που περιγράφεται από την σχέση:! R = -mk! v

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "που περιγράφεται από την σχέση:! R = -mk! v"

Transcript

1 Mικρό σώµα µάζας m βάλλεται από σηµείο Ο του οριζόντιου εδάφους κατακόρυφα προς τα άνω, µε ταχύτητα µέτρου v. Στην διάρκεια της κίνησής του το σώµα δέχεται από τον ατµοσφαιρι κό αέρα αντίσταση R, που περιγράφεται από την σχέση: R = -mk v όπου v η στιγµιαία ταχύτητα του σώµατος και k σταθερή θετική ποσό τητα. i) Eάν Τ α, Τ κ είναι ο χρόνος ανόδου και ο χρόνος καθόδου αντιστοί χως του σώµατος µέσα στον αέρα, να δείξετε τις σχέσεις: gt = v - kz max gt " = v' +kz max όπου v ' η ταχύτητα επανόδου του σώµατος στο σηµείο εκτόξευσής του Ο, z max η µέγιστη απόστασή του από αυτό και g η επιτάχυνση της βαρύτητας. ii) Eάν Τ ολ είναι ο ολικός χρόνος κίνησης του σώµατος µέχρις ότου επανέλθει στο έδαφος, να δείξετε την σχέση: 1 - e - kt " T " = gk g + kv ΛΥΣΗ: i) Το σώµα στην διάρκεια της κίνησής του δέχεται το βάρος του m g και την αντίσταση R του αέρα. Εφαρµόζοντας για το σώµα τον δεύτερο νόµο κίνησης του Νεύτωνα παίρνουµε την σχέση: m dv dv = -mg - R m dv = -g - kv dv = -g - k dz = -mg - mkv dv = -g - kdz (1) όπου v η ταχύτητα του σώµατος την στιγµή t που το εξετάζουµε και z το διάνυαµα θέσεώς του ως προς το σηµείο εκτόξευσής του Ο. Ολοκληρώνοντας την (1) για τον χρόνο ανόδου Τ α του σώµατος παίρνουµε:

2 (dv) = -g () - k (dz) -v = -gt - kz max v T " z max gt = v - kz max () Εξάλλου ολοκληρώνοντας την (1) για τον συνολικό χρόνο Τ ολ κίνησης του σώµατος παίρνουµε: -v' Σχήµα 1 (dv) = -g () - k (dz) -v' -v = -gt " - k v T " () v' + v = g( T + T " ) v' + v = v - kz max + gt gt = v' +kz max (3) Οι () και (3) αποτελούν τις αποδεικτέες σχέσεις. ii) H διαφορική εξίσωση κίνησης του σώµατος µπορεί να πάρει την µορφή: dv = - ( g + kv ) dv g + kv Ολοκληρώνοντας την (4) παίρνουµε: d( g + kv) = - g + kv = -k (4) ln( g + kv) = -kt + C (5) Η σταθερά ολοκληρώσεως C θα βρεθεί από την αρχική συνθήκη v()=v κίνησης του σώµατος, οπότε η (5) δίνει ln(g+kv )=C µε αποτέλεσµα να γράφεται: ln( g + kv) = -kt + ln( g + kv ) ln g + kv = -kt " g + kv

3 g + kv g + kv = e -kt g + kv = ( g + kv )e -kt (6) Για t=t ολ ισχύει v=-v και η (6) δίνει: g - kv' = ( g + kv )e -kt " Όµως πιο πάνω αποδείχθηκε ότι: v' + v = gt " οπότε η προηγούµενη σχέση γράφεται: g - k( gt " - v ) = ( g + kv )e -kt " g - kgt " + kv = ( g + kv )e - kt " g + kv - ( g + kv )e - kt " = kgt " ( g + kv ) 1 - e - kt " ( ) = kgt " 1 - e- kt " = T " gk g + kv (7) H (7) είναι µια υπερβατική εξίσωση ως προς Τ ολ και δεν µπορεί να λυθεί µε ανα λυτικό τρόπο, αλλά µόνο µε αριθµητική µέθοδο µέσω κατάλληλου µαθηµατι κού προγράµµατος που τρέχει σε ηλεκτρονικό υπολογιστή. P.M. fysikos Ένα µικρό σώµα µάζας m, εκτοξεύεται κατακόρυ φα προς τα πάνω από το οριζόντιο έδαφος, µε ταχύτητα µέτρου v. Kατά την κίνησή του το σώµα δέχεται από τον ατµοσφαιρικό αέρα δύναµη R, αντίρροπη της ταχύτητάς του v, της οποίας το µέτρο έχει την µορφή R=kmv, όπου k θετική και σταθερή ποσότητα. i) Nα δείξετε, ότι η µέγιστη απόσταση h max του σώµατος από το έδα φος δίνεται από την σχέση: z max = 1 k ln 1 + kv " g όπου g η επιτάχυνση της βαρύτητας. ii) Εάν ισχύει v <<g/k να δείξετε την σχέση:

4 h h max 1 + kh όπου h η µέγιστη απόσταση του σώµατος από το έδαφος, απουσία ατµοσφαιρικού αέρα. Υπόδειξη: Nα χρησιµοποιήσετε την προσεγγιστική σχέση: ln(1 + x) x - x /, όταν x<<1 ΛΥΣΗ: i) Eφαρµόζοντας για το σώµα κατά την άνοδό του, τον δεύτερο νόµο κίνησης του Νεύτωνα, έχουµε: m dv = -mg - kmv dv = -g - kv dv dz dz d( g + kv ) dz = -g - kv v dv dz = - ( g + ) kv ( ) d ( g + ) kv = -k g + kv g + kv = -kdz (1) Σχήµα όπου v η ταχύτητα του σώµατος την στιγµή t που το εξετάζουµε και z το αντίστοιχο διάνυσµα θέσεώς του ως προς το σηµείο εκτόξευσης Ο. Ολοκληρώ νοντας την (1) παίρνουµε: ln( g + kv ) = -kz + C () Η σταθερά ολοκληρώσεως C θα υπολογισθεί µε βάση τις αρχικές συνθήκες κίνησης v()=v και z()= του σώµατος, οπότε θα έχουµε: ln( g + kv ) = - + C

5 Έτσι η σχέση () γράφεται: ln( g + kv ) = -kz + ln( g + kv ) ln g + kv = -kz (3) " g + kv Όµως την χρονική στιγµή που το σώµα φθάνει στην ανώτατη θέση του Α (z=z max ), η ταχύτητά του µηδενίζεται και η (3) την στιγµή αυτή δίνει: g ln " g + kv = -kz ln g + kv max " g = kz max z max = 1 k ln g + kv " g z max = 1 k ln 1 + kv " g (4) ii) Στην περίπτωση που ισχύει v <<g/k, µε βάση την υπόδειξη θα έχουµε: ln 1 + kv " g ' kv g - 1 " kv g ' kv g 1 - kv " g και η (4) παίρνει την µορφή: z max kv kg 1 - kv " g ' v g 1 - k v " g ' (5) Όµως η ποσότητα v /g αποτελεί την µέγιστη απόσταση h του σώµατος από το έδαφος απουσία ατµοσφαιρικού αέρα, οπότε η (5) γράφεται: z max h 1 - kh ( ) z max h 1 - kh ( )( 1 + kh ) z max h 1 - k ( h ) z 1 + kh max h 1 + kh 1 + kh διότι: v <<g/k ή v <<g/k ή v /g<<1/k ή h <<1/k ή h k<<1 P.M. fysikos Στο ένα άκρο οµογενούς αλυσίδας µήκους L, έχει δεθεί µικρό σφαιρίδιο της ίδιας µάζας m µε την αλυσίδα (σχ. 3). H αλυσίδα είναι σωριασµένη στο οριζόντιο έδαφος και κάποια στιγµή το σφαιρίδιο εκτοξεύεται κατακόρυφα προς τα πάνω µε αρχική ταχύτη τα v.

6 i) Nα βρεθεί το µέτρο της v, ώστε την στιγµή που η αλυσίδα εγκατα λείπει το οριζόντιο έδαφος να µηδενίζεται η ταχύτητά της. ii) Ποια είναι η ταχύτητα του σφαιριδίου την στιγµή που αυτό απέχει από το οριζόντιο έδαφος απόσταση L/; Δίνεται η επιτάχυνση g της βαρύτητας. ΛΥΣΗ: i) Το αιωρούµενο τµήµα της αλυσίδας και το σφαιρίδιο αποτελεί σύστηµα στο οποίο εισρέει µάζα, οπότε η διαφορική εξίσωση που καθορίζει την κίνησή του έχει την µορφή: (m + m x ) d v = (m + m ) x g + v dm " (1) όπου m x η µάζα του αιωρούµενου τµήµατος της αλυσίδας την στιγµή t που εξετάζουµε το σύστηµα, v η αντίστοιχη ταχύτητα του σφαιριδίου και της αλυσίδας στο σύστηµα αναφοράς του εδάφους, dm/ ο ρυθµός µε τον οποίο εισρέει µάζα στο σύστηµα και v " η σχετική ταχύτητα της µάζας αυτής ως προς Σχήµα 3 την αλυσίδα. Όµως κάθε κρίκος προστίθεται στην αλυσίδα εκ της ηρεµίας, οπότε ισχύει v " = - v η δε µάζα m x είναι ίση µε µx, όπου x το µήκος του αιω ρούµενου τµήµατος την χρονική στιγµή t και µ η γραµµική πυκνότητα της αλυσίδας.. Έτσι η (1) γράφεται: (m + µx) d v = (m + µx) g - µ dx v () Θεωρώντας ως θετική φορά στην κατακόρυφη διεύθυνση κίνησης του συστήµα τος την προς τα πάνω, η () µετατρέπεται σε σχέση αλγεβρικών τιµών που έχει την µορφή: (m + µx) dv = -(m + µx)g - µ dx v (m + µx) dv = -(m + µx)g - µv (3) Εξάλλου ισχύει =dx/v, οπότε η (3) γράφεται:

7 (m + µx)vdv = -(m + µx)gdx - µv dx (m + µx) vdv + µ (m + µx)v dx = -(m + µx) gdx (m + µx)v [(m + µx)dv + µvdx] = -(m + µx) gdx (m + µx)vd [(m + µx)v ] = -(m + µx) gdx (4) Ολοκληρώνοντας την (4) παίρνουµε: (m + µx) v = -g(m + µx)3 + C (5) H σταθερά ολοκληρώσεως C θα προκύψει από τις αρχικές συνθήκες x()= και v()=v, οπότε η (5) δίνει: m v = -gm3 + C C = m v + gm3 και η (5) γράφεται: (m + µx) v = -g(m + µx)3 + m v + gm3 (6) Όµως θέλουµε την στιγµή που η αλυσίδα εγκαταλείπει το έδαφος η ταχύτητα της να µηδενίζεται, οπότε η (6) την στιγµή αυτή παίρνει την µορφή: = -g(m + µl)3 + m v + gm3 m v = g(m + m)3 + gm3 v = 8gm + gm = 9gm v = 3gL v = 6gL (7) ii) H σχέση (6) εφαρµοζόµενη την χρονική στιγµή που ισχύει x=l/, δίνει: (m + µl/) v = -g(m + µl/)3 + m v + gm3

8 (3m) v 8 = -g(3m)3 4µ + m v + gm3 (7) 9v 8 = -7mg 4µ + 6gL + gm 9v 8 = -9gL 8 + 6gL + gl 3 7v = -7gL + 7gL + 8gL v= 53gL/ 7 P.M. fysikos Μια πλαστική σφαίρα αµελητέας µάζας περιέχει πεπιεσµένο αέρα µάζας Μ και κινείται επί λείου οριζόντιου δαπέδου κατά µήκος ενός άξονα x µε ταχύτητα v. Η σφαίρα φέρει κατάλληλο µηχανισµό, ο οποίος όταν ενεργοποιηθεί προκαλεί το άνοιγµα στην επιφάνεια της σφαίρας µιας µικρής οπής, από την οποία εκτοξεύεται αέρας µε σταθερό ρυθµό dμ/=λ. Την χρονική στιγµή t= που ανοί γει η οπή ο αέρας εκτοξεύεται µε ταχύτητα v, της οποίας ο φορέας είναι οριζόντιος αλλά και κάθετος προς τον άξονα x, στην συνέχεια δε διατηρείται σταθερή. Nα βρεθούν οι εξισώσεις της x-συνιστώσας και της κάθετης προς αυτήν συνιστώσας της ταχύτητας της σφαίρας, σε συνάρτηση µε τον χρόνο. ΛΥΣΗ: Από τo σύστηµα πλαστική σφαίρα-πεπιεσµένος αέρας εκκρέει µάζα, οπότε η διαφορική εξίσωση που καθορίζει την κίνησή του έχει την µορφή: M d v = F " + v dm M d v = v dm " όπου Μ η µάζα του συστήµατος την στιγµή t που το εξετάζουµε, v η αντίστοι χη ταχύτητα του κέντρου µάζας του στο σύστηµα αναφοράς του οριζόντιου δα πέδου και v " η σχετική ταχύτητα του εκτοξευόµενου αέρα ως προς την πλα στική σφαίρα, ενώ η συνισταµένη F " των εξωτερικών δυνάµεων που δέχεται το σύστηµα από το περιβάλλον του είναι µηδέν (το βάρος του συστήµατος εξου δετερώνεται από την αντίδραση του λείου οριζόντιου δαπέδου). Όµως για την v " ισχύει v " = v - v, οπότε η (1) γράφεται: (1) M d v + v dm = v M d v i + v x j y dm ( ) + ( v x i + v y j ) dm = v dm j M dv x + dm v x i + M dv y " + dm v - dm y v = ' j = "

9 και M dv x + dm v x = () M dv y + dm v y = dm v (3) όπου v x, v y οι συνιστώσες της v κατά τις διευθύνσεις των ορθογώνιων αξόνων Οx, Οy αντιστοίχως και i, j τα αντίστοιχα µοναδιαία διανύσµατά των αξόνων αυτών. Η διαφορική εξίσωση () µετασχηµατίζεται ως εξής: Mdv x + v x dm = d( Mv x ) = Mv x = C x (4) H σταθερά ολοκληρώσεως C x θα προκύψει από τις αρχικές συνθήκες Μ()=Μ και v x ()=v, οπότε η (4) δίνει: M v = C x µε αποτέλεσµα να γράφεται: Mv x = M v v x = M v / M v x = v M M - t µε t M /" (5) Εξάλλου η διαφορική εξίσωση (3) γράφεται: Mdv y + v y dm = v dm d( Mv y ) = d( Mv ) Mv y = Mv + C y (6) H σταθερά ολοκληρώσεως C y θα προκύψει από τις αρχικές συνθήκες Μ()=Μ και v y ()=, οπότε η (4) δίνει: = M v + C y C y = -M v και η (6) παίρνει την µορφή: Mv y = Mv - M v = ( M - M )v v y = M - M v " M ' = M - (t - M v " M - (t ' v y = -tv " M - t µε t M /" (7) P.M. fysikos

10 Ένα σχοινί αµελητέας µάζας περιβάλλει το αυλάκι σταθερής τροχαλίας, η οποία µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το κέντρο της. Eάν φ είναι η γωνία υπό την οποία φαίνεται εκ του κέντρου της τροχαλίας το τµήµα του σχοινιού που είναι σ επαφή µε την τροχαλία και µ ο συντελεστής οριακής τριβής ανάµεσα στο σχοινί και την τροχαλία, να δείξετε ότι για να ισορροπεί η τροχαλία πρέπει τα µέτρα των τάσεων F 1 και F του σχοι νιού να ικανοποιούν την σχέση: e - µ F /F 1 e µ ΛYΣH: Θεωρούµε ένα στοιχειώδες τµήµα του σχοινιού που περιβάλλει τον λαιµό της τροχαλίας, το οποίο φαίνεται εκ του κέντρου της υπό την στοιχειώ δη γωνία dφ (σχ. 4). Tο τµήµα αυτό δέχεται τις δυνάµεις F και F + d F στις άκρες του από τα εκατέρωθεν αυτού µέρη του σχοινιού, οι οποίες είναι εφαπτο Σχήµα 4 µενικές της τροχαλίας και την δύναµη επαφής από την τροχαλία, η οποία ανα λύεται στην εφαπτοµενική τριβή d T και στην κάθετη αντίδραση d N, της οποίας ο φορέας διέρχεται από το κέντρο της τροχαλίας. Λόγω της ισορροπίας του στοιχειώδους τµήµατος, κατά την διεύθυνση της εφαπτοµένης στο µέσον του θα ισχύει: (F + df)"(d/) - F "(d/) +dt = F + df - F +dt = df = dt (1) Η (1) πρέπει να ισχύει και στην περίπτωση οριακής ισορροπίας του σχοινιού, δηλαδή όταν επίκειται η ολίσθησή του στο αυλάκι της τροχαλίας και τότε η (1) παίρνει την µορφή: df = µ dn () Eξάλλου η ισορροπία του στοιχειώδους τµήµατος που εξετάζουµε, κατά την κά θετη επί την εφαπτοµένη διεύθυνση, µας επιτρέπει να γράψουµε την σχέση: (F + df)µ(d"/) + F µ(d"/) - dn =

11 Fd/ + df d/ + F d/ = dn Όµως το γινόµενο df.dφ/ είναι διαφορικό δεύτερης τάξεως και µπορεί να παραλειφθεί, οπότε θα έχουµε: Fdφ = dν (3) Συνδυάζοντας τις σχέσεις (1) και (3) παίρνουµε: df = µfdφ df/f = µdφ (4) Oλοκληρώνοντας την (4) έχουµε: F (df/f) = (µd) ln(f /F 1 ) = µ F 1 F /F 1 = e µ F = F 1 e µ (5) H σχέση (5) ισχύει όταν η τροχαλία ισορροπεί οριακά µε τάση να στραφεί δεξιό στροφα, οπότε F >F 1. Aν η τροχαλία ισορροπεί οριακά µε τάση να στραφεί αρι στερόστροφα, τότε F <F 1 και η αντίστοιχη σχέση είναι: F 1 = F e n F = F 1 e -n Άρα για να ισορροπεί η τροχαλία πρέπει να ισχύει: e -n F /F 1 " e n (6) Παρατήρηση: Eάν το σχοινί που περιβάλλει το αυλάκι της τροχαλίας έχει αµελητέα µάζα και η τροχαλία περιστρέφεται µε µεταβαλλόµενη εν γένει γωνιακή ταχύτητα, τότε κάθε στοιχειώδες τµήµα του σχοινιού θα έχει επιτρόχια και κεντροµόλο επιτά χυνση. Όµως ο δευτερος νόµος κίνησης του Νευτωνα εφαρµοζόµενος για το στοιχειώδες τµήµα κατά την διευθύνση της εφαπτοµένης και κατά την διεύ θυνση της ακτίνας της τροχαλίας θα δίνει, λόγω της σχεδόν µηδενικής µάζας του, τις ίδιες διαφορικές εξισώσεις, όπως και στην περίπτωση της ισορροπίας της τροχαλίας αρκεί το σχοινί να µην ολισθαίνει. Αυτό σηµαίνει ότι η σχέση (5) ισχύει και στην περίπτωση που η τροχαλία περιστρέφεται, αρκεί το σχοινί που περιβάλλει το αυλάκι της να µη ολισθαίνει κατά µήκος αυτού και να έχει αµε λητέα µάζα. P.M. fysikos H ράβδος AΓ του σχήµατος (5) είναι οµογενής µε βάρος w 1 και µπορεί να στρέφεται περί το αρθρωµένο άκρο της Γ. Tο οριζόντιο αβαρές σχοινί που συγκρατεί την ράβδο υπό κλίση φ=π/4 ως προς την οριζόντια διεύθυνση περιβάλλει το αυλάκι µιάς σταθερής τροχαλίας, η οποία µπορεί να στρέφεται περί οριζόντιο άξονα που

12 διέρχεται από το κέντρο της. Eάν το τµήµα του σχοινιού που είναι σε επαφή µε το αυλάκι της τροχαλίας φαίνεται από το κέντρο της υπο γωνία π/ και ο συνστελεστής οριακής τριβής ανάµεσα στο σχοινί και την τροχαλία είναι µ, µε µπ<<1, να δείξετε ότι το σύστηµα ισορροπεί εφ όσον ισχύει η σχέση: w 1 " 1 - n ' ( w ( w 1 " 1 + n ' 4 4 ΛYΣH: Στην ράβδο ΑΓ ενεργεί το βάρος της w 1, η τάση T του οριζόντιου σχοι νιού που την συγκρατεί και η αντίδραση της αρθρώσεως, της οποίας ο φορέας διέρχεται από το άκρο Γ της ράβδου (σχ. 5). Λόγω της ισορροπίας της ράβδου το άθροισµα των ροπών των τριών αυτών δυνάµεων περί το άκρο της Γ είναι ίσο µε µηδέν, δηλαδή έχουµε την σχέση: " ( ) = TLµ" - w 1 (L/ )" = Tµ (" / 4) = (w 1 / )(" / 4) T = w 1 / (1) Σχήµα 5 Όµως ισχύει Τ=Τ 1, όπου T 1 η τάση του οριζόντιου σχοινιού στο σηµείο επαφής του µε την τροχαλία, οπότε η (1) γράφεται: T 1 = w 1 / () Εξάλλου η ισορροπία του σώµατος Σ και το γεγονός ότι το σχοινί είναι αβαρές εξασφαλίζουν ότι η τάση T του κατακόρυφου κλάδου του σχοινιού που συγκ ρατεί το σώµα είναι ίση µε το βάρος w του σώµατος, δηλαδή ισχύει Τ =w. Όµως στην προηγούµενη άσκηση αποδείχθηκε η σχέση: e -µ / " T1 T () " e µ / e -µ / " w1 w " e µ / e -µ / " w1 w " e µ / w1 e-µ / " w " w1 eµ / (3) Τα αναπτύγµατα κατά Taylor των εκθετικών όρων e µ / και e -µ / επιτρέπουν τις σχέσεις:

13 και e µ / = " 1 e -µ / = 1-1 " 1 µ µ ' + 1 " ' + 1 " µ µ ' ' οι οποίες λόγω της δεδοµένης συνθήκης µπ<<1, προσεγγιστικά γράφωνται: e µ / " 1 + µ / και e -µ / " 1 - µ / Έτσι η (1) παίρνει την µορφή: w 1 4 " 1 - µ ' ( w ( w 1 " 1 + µ ' 4 που αποτελεί και την αποδεικτέα σχέση. P.M. fysikos Στην διάταξη του σχήµατος (6) οι άκρες του σχοινιού που περιβάλλει το αυλάκι της σταθερής τροχαλίας συν δέονται µε τα σώµατα Σ 1 και Σ, που έχουν αντίστοιχες µάζες m 1 και m. Το σώµα Σ µπορεί να ολισθαίνει πάνω σε οριζόντιο δάπεδο µε το οποίο πα ρουσιάζει συντελεστή οριακής τριβής µ, το δέ σχοινί θεωρείται αµελητέας µάζας. i) Εάν επίκειται η εκκίνηση του συστήµατος όταν m 1 /m =, να βρεθεί ο συντελεστής οριακής τριβής µεταξύ του σχοινιού και της τροχαλίας. ii) Eάν m 1 /m =4 ποια θα είναι η οριακή επιτάχυνση των δύο σωµάτων που επιτρέπει στο σχοινί να µη ολισθαίνει στο αυλάκι της τροχαλίας; Δίνεται η επιτάχυνση g της βαρύτητας. ΛYΣH: i) Όταν επίκειται η εκκίνηση του συστήµατος, τότε η τάση Q ' 1 του κατακόρυφου σκέλους του σχοινιού είναι ίση µε το βάρος m 1 g του σώµατος Σ 1 η δε τάση Q ' του οριζόντιου σκέλους ίση µε την οριακή τριβή T που δέχεται το σώµα Σ απο το δάπεδο. Επειδή στην περίπτωση αυτή η τροχαλία ισορροπεί οριακά, θα ισχύει σύµφωνα µε την 5η άσκηση η σχεση: Q' 1 = Q' e µ / m 1 g = µm ge µ / m = µm e µ / µ e µ / = µ = ln " µ ' µ = ln " µ ' (1)

14 όπου µ ο ζητούµενος συντελεστής οριακής τριβής µεταξύ σχοινιού-τροχαλίας. Σχήµα 6 ii) Έαν m 1 /m =4, τότε το σύστηµα θα βρίσκεται σε κίνηση και µάλιστα οι επι ταχύνσεις των δύο σωµάτων θα έχουν το ίδιο µέτρο. Με την προυπόθεση ότι το σχοινί δεν ολισθαίνει στο αυλάκι της τροχαλίας θα ισχύει και πάλι η σχέση: (1) Q' 1 = Q' e µ / Q' 1 = Q' e ln( / µ ) Q' 1 = Q' / µ () Eφαρµόζοντας για τα σώµατα Σ 1, Σ τον δεύτερο νόµο κίνησης του Νεύτωνα θα έχουµε τις σχέσεις: m 1 g - Q' 1 = m 1 a" Q' -T = m a () 4m g - Q' /µ = 4m a " Q' - µm g = m a (3) όπου a το κοινό µέτρο των επιταχύνσεων των δύο σωµάτων. Aπαλοίφοντας το Q µεταξύ των () παίρνουµε: 4m g - (m a +µm g)/µ = 4m a 4m g - µm g / µ = 4m a +µm a / µ g - g = a +a a = g / 3 P.M. fysikos

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1.

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1. Στην διάταξη του σχήµατος 1) οι τροχαλίες τ 1 και τ έχουν την ίδια µάζα Μ που θεωρείται συγκεντρωµένη στην περι φέρειά τους και την ίδια ακτίνα R. Στο αυλάκι της σταθερής τροχα λίας τ έχει περιτυλιχθεί

Διαβάστε περισσότερα

όπου y το µήκος του σχοινιού στο κατακόρυφο σκέλος του σωλήνα, v το κοινό µέτρο των ταχυτήτων v!

όπου y το µήκος του σχοινιού στο κατακόρυφο σκέλος του σωλήνα, v το κοινό µέτρο των ταχυτήτων v! Ένας σωλήνας µεγάλου µήκους έχει καµφθεί σε ορθή γωνία και είναι στερεωµένος, ώστε το ένα σκέλος του να είναι οριζόντιο και το άλλό κατακόρυφο, όπως φαίνεται στο σχήµα 1). Ένα σχοινί µήκους L, του οποίου

Διαβάστε περισσότερα

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες.

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες. Δύο πιθηκάκια της ίδιας µάζας αναρριχώνται εκ της ηρεµίας κατά µήκος των τµηµάτων του αβαρούς σχοινιού, που διέρχεται από τον λαιµό µιας σταθερής τροχαλίας (σχ. ). H τροχαλία έχει αµελητέα µάζα και µπορεί

Διαβάστε περισσότερα

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση.

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. i) Εάν Κ είναι το στιγµιαίο κέντρο περιστροφής του στερεού κάποια στιγµή και C η αντίστοιχη θέση του κέντρου µάζας

Διαβάστε περισσότερα

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T!

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T! Επί της κεκλιµένης έδρας µιας ορθογώνιας και ισοσκελούς σφήνας µάζας m, η οποία ισορροπεί πάνω σε οριζόντιο έδαφος, αφήνεται µικρός κύβος µάζας m. Μεταξύ του κύβου και της σφήνας δεν υπάρχει τριβή, ενώ

Διαβάστε περισσότερα

, της οποίας το µέτρο ικανοποιεί τη σχέση:

, της οποίας το µέτρο ικανοποιεί τη σχέση: Στην κορυφή της κεκλιµένης έδρας µιας ορθογώνιας σφήνας µάζας M, η οποία ισορροπεί πάνω σε λείο οριζόντιο έδαφος, αφήνεται µικ ρός κύβος µάζας m. Nα δείξετε ότι η σφήνα κινείται στο σύστη µα αναφοράς του

Διαβάστε περισσότερα

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L! Είναι γνωστό ότι, όταν ένα σώµα κινείται µέσα στο βαρυτικό πεδίο της Γης υπό την επίδραση µόνο της Νευτώνειας έλξεως, η τροχιά που διαγράφει το κέντρο µάζας του είναι επίπεδη και µάλιστα το επίπεδό της

Διαβάστε περισσότερα

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας Όταν εξετάζουµε ένα υλικό σύστηµα µεταβλητής µάζας, δηλαδή ένα σύστη µα που ανταλλάσσει µάζα µε το περιβάλλον του, τότε πρέπει να είµαστε πολύ

Διαβάστε περισσότερα

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος.

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος. H τροχαλία του σχήµατος () µάζας m και ακτίνας R, ισορροπεί εξαρτηµένη από τα νήµατα ΑΒ και ΓΔ τα οποία είναι ισο κεκλιµένα ως προς την οριζόντια διεύθυνση κατα γωνία φ. Κάποια στιγµή κόβουµε το νήµα ΑΒ

Διαβάστε περισσότερα

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή ταχύτητα µέτρου V 0 πάνω σε λείο οριζόντιο έδαφος κατευθυνόµενο προς κατακόρυφο τοίχο. Το σώµα κάποια στιγµή συγκρούεται ελα στικά και µετωπικά µε µια µπάλα

Διαβάστε περισσότερα

Ένα υλικό σηµείο εκτελεί επίπεδη καµπυλόγραµ µη κίνηση. Eάν T!

Ένα υλικό σηµείο εκτελεί επίπεδη καµπυλόγραµ µη κίνηση. Eάν T! Ένα υλικό σηµείο εκτελεί επίπεδη καµπυλόγραµ µη κίνηση. Eάν T είναι το µοναδιαίο διάνυσµα κατά την διεύθυνση της εφαπτοµένης της τροχιάς του σ ένα τυχαίο σηµείο M αυτής και R η ακτίνα καµπυλότητας της

Διαβάστε περισσότερα

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F! Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή

Διαβάστε περισσότερα

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N!

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N! Οµογενής συµπαγής κύβος ακµής α και µάζας m, ισορροπεί ακουµπώντας µε µια ακµή του σε κατακόρυφο τοίχο και µε µια του έδρα σε κεκλιµένο επίπεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, όπως φαίνεται στο

Διαβάστε περισσότερα

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως!

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως! Αβαρής ράβδος αποτελείται από δύο συνεχόµενα τµήµατα ΟΑ και ΑΒ που είναι ορθογώνια µεταξύ τους. Το άκρο Ο της ράβδου είναι αρθρωµένο σε οριζόντιο έδαφος το δε τµήµα της ΟΑ είναι κατακόρυφο και εφάπτεται

Διαβάστε περισσότερα

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10.

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας της εφαρµόζεται

Διαβάστε περισσότερα

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο

Διαβάστε περισσότερα

i) Nα εκφράσετε την ταχύτητα της αλυσίδας σε συνάρτηση µε το µή κος x του τµήµατος, που έχει εγκαταλείψει την πλάκα.

i) Nα εκφράσετε την ταχύτητα της αλυσίδας σε συνάρτηση µε το µή κος x του τµήµατος, που έχει εγκαταλείψει την πλάκα. Mια οµογενής αλυσίδα, γραµµικής πυκνότητας µ και µήκους L, είναι σωριασµένη πάνω σε οριζόντια πλάκα, η οποία φέρει µια οπή. Πλησιάζουµε το ένα άκρο της αλυσίδας στην οπή και φροντίζουµε να περάσει µέσα

Διαβάστε περισσότερα

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!!

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!! Οµογενής σφαίρα µάζας και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση βραχείας διάρκειας, της οποίας ο φορέας βρίσκε ται άνωθεν του κέντρου της

Διαβάστε περισσότερα

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και Οµογενής σφαίρα µάζας m και ακτίνας R είναι ακίνητη πάνω σε οριζόντιο δοκάρι µάζας Μ και µήκους L, που µπορεί να ολισθαίνει χωρίς τριβή επί οριζοντίου δαπέδου. Η σφαίρα εφάπτεται στο δεξιό άκρο Β του δοκαριού

Διαβάστε περισσότερα

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας.

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας. Στην διάταξη του σχήµατος () η ράβδος ΑΒ είναι οµογενής, έχει µήκος L και µπορεί να στρέφεται περί οριζόντιο άξο να, που διέρχεται από σηµείο Ο ευρισκόµενο σε απόσταση 3L/4 από το άκρο της Α. Η τροχαλία

Διαβάστε περισσότερα

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v!

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v! Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v C. Σε σηµείο της περιφέρειας του τροχου έχει αρθρωθεί το ένα άκρο Β µιας λεπτής

Διαβάστε περισσότερα

από την άρθρωση και της δύναµης επαφής από τον τοίχο που αναλύεται στην στατική τριβη T!

από την άρθρωση και της δύναµης επαφής από τον τοίχο που αναλύεται στην στατική τριβη T! Tο ένα άκρο A οµογενούς ράβδου AB αρθρώνεται σε οριζόντιο επίπεδο, ενώ το άλλο της άκρο Β εφάπτεται κατακόρυ φου τοίχου, µε τον οποίο η ράβδος παρουσιάζει συντελεστή οριακής τριβής µ. H άρθρωση της ράβδου

Διαβάστε περισσότερα

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

=-v και dm=µdx, όπου dx η αυξηση του µήκους x του αιωρούµενου τµήµατος µεταξύ των χρονικών στιγµών t και t+dt, οπότε η σχέση (1) γράφεται:

=-v και dm=µdx, όπου dx η αυξηση του µήκους x του αιωρούµενου τµήµατος µεταξύ των χρονικών στιγµών t και t+dt, οπότε η σχέση (1) γράφεται: Mια οµογενής αλυσίδα, γραµµικής πυκνότητας µ και µήκους L, είναι σωριασµένη πάνω σε οριζόντια πλάκα, η οποία φέρει µια οπή. Πλησιάζουµε το ένα άκρο της αλυσίδας στην οπή και φροντίζουµε να περάσει µέσα

Διαβάστε περισσότερα

) ω ω. L λίγο πριν. . Nα βρεθούν:

) ω ω. L λίγο πριν. . Nα βρεθούν: Δύο σφαιρίδια A, B µάζας m το καθένα συνδέονται µεταξύ τους µε αβαρές και µη εκτατό νήµα µήκους L, ηρεµούν δε πάνω σε οριζόντιο τραπέζι ευρισκόµενα σε απόσταση α

Διαβάστε περισσότερα

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w!

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w! Το κυκλικό σύρµα του σχήµατος έχει µάζα m/ και είναι κρεµασµένο από κατακόρυφο σπάγκο αµελητέας µάζας αλλά επαρκούς αντοχής. Δύο όµοιες σηµειακές χάντρες, καθε µιά µε µάζα m, αφήνονται ταυτόχρονα από την

Διαβάστε περισσότερα

ακτινικής διεύθυνσης και στην οριακή τριβή T!"

ακτινικής διεύθυνσης και στην οριακή τριβή T! Λεπτή κυκλική στεφάνη ακτίνας R και µάζας m, ισορρο πεί εφαπτόµενη σε δύο υποστηρίγµατα A και Γ, όπως φαίνεται στο σχήµα (1. Eάν ο συντελεστής οριακής τριβής µεταξύ της στεφάνης και των υποστη ριγµάτων

Διαβάστε περισσότερα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής

Διαβάστε περισσότερα

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση:

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση: Σώµα µάζας m σχήµατος ορθογώνιου κιβωτίου, ισορροπεί πάνω σε τραχύ οριζόντιο επίπεδο και στην άνω επιφάνειά του έχει τοποθετηθεί σώµα µάζας m/. Κάποια στιγµή που λαµβάνε ται ως αρχή µέτρησης του χρόνου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

H σταθερά ολοκληρώσεως C θα προκύψει από την αρχική συνθήκη, ότι για t=0 είναι v=0, οπότε η (2) δίνει: ) (3) m 1 - e- t/t

H σταθερά ολοκληρώσεως C θα προκύψει από την αρχική συνθήκη, ότι για t=0 είναι v=0, οπότε η (2) δίνει: ) (3) m 1 - e- t/t Υλικό σηµείο µάζας m βρίσκεται ακίνητο πάνω σε λείο οριζόντιο έδαφος στην θέση x= ιου άξονα Οx. Κάποια στιγµή επί του υλικού σηµείου εξασκείται δύναµη της µορφής: F = F e - t/t i όπου F, t θετικές και

Διαβάστε περισσότερα

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο. Το σύστηµα του σχήµατος αποτελείται από δύο όµοια ελατήρια στα θεράς και φυσικού µήκους α, των οποίων οι άξονες βρίσκονται πάνω στην ευθεία ΑΒ, όπου Α, Β είναι δύο ακλόνητα σηµεία του επιπέδου. Εκτρέπουµε

Διαβάστε περισσότερα

( ) ( ) 2 1 K = K = m 2. ! = v 2 + v 1 R + r (3) H (1) λόγω της (3) γράφεται: R - v 2. + v 1. v 2. r > 0 (4) ! v K. + v 1 )R - v 2. = v 2. - v.

( ) ( ) 2 1 K = K = m 2. ! = v 2 + v 1 R + r (3) H (1) λόγω της (3) γράφεται: R - v 2. + v 1. v 2. r > 0 (4) ! v K. + v 1 )R - v 2. = v 2. - v. Το καρούλι του σχήµατος κυλίεται χωρίς ολίσ θηση πάνω σε οριζόντιο δοκάρι, που ολισθαίνει επί οριζοντίου έδα φους µε ταχύτητα v η οποία έχει την κατεύθυνση του δοκαριού. Η κύλιση του καρουλιού επιτυγχάνεται

Διαβάστε περισσότερα

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου.

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου. Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου. i) Να βρεθεί η απόσταση x, ώστε την στιγµή που η ράβδος αφήνεται

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο

Διαβάστε περισσότερα

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε:

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε: ΘΕΜΑ 6o Η κυκλική τροχαλία του σχήµατος (1) έχει µάζα Μ και ακτίνα R, είναι σε επαφή µε οριζόντιο δάπεδο (ε), ενώ στον άξονά της έχει πακτωθεί αβαρής ράβδος µήκους L, στο ελεύθερο ακρο της οποίας έχει

Διαβάστε περισσότερα

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και Ένα καροτσάκι που περιέχει άµµο, συνολικής µάζας M, εκτελεί οριζόντια αρµονική ταλάντωση σε λείο επίπεδο, µε τη βοήθεια ιδανικού οριζόντιου ελατηρίου σταθεράς k. Ένα σφαιρίδιο µάζας m

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο,

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο, Tο σφαιρίδιο του σχήµατος ισορροπεί πάνω στο λείο οριζόντιο δαπεδο, ενώ τα οριζόντια ελατήρια είναι τεντωµένα. H απόσταση των σηµείων στήριξης των δύο ελατηρίων είναι 3α, ενώ τα ελατήρια έχουν το ίδιο

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

i) Να βρεθεί ο χρόνος αιώρησης του διαστηµοπλοίου, µέχρις ότου εξαντληθούν τα καύσιµά του.

i) Να βρεθεί ο χρόνος αιώρησης του διαστηµοπλοίου, µέχρις ότου εξαντληθούν τα καύσιµά του. Ένα διαστηµόπλοιο αιωρείται στον αέρα σε στα θερό ύψος από την επιφάνεια της Γης, εκτοξεύοντας καυσαέρια µε σταθερή ταχύτητα v. Η αρχική µάζα του διαστηµόπλοιου µαζί µε τα καύσιµά του είναι m, η δε µάζα

Διαβάστε περισσότερα

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας.

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας. Δύο σώµατα Σ και Σ µε αντίστοιχες µάζες m και m, είναι στερεωµένα στις άκρες ενός κατακόρυφου αβαρούς ελατηρίου, όπως φαίνεται στο σχήµα. Εξασκούµε στο σώµα Σ κατακόρυφη δύναµη µε φορά προς τα κάτω, της

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F!

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F! Υλικό σηµείο µάζας, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F (), η οποία ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης από το ελκτι κό κέντρο Ο, δηλαδή περιγράφεται

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T!

Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T! Ένα στερεό σώµα εκτελεί επίπεδη κίνηση και δύο σηµεία αυτού βρίσκονται κάποια στιγµή t στις θέσεις Α(,) και Β(,α) του επιπέδου κίνησής του (x,y) Εάν οι ταχύτητες των σηµείων αυτών έχουν το ίδιο µέτρο v

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

της µορφής:! F = -mk! r

της µορφής:! F = -mk! r Ένα µικρό σώµα µάζας m, κινείται επί κυκλικής τροχιάς ακτίνας α µέσα σε δυναµικό πεδίο, ελκόµενο από σταθερό ση µείο Ο που αποτελεί το κέντρο της τροχιάς, µε δύναµη F της µορφής: F -mk όπου το διάνυσµα

Διαβάστε περισσότερα

Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V!

Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V! Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V 0. O πιλότος του θέλει ν αλλάξει τη διεύθυνση κίνησης του διαστηµόπλοιου, ώστε η νέα διεύθυνση να γίνει κάθετη προς την αρχική. Για

Διαβάστε περισσότερα

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L!

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L! Στο ένα άκρο ράβδου µήκους L και αµελητέας µά ζας, έχει στερεωθεί σφαιρίδιο µάζας m. Η ράβδος είναι ακίνητη πάνω σε λείο οριζόντιο επίπεδο Οxy, µε το σφαιρίδιο στο σηµείο, και το άλλο της άκρο στο σηµείο

Διαβάστε περισσότερα

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν:

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν: Tο ένα άκρο κατακόρυφου ιδανικού ελατηρίου είναι στερεωµένο στο οριζόντιο έδαφος, ενώ το άλλο του άκρο είναι ελεύθερο. Mικρό σφαιρίδιο, µάζας m, αφήνεται σε ύψος h από το άκρο Β. Το σφαιρίδιο πέφτοντας

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2 ΚΕΦΑΛΑΙΟ 4 Ροπή αδράνειας - Θεμελιώδης νόμος της στροφικής κίνησης 4.1 Η ροπή αδράνειας ενός σώματος εξαρτάται: α. μόνο από τη μάζα του σώματος β. μόνο τη θέση του άξονα γύρω από τον οποίο μπορεί να περιστρέφεται

Διαβάστε περισσότερα

που δέχεται από την παράπλευρη επιφάνεια του κώνου, της οποίας ο φορέας είναι κάθετος στην επιφάνεια αυτή, αφού θεωρείται λεία και των δυνάµεων T

που δέχεται από την παράπλευρη επιφάνεια του κώνου, της οποίας ο φορέας είναι κάθετος στην επιφάνεια αυτή, αφού θεωρείται λεία και των δυνάµεων T Mιά κυκλική σπείρα εύκαµπτης αλυσίδας βάρους w, είναι τοποθετηµένη πάνω σε λείο ορθό κώνο ύψους h, του οποίου η βάση έχει ακτίνα R (σχ. 9). O κατακόρυφος άξονας του κώνου διέρ χεται από το κέντρο της αλυσίδας

Διαβάστε περισσότερα

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2 A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,

Διαβάστε περισσότερα

Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο

Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο ) Οµογενής κύλινδρος µάζας m, ακτίνας R φέρει λεπτή εγκοπή βάθους είναι τυλιγµένο νήµα αµελητέου πάχους. R r=, στην οποία Το άλλο άκρο του νήµατος έχει δεθεί σε οροφή όπως στο

Διαβάστε περισσότερα

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F Ένα ιδανικό ελατήριο σταθεράς k κόβεται σε δύο τµήµατα µε µήκη L και L. Η µία άκρη κάθε τµήµατος συνδέεται στέρεα µε µικρό σφαιρίδιο µάζας m και οι ελέυθερες άκρες τους στερεώνονται σε ακλόνητα σηµεία

Διαβάστε περισσότερα

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας.

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας. Mια κυκλική στεφάνη ακτίνας R, της οποίας η µάζα θεωρείται συγκεντρωµένη στην περιφέρεια της, κυλίεται ισοταχώς πάνω σε οριζόντιο επίπεδο το δε κέντρο της έχει ταχύτητα v. Kάποια στιγµή η στε φάνη προσκρούει

Διαβάστε περισσότερα

περί το κέντρο της σφαίρας, ονοµάζεται δε τριβή κυλίσεως. Tο µέτρο της τρι βής κυλίσεως είναι προφανώς ανάλογο του µέτρου της N,!

περί το κέντρο της σφαίρας, ονοµάζεται δε τριβή κυλίσεως. Tο µέτρο της τρι βής κυλίσεως είναι προφανώς ανάλογο του µέτρου της N,! Θεωρούµε µια βαρειά σφαίρα, η οποία ισορροπεί επί σχετικά µαλακού εδάφους, ώστε να προκαλεί σ αυτό µια µικρή παραµόρφωση. Λόγω της συµµετρίας που παρουσιάζει η παραµόρφωση αυτή, ως προς την κατακόρυφη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 206-207 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/03/207 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον

(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον Oµογενής λεπτός δίσκος ακτίνας R και µάζας m, ακινητεί επί οριζόντιου εδάφους µε το οποίο παρουσιάζει συντελεστή οριακής τριβής µ το δε επιπεδό του είναι κατακόρυφο,. Κάποια στιγµή εφαρµόζεται στο κέντρο

Διαβάστε περισσότερα

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12 Δύο ακριβώς όµοιες λεπτές ράβδοι OA και AB µήκους L και µάζας m, αρθρώνονται στο σηµείο Α το δε άκρο Ο της ΟΑ αρθρώνεται σε σταθερό υποστήριγµα, ενώ το άκρο Β της ΑΒ µπο ρεί να ολισθαίνει πάνω σε λείο

Διαβάστε περισσότερα

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A!

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A! Η οµογενής ράβδος ΑΒ του σχήµατος έχει βά ρος w και στηρίζεται διά του άκρου της Α σε τραχύ κεκλιµένο επί πεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, ενώ το άλλο της άκρο Β ακουµπάει σε λείο κατακόρυφο

Διαβάστε περισσότερα

ΛΥΣΗ: Από τo σύστηµα πλαστική σφαίρα-πεπιεσµένος αέρας εκκρέει µάζα, οπότε η διαφορική εξίσωση που καθορίζει την κίνησή του έχει την µορφή: !

ΛΥΣΗ: Από τo σύστηµα πλαστική σφαίρα-πεπιεσµένος αέρας εκκρέει µάζα, οπότε η διαφορική εξίσωση που καθορίζει την κίνησή του έχει την µορφή: ! Μια κοίλη πλαστική σφαίρα µάζας Μ, περιέχει πεπιεσµένο αέρα και φέρει κατάλληλο µηχανισµό, ο οποίος όταν ενερ γοποιηθεί προκαλεί το άνοιγµα στην επιφάνεια της σφαίρας µιας µικρής οπής, από την οποία εκτοξεύεται

Διαβάστε περισσότερα

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΝΟΜΑ ΤΜΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

# $ + L " = ml " ml! = ML " $ + ml " $ L " = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του

# $ + L  = ml  ml! = ML  $ + ml  $ L  = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του Mία σανίδα, µήκους L καί µάζας M, βρίσκεται πάνω σε λείο οριζόντιο επίπεδο. Στο ένα άκρο της σανίδας πατάει άνθ ρωπος µάζας m και αρχίζει να κινείται προς το άλλο άκρο της. Kατά πόσο θα µετατοπιστεί η

Διαβάστε περισσότερα

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί. 1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το

Διαβάστε περισσότερα

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί. 1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος

Διαβάστε περισσότερα

! =A'B=C!! C! = R" (1)

! =A'B=C!! C! = R (1) Οµογενής κύβος ακµής α ισορροπεί επί ακλό νητης σφαιρικής επιφάνειας ακτίνας R, µε το κέντρο µάζας του ακριβώς πάνω από την κορυφή Α της επιφάνειας. Εάν µεταξύ του κύβου και της σφαιρικής επιφάνειας υπάρχει

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Φλεβάρη 2018 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

i) Θεωρώντας τα δύο τµήµατα της αλυσίδας ως σώµατα µεταβλητής µά ζας να βρείτε τις διαφορικές εξισώσεις που περιγράφουν την κίνησή τους.

i) Θεωρώντας τα δύο τµήµατα της αλυσίδας ως σώµατα µεταβλητής µά ζας να βρείτε τις διαφορικές εξισώσεις που περιγράφουν την κίνησή τους. Μια εύκαµπτη και οµογενής αλυσίδα µήκους L, συγκρατείται στο ένα άκρο της ώστε ένα τµήµα αυτής να βρίσκεται πάνω σε λείο οριζόντιο τραπέζι, ενώ το υπόλοιπο τµήµα αυτής µήκους α (α

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής) ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων

Διαβάστε περισσότερα

Ένα κυβικό δοχείο ακµής α, είναι γεµάτο νερό και τοποθετείται πάνω σε οριζόντιο έδαφος (σχ. 13).

Ένα κυβικό δοχείο ακµής α, είναι γεµάτο νερό και τοποθετείται πάνω σε οριζόντιο έδαφος (σχ. 13). Ένα κυβικό δοχείο ακµής α, είναι γεµάτο νερό και τοποθετείται πάνω σε οριζόντιο έδαφος σχ. 3). i) Εάν στο κέντρο Ο µιας έδρας του δοχείου ανοίξουµε µικρή κυκλική οπή εµβαδού S, ποιο πρέπει να είναι το

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

η αντίστοιχη ταχύτητα του οχήµατος, θα ισχύει η σχέση:! 0 = m! v + M! V! md! v /dt = -Md!

η αντίστοιχη ταχύτητα του οχήµατος, θα ισχύει η σχέση:! 0 = m! v + M! V! md! v /dt = -Md! Tο νήµα µαθηµατικού εκκρεµούς µήκους L, είναι στερεωµένο στην οροφή µικρού οχήµατος µάζας M, το οποίο µπορεί να ολισθαίνει χωρίς τριβή πάνω σε οριζόντιο επίπεδο (σχήµα 1). i) Eάν το σφαιρίδιο του εκκρεµούς

Διαβάστε περισσότερα

Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση:

Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση: Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση: y = Αηµωx όπου Α, ω σταθερές και θετικές ποσότητες. Εάν το υλικό σηµείο κατά τον άξονα x κινείται

Διαβάστε περισσότερα

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι. Ενδεικτικές Λύσεις. Θέµα Α

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι. Ενδεικτικές Λύσεις. Θέµα Α 1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι Ενδεικτικές Λύσεις Θέµα Α Α.1 Η εκτόξευση ενός σώµατος µικρών διαστάσεων από ένα ύψος h µε ορι- Ϲόντια

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 019 ΘΕΜΑ 1 Ο : ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α 6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι Ηµεροµηνία : 10 Μάρτη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστη απάντηση [4 5 = 20 µονάδες] Α.1. Στερεό

Διαβάστε περισσότερα

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s] ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιµή

Διαβάστε περισσότερα

ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017

ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017 ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας δίνονται

Διαβάστε περισσότερα

Ένας σωλήνας σχήµατος αντεστραµµένου Π περιέχει υγρό πυκνότητας ρ, το δε οριζόντιο τµήµα του έχει µήκος L.

Ένας σωλήνας σχήµατος αντεστραµµένου Π περιέχει υγρό πυκνότητας ρ, το δε οριζόντιο τµήµα του έχει µήκος L. Ένας σωλήνας σχήµατος αντεστραµµένου Π περιέχει υγρό πυκνότητας ρ, το δε οριζόντιο τµήµα του έχει µήκος L. i) Eάν ο σωλήνας επιταχύνεται οριζόντια επί δαπέδου µε επιτάχυνση a, να βρεθεί η υψοµετρική διαφορά

Διαβάστε περισσότερα

GI_V_FYSP_4_ m/s, ξεκινώντας από το σημείο Κ. Στο σημείο Λ (αντιδιαμετρικό του Κ) βρίσκεται ακίνητο σώμα Σ 2 μάζας m2 1 kg.

GI_V_FYSP_4_ m/s, ξεκινώντας από το σημείο Κ. Στο σημείο Λ (αντιδιαμετρικό του Κ) βρίσκεται ακίνητο σώμα Σ 2 μάζας m2 1 kg. Μια ράβδος μήκους R m και αμελητέας μάζας βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και μπορεί να περιστρέφεται γύρω από το σημείο Ο. Στο άλλο άκρο της είναι στερεωμένο σώμα Σ, μάζας m kg το οποίο εκτελεί

Διαβάστε περισσότερα

Θεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις.

Θεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. Θεωρούµε σύστηµα δύο σωµατιδίων Σ και Σ µε αντίστοιχες µάζες m και m, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. i) Nα δείξετε ότι η σχετική ορµή P του ενός, λογουχάρη του Σ ως

Διαβάστε περισσότερα

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας 3.2.. 3.2.1. Ροπές και ισορροπία. Πάνω σε λείο οριζόντιο επίπεδο βρίσκεται μια ράβδος μήκους l=4m, η οποία μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος διέρχεται από το μέσον της Ο. Ασκούμε

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 24 Γενάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

από την ράβδο (αντίδραση της ράβδου) της οποί ας ο φορέας είναι κάθετος στην ράβδο, αναλύεται δε σε µια κατακόρυφη συνι A x

από την ράβδο (αντίδραση της ράβδου) της οποί ας ο φορέας είναι κάθετος στην ράβδο, αναλύεται δε σε µια κατακόρυφη συνι A x Mια λεπτή ράβδος µπορεί να στρέφεται περί το ακίνητο άκρο της O, ώστε να διαγράφει την παράπλευρη επιφάνεια ενός κώνου του οποίου ο άξονας είναι κατακόρυφος. Kατά µήκος της ράβδου µπορεί να ολισθαίνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

a = M + 2m(1 - #$%") όπου! g η επιτάχυνση της βαρύτητας.

a = M + 2m(1 - #$%) όπου! g η επιτάχυνση της βαρύτητας. Στην διάταξη του σχήµατος 1 η ορθογώνια σφήνα µάζας Μ, εφάπτεται µε την υποτείνουσα έδρα της λείου οριζόντιου εδάφους και φέρει στην κορυφή της µικρή και ευκίνητη τροχαλία το αυλάκι της οποίας περιβάλλεται

Διαβάστε περισσότερα

ii) ii) Nα καθορίσετε το είδος της ισορροπίας της ράβδου.

ii) ii) Nα καθορίσετε το είδος της ισορροπίας της ράβδου. Oµογενής ράβδος Γ, βάρους w και µήκους L, είναι αρθρωµένη στο ένα άκρο της όπως φαίνεται στο σχήµα (), ενώ το άλλο άκρο της είναι δεµένο σε νήµα που διέρχεται από µικρή ακίνητη τροχαλία O, η οποία βρίσκεται

Διαβάστε περισσότερα

3.2. Ισορροπία στερεού.

3.2. Ισορροπία στερεού. 3.2.. 3.2.1. Ροπές και ισορροπία. Πάνω σε λείο οριζόντιο επίπεδο βρίσκεται μια ράβδος μήκους l=4m, η οποία μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος διέρχεται από το μέσον της Ο. Ασκούμε

Διαβάστε περισσότερα

3.3. Δυναμική στερεού.

3.3. Δυναμική στερεού. 3.3.. 3.3.1. Ροπή και γωνιακή επιτάχυνση Μια οριζόντια τετράγωνη πλάκα ΑΒΓΔ, πλευράς 1m και μάζας 20kg μπορεί να στρέφεται γύρω από σταθερό άξονα z που περνά από το κέντρο της. Η πλάκα αποκτά γωνιακή ταχύτητα

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα