικούς αριθμούς οξειών γωνιών: α) 160 β) 135 γ) 150 δ) ( 120 ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΝΑΓΩΓΗ ΣΤΟ 1 ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΜΝΗΜΟΝΙΚΟΣ ΚΑΝΟΝΑΣ 1. Χωρίς να λάβουμε υπόψη το πρόσημο: Αν οι δυο γωνιές έουν άθροισμα ή διαφορά, 18, 6 μοίρες τότε ο τριγωνομετρικός αριθμός δεν αλλάζει: ημ

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Πράδειγμ. Ν υολογισθούν τ ορισμέν ολοκληρώμτ: ΘΕΜΑ Β i. ii. (

Διαβάστε περισσότερα

ΠΩΣ; Το «σωσίβιό» σου στον ωκεανό της Γ Λυκείου! ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ ΑΝΑΝΕΩΜΕΝΗ ΣΥΜΠΕΠΛΗΡΩΜΕΝΗ ΕΚΔΟΣΗ!

ΠΩΣ; Το «σωσίβιό» σου στον ωκεανό της Γ Λυκείου! ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ ΑΝΑΝΕΩΜΕΝΗ ΣΥΜΠΕΠΛΗΡΩΜΕΝΗ ΕΚΔΟΣΗ! ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ Καθηγητής Μαθηµατικών άμιλλα φροντιστήρια ΠΩΣ; Βασικά στοιχεία από την Άλγεβρα της Α και Β Λυκείου, αλλά και από την Κατεύθυνση της Β Λυκείου, που είναι απαραίτητα στα Μαθηµατικά Κατεύθυνσης

Διαβάστε περισσότερα

απέναντι ) έτσι ώστε ο άξονα Ox να είναι η

απέναντι ) έτσι ώστε ο άξονα Ox να είναι η ΤΡΙΓΩΝΜΕΤΡΙΑ - 5 - ΚΕΦΑΛΑΙ 5 ΚΕΦΑΛΑΙ 5 ΤΡΙΓΩΝΜΕΤΡΙΑ 6.. Τριγνµετρικί ριθµί. ρισµός τυς σε ρθγώνι τρίγν ρίζ ηµβ= Β= Β= σφβ= β ένντικάθετη υτείνυσ γ ρσκείµενη κάθετη υτείνυσ β ένντικάθετη γ ρσκείµενη κάθετη

Διαβάστε περισσότερα

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ρρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλει: Οµάδ Μθηµτικώ της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ευτέρ, 7 Μ ου Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω f μι συεχής συάρτηση σε έ διάστημ [, β]. Α G είι μι πράγουσ

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΠΑΡΑΓΟΥΣΑ ΑΣΚΗΣΕΙΣ Ν ρείτε τις ράγουσες F των ρκάτω συνρτήσεων ( ) = ( +) ( -) log ( -) γ ( ) = ( +) ( - ) +, > ln( -) ln( -) ( ) = + 5, > δ ( ) = 5 +, > Ν ρείτε

Διαβάστε περισσότερα

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί α) (Κατακόρυφη ασύμπτωτη) Αν ένα τουλάχιστον απ' τα όρια f(), o o λέγεται κατακόρυφη ασύμπτωτη της C f. f() είναι +, ή -, τότε η ευθεία o β) (Οριζόντια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ:..4 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Ν υολογίσετε το ολοκλήρωμ ( + ) d. Εειδή ( ) ( + ) =

Διαβάστε περισσότερα

Θεωρήματα και προτάσεις με τις αποδείξεις τους

Θεωρήματα και προτάσεις με τις αποδείξεις τους Θεωρήμτ κι προτάσεις με τις ποδείξεις τους Μιγδικοί Ιδιότητες συζυγώ: Α i κι i δ γ είι δυο μιγδικοί ριθμοί, τότε: 3 4 Αποδεικύοτι με εφρμογή του ορισμού κι πράξεις Γι πράδειγμ έχουμε: i δ γ δi γ i i i

Διαβάστε περισσότερα

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =

Διαβάστε περισσότερα

1.06 Δίνεται ένα σύστημα (Σ) 2 γραμμικών

1.06 Δίνεται ένα σύστημα (Σ) 2 γραμμικών ΣΥΣΤΗΜΑΤΑ λ y λ.0 Δίνεται τ σύστημα:, λy λ λ R. Να υλγίσετε τις τιμές τυ λ ώστε για τη λύση τυ συστήματς (,y) να ισχύει y 0.0 Δίνεται η συνάρτηση : αν 0 f() με λ R λ αν 0 Να βρεθύν ι τιμές τυ λ ώστε f(0)

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΑΛΓΕΒΡΑΣ... ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑ 1 Ο

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΑΛΓΕΒΡΑΣ... ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑ 1 Ο Αµυραδάκη, Νίκαια (1-493576) ΙΑΝΟΥΑΡΙΟΣ 1 Α1. Έστω P(x) ένα πολυώνυµο του x και p ένας πραγµατικός αριθµός. Αν π(χ) είναι το πηλίκο και υ(x) το υπόλοιπο της διαίρεσης του πολυωνύµου P(x) µε το πολυώνυµο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα Ορισμό ΚΕΦΑΛΑΙΟ Αόριστ & Ορισμέν Ολκλήρωμ Αρχική-Πράγυσ Πράγυσ ή Αρχική ή Αντιπράγωγ μι συνάρτηση f, σε έν διάστημ Δ νμάζετι η πργωγίσιμη συνάρτηση F γι την πί ισχύει F ( ) = f ( ) γι κάθε Ξ D π.χ. π.χ.

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α + + i = βi () β + αi α) Να αποδείξετε ότι ο δεν είναι πραγµατικός αριθµός. β) Να αποδείξετε

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Ασκήσεις Τριγωνοµετρικοί Αριθµοί

Ασκήσεις Τριγωνοµετρικοί Αριθµοί Ασκήσεις Τριγωνοµετρικοί Αριθµοί. Σε ορθογώνιο τρίγωνο ΑΒΓ ( Â =90 ο ) φέρουµε το ύψος Α. Ν.δ.ο. Γ ηµβ σφγ =. ΑΒ. Να υολογίσετε τους τριγωνοµετρικούς αριθµούς της γωνίας 5 ο. 3. Να υολογίσετε τους τριγωνοµετρικούς

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου ογελ ΣΥΚΕΩΝ ο ΓΕΛ ογελ ΣΥΚΕΩΝ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου ΣΧΟΛΙΚΟ ΕΤΟΣ 3-4 ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ Ειμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

x R, να δείξετε ότι: i)

x R, να δείξετε ότι: i) ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι

Διαβάστε περισσότερα

1.5 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ

1.5 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 57 5 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ Όριο κι διάτξη Γι το όριο κι τη διάτξη οδεικύετι ότι ισχύου τ ρκάτω θεωρήμτ ΘΕΩΡΗΜΑ ο Α >, τότε > κοτά στο Σχ 8 Α

Διαβάστε περισσότερα

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017 Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017 Α Λυκείου Γεωμετρία Κεφάλαιο 3 3.1 Είδη και στοιχεία τριγώνων 3.2 1 ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.3 2 ο Κριτήριο ισότητας

Διαβάστε περισσότερα

[ ] ( ) [( ) ] ( ) υ

[ ] ( ) [( ) ] ( ) υ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ) Α Θέτω στη συάρτηση ι οπότε έχω () ( ) Η εξίσωση γίετι η Α η Α δε ισχύει η Α ι ( ) ( ) ( ) τότε ( ) [ ] ( ) Διρίω τις περιπτώσεις άρ δε ισχύει τότε ( ) άρ

Διαβάστε περισσότερα

( ) ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ 2 = ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. 1) Να βρεθεί το Π.Ο.

( ) ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ 2 = ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. 1) Να βρεθεί το Π.Ο. ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ 1) Να βρεθεί το Π.Ο. των συναρτήσεων : α) f ( ) β) f ( ) + 5 + 6 ln( + 1) γ) f ( ) δ) 1 f( ) 4 ) Να βρεθεί

Διαβάστε περισσότερα

ΤΖΕΜΠΕΛΙΚΟΥ ΚΑΤΕΡΙΝΑ ΜΑΘΗΜΑΤΙΚΟΣ

ΤΖΕΜΠΕΛΙΚΟΥ ΚΑΤΕΡΙΝΑ ΜΑΘΗΜΑΤΙΚΟΣ ΘΕΜΑ Α, είι µιγδικοί ριθµοί, τότε κι κι επειδή η τελευτί σχέση ισχύει, θ ισχύει κι η ισοδύη ρχικική. Αάλογ ποδεικύετι κι η δεύτερη ιδιότητ ΘΕΜΑ Όριο πολυωυµικής συάρτησης Α -... P πολυώυµο του κι R, δείξετε

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ klzxcvλοπbnαmqwertyuiopasdfghjklz ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ xcvbnmσγqwφertyuioσδφpγρaηsόρ

Διαβάστε περισσότερα

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31.

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31. 1 4 η δεκάδα θεµάτων επανάληψης 31. ίνονται οι συναρτήσεις f() = ln(e e + 3) και g() = ln3 + ln(e 1) i. Να βρείτε το πεδίο ορισµού τους. ii. Να βρείτε τα σηµεία τοµής των γραφικών παραστάσεων των f, g

Διαβάστε περισσότερα

4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ Στο δι λανό Έστω η συνάρτηση f(x) = l n Αν f( x) = x+ x + 1. Να α οδείξετε ότι

4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ Στο δι λανό Έστω η συνάρτηση f(x) = l n Αν f( x) = x+ x + 1. Να α οδείξετε ότι Γ Λυκείου - Θετική Τεχνολογική Κατεύθυνση ΣΥΝΑΡΤΗΣΕΙΣ 4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ 4. Έστω η συνάρτηση () l n A) Βρείτε το εδίο ορισµού της B) Λύστε την εξίσωση + Γ) Λύστε την ανίσωση < ) Να δείξετε ότι + ( ) συν

Διαβάστε περισσότερα

Περιορισμοί στο R. ln x,log. Β= ln Α Β Α Β Α. Σύνοψη γραφικών παραστάσεων

Περιορισμοί στο R. ln x,log. Β= ln Α Β Α Β Α. Σύνοψη γραφικών παραστάσεων στο R Πεδίο ορισμού συνάρτησης είναι η συναλήθευση των περιορισμών της συνάρτησης στο R, αν δεν έχει περιορισμούς λέμε ότι έχει πεδίο ορισμού το R. Όταν έχω πρέπει ν Α, Α Α Α Β Β ln Α, log Α Α> ln Β logα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α - Β ΛΥΚΕΙΟΥ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α - Β ΛΥΚΕΙΟΥ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ 1. Φυσικοί αριθμοί : Ν = {0,1,,3,4,...}. Ακέραιοι αριθμοί : Ζ = {...-4,-3,-,-1,0,1,,3,4,...} 3. Ρητοί αριθμοί : Q = { ì í, μ Ζ, ν Ζ* } Σημ. Το σύνολο Q των ρητών αριθμών ταυτίζεται με

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Βασικά σύνολα Í,,,L Σύνολο φυσικών: { } Σύνολο ακεραίων: Æ { L,,,,,, L} Σύνολο ρητών: Q ê / ê Æ, ë Æ * ë Άρρητος λέγεται ένας αριθµός που δεν µπορεί να γραφτεί

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

3.4 Οι τριγωνομετρικές συναρτήσεις

3.4 Οι τριγωνομετρικές συναρτήσεις 3.4 Οι τριγωνομετρικές συναρτήσεις Περιοδικές συναρτήσεις Ορισμός Μια συνάρτηση f με εδίο ορισμού το Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ>0 τέτοιος ώστε για κάθε Α να ισχύει: ( T)A και

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για

Διαβάστε περισσότερα

2 3x 4 0, να υπολογίσετε χωρίς να λύσετε την

2 3x 4 0, να υπολογίσετε χωρίς να λύσετε την ΑΣΚΗΣΕΙΣ Α ΛΥΚΕΙΟΥ Κ.Κ. (θέματα προηγούμενων χρόνων) 1.Να υπολογίσετε τις τιμές των παραστάσεων : i. 16 81 6 3 ii. 64 64 64. Aν x1, xοι ρίζες της εξίσωσης x 3x 4 0, να υπολογίσετε χωρίς να λύσετε την εξίσωση,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 11: ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ 2.8: Κυρτότητα Σημεία Καμπής του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 11: ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ 2.8: Κυρτότητα Σημεία Καμπής του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ.8: Κυρτότητ Σημεί Κμής του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Δίνοντι οι συνρτήσεις f, g ορισμένες στο [, ]

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Περιοδικό ΕΥΚΛΕΙΔΗΣ Β E.M.E. (τεύχος 4) ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Κώστα Βακαλόουλου ΕΙΣΑΓΩΓΗ Αν κάοιος θέλει να άψει να φοβάται το κεφάλαιο της Τριγωνομετρίας, ρέει ν αοφασίσει να διαβάσει ροσεκτικά τους

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Τελευταία ενηµέρωση: Νοέµβριος 016) Ανέστης Τσοµίδης Κατερίνη Περιεχόµενα 1 Συστήµατα 1.1 Μη γραµµικά συστήµατα........................ Ιδιότητες συναρτήσεων 3.1 Μονοτονία,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 Ε_3.ΜλΓΑ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ /ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Τετάρτη 9 Απριλίου 07 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Απόδειξη (Σχολικό βιβλίο, σελίδα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

1. Υπάρχουν κανονικά πολύγωνα των οποίων οι εξωτερικές γωνίες είναι αµβλείες ; Απάντηση Ναι. Είναι το ισόπλευρο τρίγωνο

1. Υπάρχουν κανονικά πολύγωνα των οποίων οι εξωτερικές γωνίες είναι αµβλείες ; Απάντηση Ναι. Είναι το ισόπλευρο τρίγωνο .. Ασκήσεις σχολικού βιβλίου σελίδς 37 38 Ερωτήσεις Κτόησης. Υπάρχου κοικά πολύγω τω οποίω οι εξωτερικές γωίες είι βλείες ; Απάτηση Νι. Είι το ισόπλευρο τρίγωο. Ποιο είι το πόστη κοικού πολυγώου περιγεγρέου

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ Γι μθητές Β & Γ Λυκείου ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Πολλές συνρτήσεις μπορούν ν πρστθούν γρφικά, χωρίς τη

Διαβάστε περισσότερα

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 007 Σχ. Έτος 006-007 ΤΑΞΗ Γ ΘΕΩΡΙΑ 1. α.) Να συμπληρώσετε τις ταυτότητες : 3 ( α + β ) = ( β ) = α 3 3 3 β.) Να αποδείξετε

Διαβάστε περισσότερα

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ TΡΙΓΩΝΟΜΕΤΡΙΑ Τ ρ ι γ ω ν ο μ ε τ ρ ι κ ο ι Α ρ ι θ μ ο ι Ο ρ ι σ μ ο ι. Να δειχτει οτι α + α. Ποτε ισχυει το ισον; Ονομαζουμε ημx την τεταγμενη π/ του Μ (εντονο. Aν μπλε) α, β θετικοι, να συγκρινεται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα