Some Useful Distributions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Some Useful Distributions"

Transcript

1 Chapter 0 Some Useful Distributios Defiitio 0 The populatio media is ay value MED(Y ) such that P(Y MED(Y )) 05 ad P(Y MED(Y )) 05 (0) Defiitio 0 The populatio media absolute deviatio is MAD(Y ) = MED( Y MED(Y ) ) (0) Fidig MED(Y ) ad MAD(Y ) for symmetric distributios ad locatio scale families is made easier by the followig lemma Let F(y α ) = P(Y y α ) = α for 0 < α < where the cdf F(y) = P(Y y) Let D = MAD(Y ), M = MED(Y ) = y 05 ad U = y 075 Lemma 0 a) If W = a + by, the MED(W) = a + bmed(y ) ad MAD(W) = b MAD(Y ) b) If Y has a pdf that is cotiuous ad positive o its support ad symmetric about µ, the MED(Y ) = µ ad MAD(Y ) = y 075 MED(Y ) Fid M = MED(Y ) by solvig the equatio F(M) = 05 for M, ad fid U by solvig F(U) = 075 for U The D = MAD(Y ) = U M c) Suppose that W is from a locatio scale family with stadard pdf f Y (y) that is cotiuous ad positive o its support The W = µ + σy where σ > 0 First fid M by solvig F Y (M) = 05 After fidig M, fid D by solvig F Y (M + D) F Y (M D) = 05 The MED(W) = µ + σm ad MAD(W) = σd 74

2 Defiitio 03 The gamma fuctio Γ(x) = 0 t x e t dt for x > 0 Some properties of the gamma fuctio follow i) Γ(k) = (k )! for iteger k ii) Γ(x + ) = x Γ(x) for x > 0 iii) Γ(x) = (x ) Γ(x ) for x > iv) Γ(05) = π Some lower case Greek letters are alpha: α, beta: β, gamma: γ, delta: δ, epsilo: ɛ, zeta: ζ, eta: η, theta: θ, iota: ι, kappa: κ, lambda: λ, mu: µ, u: ν, xi: ξ, omicro: o, pi: π, rho: ρ, sigma: σ, upsilo: υ, phi: φ, chi: χ, psi: ψ ad omega: ω Some capital Greek letters are gamma: Γ, theta: Θ, sigma: Σ ad phi: Φ For the discrete uiform ad geometric distributios, the followig facts o series are useful Lemma 0 Let, ad be itegers with, ad let a be a costat Notice that i= a i = + if a = a) a i = a a+, a a i= b) a i =, a < a c) i=0 a i = a, a < a d) a i = a, a < a i= f) e) i = i = ( + ) ( + )( + ) 6 75

3 See Gabel ad Roberts (980, p ) for the proof of a) d) For the special case of 0, otice that i=0 a i = a + a, a To see this, multiply both sides by ( a) The ( a) a i = ( a)( + a + a + + a + a ) = i=0 + a + a + + a + a a a a a + = a + ad the result follows Hece for a, a i = a i i= i=0 i=0 a i = a + a a a = a + a a The biomial theorem below is sometimes useful Theorem 03, The Biomial Theorem For ay real umbers x ad y ad for ay iteger 0, (x + y) = i=0 ( ) x i y i = (y + x) = i 0 The Beta Distributio i=0 ( ) y i x i i If Y has a beta distributio, Y beta(δ, ν), the the probability desity fuctio (pdf) of Y is f(y) = where δ > 0, ν > 0 ad 0 y Γ(δ + ν) Γ(δ)Γ(ν) yδ ( y) ν E(Y ) = 76 δ δ + ν

4 Notice that f(y) = VAR(Y ) = δν (δ + ν) (δ + ν + ) Γ(δ + ν) Γ(δ)Γ(ν) I [0,](y)exp[(δ )log(y) + (ν )log( y)] is a P REF Hece Θ = (0, ) (0, ), η = δ, η = ν ad Ω = (, ) (, ) If δ =, the W = log( Y ) EXP(/ν) Hece T = log( Y i ) G(, /ν) ad if r > the T r is the UMVUE of E(T) r = Γ(r + ) ν r Γ() If ν =, the W = log(y ) EXP(/δ) Hece T = log(y i ) G(, /δ) ad ad if r > the T r is the UMVUE of E(T r ) = Γ(r + ) δ r Γ() 0 The Beta Biomial Distributio If Y has a beta biomial distributio, Y BB(m, ρ, θ), the the probability mass fuctio of Y is ( ) m B(δ + y, ν + m y) P(Y = y) = y B(δ, ν) for y = 0,,,, m where 0 < ρ < ad θ > 0 Here δ = ρ/θ ad ν = ( ρ)/θ, so ρ = δ/(δ + ν) ad θ = /(δ + ν) Also B(δ, ν) = Γ(δ)Γ(ν) Γ(δ + ν) Hece δ > 0 ad ν > 0 The E(Y ) = mδ/(δ + ν) = mρ ad V(Y ) = mρ( ρ)[+(m )θ/(+θ)] If Y π biomial(m, π) ad π beta(δ, ν), the Y BB(m, ρ, θ) 77

5 03 The Beroulli ad Biomial Distributios If Y has a biomial distributio, Y BIN(k, ρ), the the probability mass fuctio (pmf) of Y is ( ) k f(y) = P(Y = y) = ρ y ( ρ) k y y for y = 0,,, k where 0 < ρ < If ρ = 0, P(Y = 0) = = ( ρ) k while if ρ =, P(Y = k) = = ρ k The momet geeratig fuctio m(t) = [( ρ) + ρe t ] k, ad the characteristic fuctio c(t) = [( ρ) + ρe it ] k E(Y ) = kρ VAR(Y ) = kρ( ρ) The Beroulli (ρ) distributio is the biomial (k =, ρ) distributio Pourahmadi (995) showed that the momets of a biomial (k, ρ) radom variable ca be foud recursively If r is a iteger, ( 0 0) = ad the last term below is 0 for r =, the r ( ) r r ( ) r E(Y r ) = kρ E(Y i ) ρ E(Y i+ ) i i i=0 i=0 The followig ormal approximatio is ofte used whe kρ( ρ) > 9 Hece Y N(kρ, kρ( ρ)) P(Y y) Φ ( ) y + 05 kρ kρ( ρ) Also P(Y = y) ( exp ) (y kρ) kρ( ρ) π kρ( ρ) 78

6 See Johso, Kotz ad Kemp (99, p 5) This approximatio suggests that MED(Y ) kρ, ad MAD(Y ) 0674 kρ( ρ) Hamza (995) states that E(Y ) MED(Y ) max(ρ, ρ) ad shows that E(Y ) MED(Y ) log() If k is large ad kρ small, the Y Poisso(kρ) If Y,, Y are idepedet BIN(k i, ρ) the Y i BIN( k i, ρ) Notice that ( ) [ ] k f(y) = ( ρ) k ρ exp log( y ρ )y is a P REF i ρ if k is kow Thus Θ = (0, ), ( ) ρ η = log ρ ad Ω = (, ) Assume that Y,, Y are iid BIN(k, ρ), the T = Y i BIN(k, ρ) If k is kow, the the likelihood ad the log likelihood L(ρ) = c ρ P y i ( ρ) k P y i, log(l(ρ)) = d + log(ρ) y i + (k y i )log( ρ) Hece d dρ log(l(ρ)) = y i + k ρ ρ y i ( ) set = 0, or ( ρ) y i = ρ(k y i), or y i = ρk or ˆρ = y i /(k) 79

7 This solutio is uique ad d dρ log(l(ρ)) = y i ρ k y i < 0 ( ρ) if 0 < y i < k Hece kˆρ = Y is the UMVUE, MLE ad MME of kρ if k is kow Let ˆρ = umber of successes / ad let P(Z z α/ ) = α/ if Z N(0, ) Let ñ = + z α/ ad ρ = ˆρ + 05z α/ + z α/ The the large sample 00 ( α)% Agresti Coull CI for ρ is ρ( ρ) p ± z α/ ñ Let W = Y i bi( k i, ρ) ad let w = k i Ofte k i ad the w = Let P(F d,d F d,d (α)) = α where F d,d has a F distributio with d ad d degrees of freedom The the Clopper Pearso exact 00 ( α)% CI for ρ is ( ) 0, for W = 0, + w F w,(α) ( ) w w + F,w ( α), for W = w, ad (ρ L, ρ U ) for 0 < W < w with ρ L = W W + ( w W + )F (w W+),W( α/) ad ρ U = W + W + + ( w W)F (w W),(W+)(α/) 80

8 04 The Burr Distributio If Y has a Burr distributio, Y Burr(φ, λ), the the pdf of Y is φy φ f(y) = λ ( + y φ ) λ + where y, φ, ad λ are all positive The cdf of Y is [ ] log( + y φ ) F(y) = exp = ( + y φ ) /λ for y > 0 λ MED(Y ) = [e λlog() ] /φ See Patel, Kapadia ad Owe (976, p 95) W = log( + Y φ ) is EXP(λ) Notice that f(y) = λ φyφ + y φ exp [ ] λ log( + yφ ) I(y > 0) is a oe parameter expoetial family if φ is kow If Y,, Y are iid Burr(λ, φ), the T = log( + Y φ i ) G(, λ) If φ is kow, the the likelihood L(λ) = c λ exp [ λ ] log( + y φ i ), ad the log likelihood log(l(λ)) = d log(λ) λ log( + yφ i ) Hece or log( + yφ i ) = λ or d log(l(λ)) = dλ λ + log( + yφ i ) λ set = 0, ˆλ = log( + yφ i ) 8

9 This solutio is uique ad d dλ log(l(λ)) = λ log( + yφ i ) λ λ=ˆλ = ṋ λ ˆλ ˆλ 3 = ˆλ < 0 Thus ˆλ = log( + Y φ i ) is the UMVUE ad MLE of λ if φ is kow If φ is kow ad r >, the T r is the UMVUE of E(T) r = λ rγ(r + ) Γ() 05 The Cauchy Distributio If Y has a Cauchy distributio, Y C(µ, σ), the the pdf of Y is f(y) = σ π σ + (y µ) = πσ[ + ( y µ σ ) ] where y ad µ are real umbers ad σ > 0 The cumulative distributio fuctio (cdf) of Y is F(y) = π [arcta(y µ σ ) + π/] See Ferguso (967, p 0) This family is a locatio scale family that is symmetric about µ The momets of Y do ot exist, but the characteristic fuctio of Y is c(t) = exp(itµ t σ) MED(Y ) = µ, the upper quartile = µ + σ, ad the lower quartile = µ σ MAD(Y ) = F (3/4) MED(Y ) = σ If Y,, Y are idepedet C(µ i, σ i ), the a i Y i C( a i µ i, a i σ i ) I particular, if Y,, Y are iid C(µ, σ), the Y C(µ, σ) If W U( π/, π/), the Y = ta(w) C(0, ) 8

10 06 The Chi Distributio If Y has a chi distributio (also called a p dimesioal Rayleigh distributio), Y chi(p, σ), the the pdf of Y is f(y) = yp e σ y σ p p Γ(p/) where y 0 ad σ, p > 0 This is a scale family if p is kow ad VAR(Y ) = σ E(Y ) = σ Γ(+p ) Γ(p/) Γ(+p ) Γ(p/) ( Γ( +p ) Γ(p/) E(Y r ) = r/ σ rγ(r+p) Γ(p/) ) for r > p The mode is at σ p for p See Cohe ad Whitte (988, ch 0) Note that W = Y G(p/, σ ) Y geeralized gamma (ν = p/, λ = σ, φ = ) If p =, the Y has a half ormal distributio, Y HN(0, σ ) If p =, the Y has a Rayleigh distributio, Y R(0, σ) If p = 3, the Y has a Maxwell Boltzma distributio (also kow as a Boltzma distributio or a Maxwell distributio), Y MB (0, σ) If p is a iteger ad Y chi(p, ), the Y χ p Sice f(y) = p Γ(p/)σ, pi(y > 0)exp[(p )log(y) σ y ], this family appears to be a P REF Notice that Θ = (0, ) (0, ), η = p, η = /(σ ), ad Ω = (, ) (, 0) If p is kow the y p f(y) = p Γ(p/) I(y > 0) [ ] σ exp p σ y 83

11 appears to be a P REF If Y,, Y are iid chi(p, σ), the T = Y i G(p/, σ ) If p is kow, the the likelihood ad the log likelihood Hece or y i = pσ or L(σ ) = c exp[ σp σ yi ], log(l(σ )) = d p log(σ ) σ d d(σ ) log(σ ) = p σ + (σ ) This solutio is uique ad d d(σ ) log(l(σ )) = p (σ ) ˆσ = y i (σ ) 3 y i p = σ =ˆσ y i yi set = 0, p (ˆσ ) pˆσ (ˆσ ) 3 = p (ˆσ ) < 0 Thus ˆσ ˆσ = Y i p is the UMVUE ad MLE of σ whe p is kow If p is kow ad r > p/, the T r is the UMVUE of E(T) r = r σ r Γ(r + p/) Γ(p/) 84

12 07 The Chi square Distributio If Y has a chi square distributio, Y χ p, the the pdf of Y is f(y) = y p e y p Γ( p ) where y 0 ad p is a positive iteger The mgf of Y is ( ) p/ m(t) = = ( t) p/ t for t < / The characteristic fuctio c(t) = E(Y ) = p VAR(Y ) = p Sice Y is gamma G(ν = p/, λ = ), ( ) p/ it E(Y r ) = r Γ(r + p/), r > p/ Γ(p/) MED(Y ) p /3 See Pratt (968, p 470) for more terms i the expasio of MED(Y ) Empirically, p MAD(Y ) 483 ( 9p ) p There are several ormal approximatios for this distributio The Wilso Hilferty approximatio is ( ) Y 3 N( p 9p, 9p ) See Bowma ad Sheto (99, p 6) This approximatio gives P(Y x) Φ[(( x p )/3 + /9p) 9p/], 85

13 ad χ p,α p(z α 9p + 9p )3 where z α is the stadard ormal percetile, α = Φ(z α ) The last approximatio is good if p > 4 log(α) See Keedy ad Getle (980, p 8) This family is a oe parameter expoetial family, but is ot a REF sice the set of itegers does ot cotai a ope iterval 08 The Discrete Uiform Distributio If Y has a discrete uiform distributio, Y DU(θ, θ ), the the pmf of Y is f(y) = P(Y = y) = θ θ + for θ y θ where y ad the θ i are itegers Let θ = θ + τ where τ = θ θ + The cdf for Y is F(y) = y θ + θ θ + for θ y θ Here y is the greatest iteger fuctio, eg, 77 = 7 This result holds sice for θ y θ, F(y) = y θ θ + i=θ E(Y ) = (θ + θ )/ = θ + (τ )/ while V (Y ) = (τ )/ The result for E(Y ) follows by symmetry, or because E(Y ) = θ y=θ y θ θ + = θ (θ θ + ) + [ (θ θ )] θ θ + where last equality follows by addig ad subtractig θ to y for each of the θ θ + terms i the middle sum Thus E(Y ) = θ + (θ θ )(θ θ + ) (θ θ + ) = θ + θ θ sice i = ( + )/ by Lemma 0e with = θ θ 86 = θ + θ

14 To see the result for V (Y ), let W = Y θ + The V (Y ) = V (W) ad f(w) = /τ for w =,, τ Hece W DU(, τ), E(W) = τ τ w = τ(τ + ) τ = + τ, ad E(W) = τ by Lemma 0 So τ w = τ(τ + )(τ + ) 6τ = (τ + )(τ + ) 6 V (Y ) = V (W) = E(W ) (E(W)) = (τ + )(τ + ) 6 ( ) + τ = (τ + )(τ + ) 3(τ + ) = 4(τ + ) (τ + ) 3(τ + ) τ + τ + τ (τ + )[(τ + ) ] 3(τ + ) = (τ + ) τ = τ Let Z be the set of itegers ad let Y,, Y be iid DU(θ, θ ) The the likelihood fuctio L(θ, θ ) = (θ θ + ) I(θ Y () )I(θ Y () )I(θ θ )I(θ Z)I(θ Z) is maximized by makig θ θ as small as possible where itegers θ θ So eed θ as small as possible ad θ as large as possible, ad the MLE of (θ, θ ) is (Y (), Y () ) 09 The Double Expoetial Distributio If Y has a double expoetial distributio (or Laplace distributio), Y DE(θ, λ), the the pdf of Y is f(y) = ( ) y θ λ exp λ 87 = =

15 where y is real ad λ > 0 The cdf of Y is ( ) y θ F(y) = 05exp λ ad ( ) (y θ) F(y) = 05exp λ if y θ, if y θ This family is a locatio scale family which is symmetric about θ The mgf m(t) = exp(θt)/( λ t ) for t < /λ, ad the characteristic fuctio c(t) = exp(θit)/( + λ t ) E(Y ) = θ, ad MED(Y ) = θ VAR(Y ) = λ, ad MAD(Y ) = log()λ 0693λ Hece λ = MAD(Y )/log() 443MAD(Y ) To see that MAD(Y ) = λlog(), ote that F(θ +λlog()) = 05 = 075 The maximum likelihood estimators are ˆθ MLE = MED() ad ˆλ MLE = Y i MED() A 00( α)% cofidece iterval (CI) for λ is ( ) Y i MED(), Y i MED(), χ, χ α, α ad a 00( α)% CI for θ is MED() ± z α/ Y i MED() z α/ where χ p,α ad z α are the α percetiles of the χ p ad stadard ormal distributios, respectively See Patel, Kapadia ad Owe (976, p 94) W = Y θ EXP(λ) 88

16 Notice that f(y) = [ ] λ exp y θ λ is a oe parameter expoetial family i λ if θ is kow If Y,, Y are iid DE(θ, λ) the T = Y i θ G(, λ) If θ is kow, the the likelihood ad the log likelihood L(λ) = c λ exp [ λ ] y i θ, log(l(λ)) = d log(λ) λ y i θ Hece d log(l(λ)) = dλ λ + λ or y i θ = λ or ˆλ = y i θ This solutio is uique ad d dλ log(l(λ)) = λ y i θ λ 3 λ=ˆλ y i θ set = 0 = ṋ λ ˆλ ˆλ 3 = ˆλ < 0 Thus ˆλ = Y i θ is the UMVUE ad MLE of λ if θ is kow 89

17 00 The Expoetial Distributio If Y has a expoetial distributio, Y EXP(λ), the the pdf of Y is where λ > 0 The cdf of Y is f(y) = λ exp( y ) I(y 0) λ F(y) = exp( y/λ), y 0 This distributio is a scale family with scale parameter λ The mgf m(t) = /( λt) for t < /λ, ad the characteristic fuctio c(t) = /( iλt) E(Y ) = λ, ad VAR(Y ) = λ W = Y/λ χ Sice Y is gamma G(ν =, λ), E(Y r ) = λγ(r + ) for r > MED(Y ) = log()λ ad MAD(Y ) λ/078 sice it ca be show that exp(mad(y )/λ) = + exp( MAD(Y )/λ) Hece 078 MAD(Y ) λ The classical estimator is ˆλ = Y ad the 00( α)% CI for E(Y ) = λ is ( ) Y i, Y i χ, χ α, α where P(Y χ, ) = α/ if Y is χ See Patel, Kapadia ad Owe (976, α p 88) Notice that f(y) = [ ] λ I(y 0)exp λ y is a P REF Hece Θ = (0, ), η = /λ ad Ω = (, 0) Suppose that Y,, Y are iid EXP(λ), the T = Y i G(, λ) 90

18 The likelihood ad the log likelihood L(λ) = λ exp [ λ ] y i, log(l(λ)) = log(λ) λ y i Hece or y i = λ or d log(l(λ)) = dλ λ + λ ˆλ = y y i set = 0, Sice this solutio is uique ad d dλ log(l(λ)) = λ y i λ 3 λ=ˆλ = ṋ λ ˆλ ˆλ 3 = ˆλ < 0, the ˆλ = Y is the UMVUE, MLE ad MME of λ If r >, the T r is the UMVUE of E(T) r = λr Γ(r + ) Γ() 0 The Two Parameter Expoetial Distributio If Y has a parameter expoetial distributio, Y EXP(θ, λ) the the pdf of Y is f(y) = ( ) (y θ) λ exp I(y θ) λ where λ > 0 ad θ is real The cdf of Y is F(y) = exp[ (y θ)/λ)], y θ 9

19 This family is a asymmetric locatio-scale family The mgf m(t) = exp(tθ)/( λt) for t < /λ, ad the characteristic fuctio c(t) = exp(itθ)/( iλt) E(Y ) = θ + λ, ad VAR(Y ) = λ ad MED(Y ) = θ + λlog() MAD(Y ) λ/078 Hece θ MED(Y ) 078 log()mad(y ) See Rousseeuw ad Croux (993) for similar results Note that 078 log() 44 To see that 078MAD(Y ) λ, ote that 05 = θ+λ log()+mad θ+λ log() MAD exp( (y θ)/λ)dy λ = 05[ e MAD/λ + e MAD/λ ] assumig λlog() > MAD Plug i MAD = λ/078 to get the result If θ is kow, the f(y) = I(y θ) [ ] λ exp (y θ) λ is a P REF i λ Notice that Y θ EXP(λ) Let ˆλ = (Y i θ) The ˆλ is the UMVUE ad MLE of λ if θ is kow If Y,, Y are iid EXP(θ, λ), the the likelihood [ ] L(θ, λ) = λ exp (y i θ) I(y () θ), λ 9

20 ad the log likelihood log(l(θ, λ)) = [ log(λ) λ (y i θ)]i(y () θ) For ay fixed λ > 0, the log likelihood is maximized by maximizig θ Hece ˆθ = Y (), ad the profile log likelihood is log(l(λ y () )) = log(λ) λ (y i y () ) is maximized by ˆλ = (y i y () ) Hece the MLE ( ) (ˆθ, ˆλ) = Y (), (Y i Y () ) = (Y (), Y Y () ) Let D = (Y i Y () ) = ˆλ The for, ( ) D D, χ ( ), α/ χ ( ),α/ (03) is a 00( α)% CI for λ, while (Y () ˆλ[(α) /( ) ], Y () ) (04) is a 00 ( α)% CI for θ See Ma, Schafer, ad Sigpurwalla (974, p 76) If θ is kow ad T = (Y i θ), the a 00( α)% CI for λ is ( ) T T, (05) χ, α/ χ,α/ 0 The F Distributio If Y has a F distributio, Y F(ν, ν ), the the pdf of Y is f(y) = Γ( ν +ν ) Γ(ν /)Γ(ν /) ( ) ν / ν ν 93 y (ν )/ ) (ν +ν )/ ( + ( ν ν )y

21 where y > 0 ad ν ad ν are positive itegers ad E(Y ) = ν ν, ν > ( ) ν (ν + ν ) VAR(Y ) = ν ν (ν 4), ν > 4 E(Y r ) = Γ(ν +r )Γ( ν r ) Γ(ν /)Γ(ν /) ( ν ν ) r, r < ν / Suppose that X ad X are idepedet where X χ ν ad X χ ν The W = (X /ν ) (X /ν ) F(ν, ν ) ( ) r Notice that E(Y r ) = E(W r ν ) = ν E(X r )W(X r ) If W t ν, the Y = W F(, ν) 03 The Gamma Distributio If Y has a gamma distributio, Y G(ν, λ), the the pdf of Y is f(y) = yν e y/λ λ ν Γ(ν) where ν, λ, ad y are positive The mgf of Y is ( ) ν ( ) ν /λ m(t) = t = λt λ for t < /λ The characteristic fuctio ( ) ν c(t) = iλt E(Y ) = νλ VAR(Y ) = νλ E(Y r ) = λr Γ(r + ν) Γ(ν) 94 if r > ν (06)

22 Che ad Rubi (986) show that λ(ν /3) < MED(Y ) < λν = E(Y ) Empirically, for ν > 3/, ad MED(Y ) λ(ν /3), MAD(Y ) λ ν 483 This family is a scale family for fixed ν, so if Y is G(ν, λ) the cy is G(ν, cλ) for c > 0 If W is EXP(λ) the W is G(, λ) If W is χ p, the W is G(p/, ) Some classical estimators are give ext Let [ w = log y geometric mea() where geometric mea() = (y y y ) / = exp[ log(y i)] The Thom s estimator (Johso ad Kotz 970a, p 88) is ˆν 05( + + 4w/3 ) w Also w w ˆν MLE w for 0 < w 0577, ad ˆν MLE w w w( w + w ) for 0577 < w 7 If W > 7 the estimatio is much more difficult, but a rough approximatio is ˆν /w for w > 7 See Bowma ad Sheto (988, p 46) ad Greewood ad Durad (960) Fially, ˆλ = Y /ˆν Notice that ˆβ may ot be very good if ˆν < /7 Several ormal approximatios are available The Wilso Hilferty approximatio says that for ν > 05, Y /3 N Hece if Y is G(ν, λ) ad ( (νλ) /3 ( ), (νλ)/3 9ν 9ν α = P[Y G α ], 95 ] )

23 the G α νλ [ z α 9ν + 9ν ] 3 where z α is the stadard ormal percetile, α = Φ(z α ) Bowma ad Sheto (988, p 0) iclude higher order terms Notice that [ ] f(y) = I(y > 0)exp y + (ν )log(y) λ ν Γ(ν) λ is a P REF Hece Θ = (0, ) (0, ), η = /λ, η = ν ad Ω = (, 0) (, ) If Y,, Y are idepedet G(ν i, λ) the Y i G( ν i, λ) If Y,, Y are iid G(ν, λ), the T = Y i G(ν, λ) Sice f(y) = Γ(ν) exp[(ν )log(y)]i(y > 0) [ ] λ exp ν λ y, Y is a P REF whe ν is kow If ν is kow, the the likelihood The log likelihood L(β) = c exp λν [ λ ] y i log(l(λ)) = d ν log(λ) λ y i Hece or y i = νλ or d ν log(l(λ)) = dλ λ + y i λ ˆλ = y/ν 96 set = 0,

24 This solutio is uique ad d ν log(l(λ)) = dλ λ y i λ 3 λ=ˆλ = ν ˆλ νˆλ ˆλ 3 Thus Y is the UMVUE, MLE ad MME of νλ if ν is kow = ν ˆλ < 0 04 The Geeralized Gamma Distributio If Y has a geeralized gamma distributio, Y GG(ν, λ, φ), the the pdf of Y is f(y) = φyφν λ φν Γ(ν) exp( yφ /λ φ ) where ν, λ, φ ad y are positive This family is a scale family with scale parameter λ if φ ad ν are kow If φ ad ν are kow, the E(Y k ) = λk Γ(ν + k φ ) Γ(ν) f(y) = φyφν Γ(ν) if k > φν (07) [ ] I(y > 0) exp λφν λ φ yφ, which is a oe parameter expoetial family Notice that W = Y φ G(ν, λ φ ) If Y,, Y are iid GG(ν, λ, φ) where φ ad ν are kow, the T = Y φ i G(ν, λ φ ), ad T r is the UMVUE of E(T) r = λ φrγ(r + ν) Γ(ν) for r > ν 05 The Geeralized Negative Biomial Distributio If Y has a geeralized egative biomial distributio, Y GNB(µ, κ), the the pmf of Y is ( ) κ ( Γ(y + κ) κ f(y) = P(Y = y) = κ ) y Γ(κ)Γ(y + ) µ + κ µ + κ 97

25 for y = 0,,, where µ > 0 ad κ > 0 This distributio is a geeralizatio of the egative biomial (κ, ρ) distributio with ρ = κ/(µ + κ) ad κ > 0 is a ukow real parameter rather tha a kow iteger The mgf is [ ] κ κ m(t) = κ + µ( e t ) for t < log(µ/(µ + κ)) E(Y ) = µ ad VAR(Y ) = µ + µ /κ If Y,, Y are iid GNB(µ, κ), the Y i GNB(µ, κ) Whe κ is kow, this distributio is a P REF If Y,, Y are iid GNB(µ, κ) where κ is kow, the ˆµ = Y is the MLE, UMVUE ad MME of µ 06 The Geometric Distributio If Y has a geometric distributio, Y geom(ρ) the the pmf of Y is f(y) = P(Y = y) = ρ( ρ) y for y = 0,,, ad 0 < ρ < The cdf for Y is F(y) = ( ρ) y + for y 0 ad F(y) = 0 for y < 0 Here y is the greatest iteger fuctio, eg, 77 = 7 To see this, ote that for y 0, y F(y) = ρ ( ρ) y = ρ i=0 ( ρ) y + ( ρ) by Lemma 0a with = 0, = y ad a = ρ E(Y ) = ( ρ)/ρ VAR(Y ) = ( ρ)/ρ Y NB(, ρ) Hece the mgf of Y is for t < log( ρ) Notice that m(t) = ρ ( ρ)e t f(y) = ρexp[log( ρ)y] 98

26 is a P REF Hece Θ = (0, ), η = log( ρ) ad Ω = (, 0) If Y,, Y are iid geom(ρ), the T = Y i NB(, ρ) The likelihood ad the log likelihood Hece L(ρ) = ρ exp[log( ρ) y i ], log(l(ρ)) = log(ρ) + log( ρ) d dρ log(l(ρ)) = ρ ρ y i y i set = 0 or ( ρ)/ρ = y i or ρ ρ y i = 0 or ˆρ = + y i This solutio is uique ad d log(l(ρ)) = dρ ρ y i ( ρ) < 0 Thus ˆρ = + Y i is the MLE of ρ The UMVUE, MLE ad MME of ( ρ)/ρ is Y 07 The Gompertz Distributio If Y has a Gompertz distributio, Y Gomp(θ, ν), the the pdf of Y is ν ] f(y) = νe exp[ θy θ ( eθy ) 99

27 for θ 0 where ν > 0 ad y > 0 The parameter θ is real, ad the Gomp(θ = 0, ν) distributio is the expoetial (/ν) distributio The cdf is ν ] F(y) = exp[ θ ( eθy ) for θ 0 ad y > 0 For fixed θ this distributio is a scale family with scale parameter /ν 08 The Half Cauchy Distributio If Y has a half Cauchy distributio, Y HC(µ, σ), the the pdf of Y is f(y) = πσ[ + ( y µ σ ) ] where y µ, µ is a real umber ad σ > 0 The cdf of Y is F(y) = π arcta(y µ σ ) for y µ ad is 0, otherwise This distributio is a right skewed locatioscale family MED(Y ) = µ + σ MAD(Y ) = 07305σ 09 The Half Logistic Distributio If Y has a half logistic distributio, Y HL(µ, σ), the the pdf of Y is f(y) = exp( (y µ)/σ) σ[ + exp( (y µ)/σ)] where σ > 0, y µ ad µ are real The cdf of Y is F(y) = exp[(y µ)/σ] + exp[(y µ)/σ)] for y µ ad 0 otherwise This family is a right skewed locatio scale family MED(Y ) = µ + log(3)σ MAD(Y ) = σ 300

28 00 The Half Normal Distributio If Y has a half ormal distributio, Y HN(µ, σ ), the the pdf of Y is f(y) = (y µ) exp( ) π σ σ where σ > 0 ad y µ ad µ is real Let Φ(y) deote the stadard ormal cdf The the cdf of Y is F(y) = Φ( y µ σ ) for y > µ ad F(y) = 0, otherwise E(Y ) = µ + σ /π µ σ VAR(Y ) = σ (π ) σ π This is a asymmetric locatio scale family that has the same distributio as µ + σ Z where Z N(0, ) Note that Z χ Hece the formula for the rth momet of the χ radom variable ca be used to fid the momets of Y MED(Y ) = µ σ MAD(Y ) = σ Notice that [ f(y) = I(y µ)exp ( ] π σ σ)(y µ) is a P REF if µ is kow Hece Θ = (0, ), η = /(σ ) ad Ω = (, 0) W = (Y µ) G(/, σ ) If Y,, Y are iid HN(µ, σ ), the T = (Y i µ) G(/, σ ) If µ is kow, the the likelihood [ ] L(σ ) = c σ exp ( σ ) (y i µ), 30

29 ad the log likelihood Hece log(l(σ )) = d log(σ ) σ d d(σ ) log(l(σ )) = (σ ) + (σ ) or (y i µ) = σ or Thus This solutio is uique ad (σ ) ˆσ = d (y i µ) d(σ ) log(l(σ )) = (y i µ) (σ ) 3 = σ =ˆσ ˆσ = (y i µ) (y i µ) set = 0, (ˆσ ) ˆσ ( ˆσ ) 3 = ˆσ < 0 (Y i µ) is the UMVUE ad MLE of σ if µ is kow If r > / ad if µ is kow, the T r is the UMVUE of E(T r ) = r σ r Γ(r + /)/Γ(/) Example 53 shows that (ˆµ, ˆσ ) = (Y (), (Y i Y () ) ) is MLE of (µ, σ ) Followig Pewsey (00), a large sample 00( α)% cofidece iterval for σ is ( ) ˆσ χ ( α/), ˆσ (08) χ (α/) while a large sample 00( α)% CI for µ is (ˆµ + ˆσ log(α) Φ ( + ) ( + 3/ ), ˆµ) (09) If µ is kow, the a 00( α)% CI for σ is ( ) T χ ( α/), T (00) χ (α/) 30

30 0 The Hypergeometric Distributio If Y has a hypergeometric distributio, Y HG(C, N C, ), the the data set cotais N objects of two types There are C objects of the first type (that you wish to cout) ad N C objects of the secod type Suppose that objects are selected at radom without replacemet from the N objects The Y couts the umber of the selected objects that were of the first type The pmf of Y is ( C N C ) y)( f(y) = P(Y = y) = y ( N ) where the iteger y satisfies max(0, N + C) y mi(, C) The right iequality is true sice if objects are selected, the the umber of objects y of the first type must be less tha or equal to both ad C The first iequality holds sice y couts the umber of objects of secod type Hece y N C Let p = C/N The ad VAR(Y ) = E(Y ) = C N = p C(N C) N N N = p( p)n N If is small compared to both C ad N C the Y BIN(, p) If is large but is small compared to both C ad N C the Y N(p, p( p)) 0 The Iverse Gaussia Distributio If Y has a iverse Gaussia distributio, Y IG(θ, λ), the the pdf of Y is [ ] λ λ(y θ) f(y) = πy exp 3 θ y where y, θ, λ > 0 The mgf is m(t) = exp [ ( )] λ θ t θ λ 303

31 for t < λ/(θ ) See Datta (005) ad Schwarz ad Samata (99) for additioal properties The characteristic fuctio is E(Y ) = θ ad Notice that f(y) = φ(t) = exp [ λ θ ( VAR(Y ) = θ3 λ is a two parameter expoetial family If Y,, Y are iid IG(θ, λ), the θ it λ )] [ λ λ π eλ/θ y3i(y > 0)exp θ y λ ] y Y i IG(θ, λ) ad Y IG(θ, λ) If λ is kow, the the likelihood ad the log likelihood Hece or y i = θ or L(θ) = c e λ/θ exp[ λ θ y i ], log(l(θ)) = d + λ θ λ θ d λ log(l(θ)) = + λ dθ θ θ 3 ˆθ = y y i y i set = 0, This solutio is uique ad d λ log(l(θ)) = 3λ y i dθ θ 3 θ θ=ˆθ = λ ˆθ 3 3λˆθ ˆθ 4 = λ ˆθ 3 < 0

32 Thus Y is the UMVUE, MLE ad MME of θ if λ is kow If θ is kow, the the likelihood [ ] L(λ) = c λ / λ (y i θ) exp, θ ad the log likelihood Hece or Thus log(l(λ)) = d + log(λ) λ θ d dλ log(l(λ)) = λ θ This solutio is uique ad is the MLE of λ if θ is kow ˆλ = θ y i (y i θ) (y i θ) y i y i d log(l(λ)) = dλ λ < 0 ˆλ = θ (Y i θ) Y i (y i θ) y i set = 0 Aother parameterizatio of the iverse Gaussia distributio takes θ = λ/ψ so that f(y) = [ λ π e λψ ψ y3i[y > 0] exp y λ ], y where λ > 0 ad ψ 0 Here Θ = (0, ) [0, ), η = ψ/, η = λ/ ad Ω = (, 0] (, 0) Sice Ω is ot a ope set, this is a parameter full expoetial family that is ot regular If ψ is kow the Y is a P REF, but if λ is kow the Y is a oe parameter full expoetial family Whe ψ = 0, Y has a oe sided stable distributio with idex / See Bardorff Nielse (978, p 7) 305

33 03 The Iverted Gamma Distributio If Y has a iverted gamma distributio, Y INV G(ν, λ), the the pdf of Y is f(y) = y ν+ Γ(ν) I(y > 0) ( ) λ exp ν λ y where λ, ν ad y are all positive It ca be show that W = /Y G(ν, λ) This family is a scale family with scale parameter τ = /λ if ν is kow If ν is kow, this family is a parameter expoetial family If Y,, Y are iid INVG(ν, λ) ad ν is kow, the T = the UMVUE of for r > ν λ rγ(r + ν) Γ(ν) Y i G(ν, λ) ad T r is 04 The Largest Extreme Value Distributio If Y has a largest extreme value distributio (or Gumbel distributio), Y LEV (θ, σ), the the pdf of Y is f(y) = σ exp( (y θ θ ))exp[ exp( (y σ σ ))] where y ad θ are real ad σ > 0 The cdf of Y is F(y) = exp[ exp( ( y θ σ ))] This family is a asymmetric locatio scale family with a mode at θ The mgf m(t) = exp(tθ)γ( σt) for t < /σ E(Y ) θ σ, ad VAR(Y ) = σ π / σ MED(Y ) = θ σ log(log()) θ σ 306

34 ad MAD(Y ) σ W = exp( (Y θ)/σ) EXP() Notice that f(y) = σ eθ/σ e y/σ exp [ e θ/σ e y/σ] is a oe parameter expoetial family i θ if σ is kow If Y,, Y are iid LEV(θ, σ) where σ is kow, the the likelihood L(σ) = c e θ/σ exp[ e θ/σ e yi/σ ], ad the log likelihood log(l(θ)) = d + θ σ eθ/σ e yi/σ Hece or or or d dθ log(l(θ)) = σ eθ/σ σ e θ/σ e yi/σ =, e θ/σ = ( ˆθ = log e y i/σ, e y i/σ e y i/σ set = 0, ) Sice this solutio is uique ad is the MLE of θ d log(l(θ)) = dθ σ eθ/σ ( ˆθ = log e yi/σ < 0, e Y i/σ 307 )

35 05 The Logarithmic Distributio If Y has a logarithmic distributio, the the pmf of Y is f(y) = P(Y = y) = θ y log( θ) y for y =,, ad 0 < θ < This distributio is sometimes called the logarithmic series distributio or the log-series distributio The mgf m(t) = log( θet ) log( θ) for t < log(θ) Notice that f(y) = E(Y ) = θ log( θ) θ log( θ) y exp(log(θ)y) is a P REF Hece Θ = (0, ), η = log(θ) ad Ω = (, 0) If Y,, Y are iid logarithmic (θ), the Y is the UMVUE of E(Y ) 06 The Logistic Distributio If Y has a logistic distributio, Y L(µ, σ), the the pdf of Y is f(y) = where σ > 0 ad y ad µ are real The characteristic fuctio of Y is F(y) = exp( (y µ)/σ) σ[ + exp( (y µ)/σ)] + exp( (y µ)/σ) = exp((y µ)/σ) + exp((y µ)/σ) This family is a symmetric locatio scale family The mgf of Y is m(t) = πσte µt csc(πσt) for t < /σ, ad the chf is c(t) = πiσte iµt csc(πiσt) where csc(t) is the cosecat of t E(Y ) = µ, ad 308

36 MED(Y ) = µ VAR(Y ) = σ π /3, ad MAD(Y ) = log(3)σ 0986 σ Hece σ = MAD(Y )/log(3) The estimators ˆµ = Y ad S = (Y i Y ) are sometimes used Note that if q = F L(0,) (c) = ec q the c = log( + e c q ) Takig q = 9995 gives c = log(999) 76 To see that MAD(Y ) = log(3)σ, ote that F(µ + log(3)σ) = 075, F(µ log(3)σ) = 05, ad 075 = exp(log(3))/( + exp(log(3))) 07 The Log-Cauchy Distributio If Y has a log Cauchy distributio, Y LC(µ, σ), the the pdf of Y is f(y) = πσy[ + ( log(y) µ σ ) ] where y > 0, σ > 0 ad µ is a real umber This family is a scale family with scale parameter τ = e µ if σ is kow It ca be show that W = log(y ) has a Cauchy(µ, σ) distributio 08 The Log-Logistic Distributio If Y has a log logistic distributio, Y LL(φ, τ), the the pdf of Y is f(y) = φτ(φy)τ [ + (φy) τ ] where y > 0, φ > 0 ad τ > 0 The cdf of Y is F(y) = + (φy) τ for y > 0 This family is a scale family with scale parameter φ if τ is kow 309

37 MED(Y ) = /φ It ca be show that W = log(y ) has a logistic(µ = log(φ), σ = /τ) distributio Hece φ = e µ ad τ = /σ Kalbfleisch ad Pretice (980, p 7-8) suggest that the log-logistic distributio is a competitor of the logormal distributio 09 The Logormal Distributio If Y has a logormal distributio, Y LN(µ, σ ), the the pdf of Y is ( ) (log(y) µ) f(y) = y πσ exp σ where y > 0 ad σ > 0 ad µ is real The cdf of Y is ( ) log(y) µ F(y) = Φ σ for y > 0 where Φ(y) is the stadard ormal N(0,) cdf This family is a scale family with scale parameter τ = e µ if σ is kow ad For ay r, E(Y ) = exp(µ + σ /) VAR(Y ) = exp(σ )(exp(σ ) )exp(µ) E(Y r ) = exp(rµ + r σ /) MED(Y ) = exp(µ) ad exp(µ)[ exp( 06744σ)] MAD(Y ) exp(µ)[ + exp(06744σ)] Notice that f(y) = π σ exp( µ σ ) I(y 0)exp y [ + µ ] σ (log(y)) σ log(y) is a P REF Hece Θ = (, ) (0, ), η = /(σ ), η = µ/σ ad Ω = (, 0) (, ) Note that W = log(y ) N(µ, σ ) Notice that f(y) = π σ [ ] I(y 0)exp y σ(log(y) µ) 30

38 is a P REF if µ is kow, If Y,, Y are iid LN(µ, σ ) where µ is kow, the the likelihood [ ] L(σ ) = c σ exp (log(y σ i ) µ), ad the log likelihood Hece log(l(σ )) = d log(σ ) σ d d(σ ) log(l(σ )) = σ + (σ ) (log(y i ) µ) (log(y i ) µ) set = 0, or (log(y i) µ) = σ or ˆσ = (log(y i) µ) Sice this solutio is uique ad (σ ) d d(σ ) log(l(σ )) = (log(y i) µ) (σ ) 3 = σ =ˆσ (ˆσ ) ˆσ (ˆσ ) 3 = (ˆσ ) < 0, ˆσ = (log(y i) µ) is the UMVUE ad MLE of σ if µ is kow Sice T = [log(y i) µ] G(/, σ ), if µ is kow ad r > / the T r is UMVUE of If σ is kow, E(T r ) = r σ rγ(r + /) Γ(/) f(y) = [ I(y 0)exp( )exp( µ µ ] π σ y σ (log(y)) σ )exp σ log(y) 3

39 is a P REF If Y,, Y are iid LN(µ, σ ), where σ is kow, the the likelihood [ ] L(µ) = c exp( µ σ )exp µ log(y σ i ), ad the log likelihood Hece or log(y i) = µ or log(l(µ)) = d µ σ + µ σ log(y i ) d µ log(l(µ)) = + log(y i) dµ σ σ This solutio is uique ad ˆµ = log(y i) d log(l(µ)) = dµ σ < 0 Sice T = log(y i) N(µ, σ ), ˆµ = log(y i) is the UMVUE ad MLE of µ if σ is kow Whe either µ or σ are kow, the log likelihood log(l(σ )) = d log(σ ) σ Let w i = log(y i ) the the log likelihood is log(l(σ )) = d log(σ ) σ set = 0, (log(y i ) µ) (w i µ), 3

40 which has the same form as the ormal N(µ, σ ) log likelihood Hece the MLE (ˆµ, ˆσ) = W i, (W i W) Hece iferece for µ ad σ is simple Use the fact that W i = log(y i ) N(µ, σ ) ad the perform the correspodig ormal based iferece o the W i For example, a the classical ( α)00% CI for µ whe σ is ukow is where S W S W (W t, α, W + t, α ) S W = ˆσ = (W i W), ad P(t t, α) = α/ whe t is from a t distributio with degrees of freedom Compare Meeker ad Escobar (998, p 75) 030 The Maxwell-Boltzma Distributio If Y has a Maxwell Boltzma distributio, Y MB(µ, σ), the the pdf of Y is (y µ) e σ f(y) = (y µ) σ 3 π where µ is real, y µ ad σ > 0 This is a locatio scale family E(Y ) = µ + σ Γ(3/) = µ + σ π [ Γ( 5 VAR(Y ) = σ ) ( ) ] ( Γ(3/) = σ 3 8 ) Γ(3/) π MED(Y ) = µ σ ad MAD(Y ) = σ This distributio a oe parameter expoetial family whe µ is kow Note that W = (Y µ) G(3/, σ ) 33

41 If Z MB(0, σ), the Z chi(p = 3, σ), ad for r > 3 The mode of Z is at σ E(Z r ) = r/ σ rγ(r+3) Γ(3/) 03 The Negative Biomial Distributio If Y has a egative biomial distributio (also called the Pascal distributio), Y NB(r, ρ), the the pmf of Y is ( ) r + y f(y) = P(Y = y) = ρ r ( ρ) y y for y = 0,, where 0 < ρ < The momet geeratig fuctio [ ρ m(t) = ( ρ)e t for t < log( ρ) E(Y ) = r( ρ)/ρ, ad ] r VAR(Y ) = r( ρ) ρ Notice that ( ) r + y f(y) = ρ r exp[log( ρ)y] y is a P REF i ρ for kow r Thus Θ = (0, ), η = log( ρ) ad Ω = (, 0) If Y,, Y are idepedet NB(r i, ρ), the Y i NB( r i, ρ) 34

42 If Y,, Y are iid NB(r, ρ), the T = Y i NB(r, ρ) If r is kow, the the likelihood ad the log likelihood Hece or or r ρr ρ y i = 0 or L(p) = c ρ r exp[log( ρ) y i ], log(l(ρ)) = d + r log(ρ) + log( ρ) This solutio is uique ad d r log(l(ρ)) = dρ ρ ρ ρ ρ r = y i, ˆρ = r r + y i d r log(l(ρ)) = dρ ρ ( ρ) y i y i set = 0, y i < 0 Thus r ˆρ = r + Y i is the MLE of ρ if r is kow Notice that Y is the UMVUE, MLE ad MME of r( ρ)/ρ if r is kow 35

43 03 The Normal Distributio If Y has a ormal distributio (or Gaussia distributio), Y N(µ, σ ), the the pdf of Y is ( ) (y µ) f(y) = exp πσ σ where σ > 0 ad µ ad y are real Let Φ(y) deote the stadard ormal cdf Recall that Φ(y) = Φ( y) The cdf F(y) of Y does ot have a closed form, but ( ) y µ F(y) = Φ, σ ad Φ(y) 05( + exp( y /π) ) for y 0 See Johso ad Kotz (970a, p 57) The momet geeratig fuctio is m(t) = exp(tµ + t σ /) The characteristic fuctio is c(t) = exp(itµ t σ /) E(Y ) = µ ad VAR(Y ) = σ E[ Y µ r ] = σ r r/ Γ((r + )/) π for r > If k is a iteger, the E(Y k ) = (k )σ E(Y k ) + µe(y k ) See Stei (98) ad Casella ad Berger (00, p 5) MED(Y ) = µ ad MAD(Y ) = Φ (075)σ 06745σ Hece σ = [Φ (075)] MAD(Y ) 483MAD(Y ) This family is a locatio scale family which is symmetric about µ Suggested estimators are Y = ˆµ = Y i ad S = S Y = 36 (Y i Y )

44 The classical ( α)00% CI for µ whe σ is ukow is S Y S Y (Y t, α, Y + t, α ) where P(t t, α) = α/ whe t is from a t distributio with degrees of freedom If α = Φ(z α ), the where z α m c o + c m + c m + d m + d m + d 3 m 3 m = [ log( α)] /, c 0 = 5557, c = , c = 00038, d = 43788, d = 08969, d 3 = , ad 05 α For 0 < α < 05, z α = z α See Keedy ad Getle (980, p 95) To see that MAD(Y ) = Φ (075)σ, ote that 3/4 = F(µ + MAD) sice Y is symmetric about µ However, ( ) y µ F(y) = Φ σ ad 3 4 = Φ ( µ + Φ (3/4)σ µ So µ + MAD = µ + Φ (3/4)σ Cacel µ from both sides to get the result Notice that [ f(y) = πσ exp( µ σ )exp + µ ] σ y σ y is a P REF Hece Θ = (0, ) (, ), η = /(σ ), η = µ/σ ad Ω = (, 0) (, ) If σ is kow, [ ] [ f(y) = exp exp( µ µ ] πσ σ y σ )exp σ y 37 σ )

45 is a P REF Also the likelihood ad the log likelihood Hece or µ = y i, or This solutio is uique ad L(µ) = c exp( µ σ )exp [ µ σ log(l(µ)) = d µ σ + µ σ ] y i y i d µ log(l(µ)) = + y i dµ σ σ ˆµ = y d log(l(µ)) = dµ σ < 0 set = 0, Sice T = Y i N(µ, σ ), Y is the UMVUE, MLE ad MME of µ if σ is kow If µ is kow, [ ] f(y) = exp πσ σ(y µ) is a P REF Also the likelihood [ L(σ ) = c σ exp σ ad the log likelihood Hece ] (y i µ) log(l(σ )) = d log(σ ) σ d dσ log(l(σ )) = σ + (σ ) 38 (y i µ) (y i µ) set = 0,

46 or σ = (y i µ), or ˆσ = This solutio is uique ad d d(σ ) log(l(σ )) = (σ ) (y i µ) (y i µ) (σ ) 3 = σ =ˆσ = (ˆσ ) < 0 Sice T = (Y i µ) G(/, σ ), ˆσ = (Y i µ) (ˆσ ) ˆσ (ˆσ ) 3 is the UMVUE ad MLE of σ if µ is kow Note that if µ is kow ad r > /, the T r is the UMVUE of E(T r ) = r σ rγ(r + /) Γ(/) 033 The Oe Sided Stable Distributio If Y has a oe sided stable distributio (with idex /, also called a Lévy distributio), Y OSS(σ), the the pdf of Y is ( ) σ f(y) = σ exp πy 3 y for y > 0 ad σ > 0 This distributio is a scale family with scale parameter σ ad a P REF Whe σ =, Y INVG(ν = /, λ = ) where INVG stads for iverted gamma This family is a special case of the iverse Gaussia IG distributio It ca be show that W = /Y G(/, /σ) This distributio is eve more outlier proe tha the Cauchy distributio See Feller (97, p 5) ad Lehma (999, p 76) For applicatios see Besbeas ad Morga (004) 39

47 If Y,, Y are iid OSS(σ) the T = Y i G(/, /σ) The likelihood L(σ) = ( ( f(y i ) = )σ / σ exp πy 3 i ad the log likelihood Hece or or log(l(σ)) = log ( This solutio is uique ad Hece the MLE of d dσ log(l(σ)) = σ ) + πy 3 i log(σ) σ = σ ˆσ = y i, y i y i set = 0, d dσ log(l(σ)) = σ < 0 ˆσ = ), Notice that T / is the UMVUE ad MLE of /σ ad T r is the UMVUE for r > / Y i r Γ(r + /) σ r Γ(/) y i y i 30

48 034 The Pareto Distributio If Y has a Pareto distributio, Y PAR(σ, λ), the the pdf of Y is f(y) = λ σ/λ y +/λ where y σ, σ > 0, ad λ > 0 The mode is at Y = σ The cdf of Y is F(y) = (σ/y) /λ for y > σ This family is a scale family with scale parameter σ whe λ is fixed for λ < E(Y r ) = E(Y ) = σr rλ σ λ for r < /λ MED(Y ) = σ λ X = log(y/σ) is EXP(λ) ad W = log(y ) is EXP(θ = log(σ), λ) Notice that f(y) = [ ] I[y σ] exp σλ y λ log(y/σ) is a oe parameter expoetial family if σ is kow If Y,, Y are iid PAR(σ, λ) the T = log(y i /σ) G(, λ) If σ is kow, the the likelihood [ ] L(λ) = c λ exp ( + λ ) log(y i /σ), ad the log likelihood log(l(λ)) = d log(λ) ( + λ ) log(y i /σ) 3

49 Hece or log(y i/σ) = λ or d log(l(λ)) = dλ λ + λ ˆλ = log(y i/σ) log(y i /σ) set = 0, This solutio is uique ad d dλ log(l(λ)) = λ log(y i/σ) λ 3 = λ=ˆλ ˆλ ˆλ ˆλ 3 = ˆλ < 0 Hece ˆλ = log(y i/σ) is the UMVUE ad MLE of λ if σ is kow If σ is kow ad r >, the T r is the UMVUE of E(T) r = λ rγ(r + ) Γ() If either σ or λ are kow, otice that f(y) = [ ( )] log(y) log(σ) y λ exp I(y σ) λ Hece the likelihood L(λ, σ) = c λ exp [ ( ) ] log(yi ) log(σ) I(y () σ), λ ad the log likelihood is [ log L(λ, σ) = d log(λ) ( ) ] log(yi ) log(σ) I(y () σ) λ 3

50 Let w i = log(y i ) ad θ = log(σ), so σ = e θ The the log likelihood is [ ( ) ] wi θ log L(λ, θ) = d log(λ) I(w () θ), λ which has the same form as the log likelihood of the EXP(θ, λ) distributio Hece (ˆλ, ˆθ) = (W W (), W () ), ad by ivariace, the MLE (ˆλ, ˆσ) = (W W (), Y () ) Let D = (W i W : ) = ˆλ where W () = W : For >, a 00( α)% CI for θ is (W : ˆλ[(α) /( ) ], W : ) (0) Expoetiate the edpoits for a 00( α)% CI for σ A 00( α)% CI for λ is ( ) D D, (0) χ ( ), α/ χ ( ),α/ This distributio is used to model ecoomic data such as atioal yearly icome data, size of loas made by a bak, et cetera 035 The Poisso Distributio If Y has a Poisso distributio, Y POIS(θ), the the pmf of Y is f(y) = P(Y = y) = e θ θ y for y = 0,,, where θ > 0 The mgf of Y is m(t) = exp(θ(e t )), ad the characteristic fuctio of Y is c(t) = exp(θ(e it )) E(Y ) = θ, ad VAR(Y ) = θ Che ad Rubi (986) ad Adell ad Jodrá (005) show that < MED(Y ) E(Y ) < /3 33 y!

51 Pourahmadi (995) showed that the momets of a Poisso (θ) radom variable ca be foud recursively If k is a iteger ad ( 0 0) =, the k ( ) k E(Y k ) = θ E(Y i ) i i=0 The classical estimator of θ is ˆθ = Y The approximatios Y N(θ, θ) ad Y N( θ, ) are sometimes used Notice that f(y) = e θ y! exp[log(θ)y] is a P REF Thus Θ = (0, ), η = log(θ) ad Ω = (, ) If Y,, Y are idepedet POIS(θ i ) the Y i POIS( θ i) If Y,, Y are iid POIS(θ) the T = Y i POIS(θ) The likelihood L(θ) = c e θ exp[log(θ) ad the log likelihood y i ], log(l(θ)) = d θ + log(θ) y i Hece or y i = θ, or d dθ log(l(θ)) = + θ ˆθ = y y i set = 0, This solutio is uique ad d dθ log(l(θ)) = y i < 0 θ 34

52 uless y i = 0 Hece Y is the UMVUE ad MLE of θ Let W = Y i ad suppose that W = w is observed Let P(T < χ d (α)) = α if T χ d The a exact 00 ( α)% CI for θ is ( χ w ( α ), χ w+( α ) ) for w 0 ad ( ) 0, χ ( α) for w = The Power Distributio If Y has a power distributio, Y POW(λ), the the pdf of Y is f(y) = λ y λ, where λ > 0 ad 0 < y The cdf of Y is F(y) = y /λ for 0 < y MED(Y ) = (/) λ W = log(y ) is EXP(λ) Notice that Y beta(δ = /λ, ν = ) Notice that f(y) = λ I (0,](y)exp [( λ ] )log(y) = λ [ ] y I (0,](y)exp ( log(y)) λ is a P REF Thus Θ = (0, ), η = /λ ad Ω = (, 0) If Y,, Y are iid POW(λ), the The likelihood T = log(y i ) G(, λ) [ ] L(λ) = λ exp ( λ ) log(y i ), 35

53 ad the log likelihood Hece or log(y i) = λ, or log(l(λ)) = log(λ) + ( λ ) log(y i ) d log(l(λ)) = dλ λ log(y i) λ ˆλ = log(y i) This solutio is uique ad d dλ log(l(λ)) = λ log(y i) λ 3 = ṋ λ + ˆλ ˆλ 3 = ˆλ < 0 Hece ˆλ = log(y i) is the UMVUE ad MLE of λ If r >, the T r is the UMVUE of A 00( α)% CI for λ is ( E(T) r = λ rγ(r + ) Γ() T χ, α/, T χ,α/ 037 The Rayleigh Distributio ) set = 0, λ=ˆλ (03) If Y has a Rayleigh distributio, Y R(µ, σ), the the pdf of Y is [ f(y) = y µ exp ( ) ] y µ σ σ 36

54 where σ > 0, µ is real, ad y µ See Cohe ad Whitte (988, Ch 0) This is a asymmetric locatio scale family The cdf of Y is [ F(y) = exp ( ) ] y µ σ for y µ, ad F(y) = 0, otherwise E(Y ) = µ + σ π/ µ σ VAR(Y ) = σ (4 π)/ 04904σ MED(Y ) = µ + σ log(4) µ + 774σ Hece µ MED(Y ) 655MAD(Y ) ad σ 30MAD(Y ) Let σd = MAD(Y ) If µ = 0, ad σ =, the 05 = exp[ 05( log(4) D) ] exp[ 05( log(4) + D) ] Hece D ad MAD(Y ) σ It ca be show that W = (Y µ) EXP(σ ) Other parameterizatios for the Rayleigh distributio are possible Note that f(y) = [ σ (y µ)i(y µ)exp ] σ(y µ) appears to be a P REF if µ is kow If Y,, Y are iid R(µ, σ), the T = (Y i µ) G(, σ ) If µ is kow, the the likelihood ad the log likelihood L(σ ) = c exp σ [ σ ] (y i µ), log(l(σ )) = d log(σ ) σ 37 (y i µ)

55 Hece d d(σ ) log(l(σ )) = σ + σ or (y i µ) = σ, or ˆσ = This solutio is uique ad d d(σ ) log(l(σ )) = (y i µ) set = 0, (y i µ) (σ ) (ˆσ ) ˆσ (ˆσ ) 3 = (ˆσ ) < 0 (y i µ) (σ ) 3 = σ =ˆσ Hece ˆσ = (Y i µ) is the UMVUE ad MLE of σ if µ is kow If µ is kow ad r >, the T r is the UMVUE of E(T r ) = r σ rγ(r + ) Γ() 038 The Smallest Extreme Value Distributio If Y has a smallest extreme value distributio (or log-weibull distributio), Y SEV (θ, σ), the the pdf of Y is f(y) = σ exp(y θ θ )exp[ exp(y σ σ )] where y ad θ are real ad σ > 0 The cdf of Y is F(y) = exp[ exp( y θ σ )] This family is a asymmetric locatio-scale family with a loger left tail tha right 38

56 E(Y ) θ 0577σ, ad VAR(Y ) = σ π / σ MED(Y ) = θ σ log(log()) MAD(Y ) σ Y is a oe parameter expoetial family i θ if σ is kow If Y has a SEV(θ, σ) distributio, the W = Y has a LEV( θ, σ) distributio 039 The Studet s t Distributio If Y has a Studet s t distributio, Y t p, the the pdf of Y is f(y) = Γ( p+ ) y p+ ( + (pπ) / Γ(p/) p ) ( ) where p is a positive iteger ad y is real This family is symmetric about 0 The t distributio is the Cauchy(0, ) distributio If Z is N(0, ) ad is idepedet of W χ p, the Z ( W p )/ is t p E(Y ) = 0 for p MED(Y ) = 0 VAR(Y ) = p/(p ) for p 3, ad MAD(Y ) = t p,075 where P(t p t p,075 ) = 075 If α = P(t p t p,α ), the Cooke, Crave, ad Clarke (98, p 84) suggest the approximatio where t p,α p[exp( w α p ) )] w α = z α(8p + 3) 8p +, z α is the stadard ormal cutoff: α = Φ(z α ), ad 05 α If 0 < α < 05, the t p,α = t p, α This approximatio seems to get better as the degrees of freedom icrease 39

57 040 The Topp-Leoe Distributio If Y has a Topp Leoe distributio, Y TL(ν), the pdf of Y is f(y) = ν( y)(y y ) ν for ν > 0 ad 0 < y < The cdf of Y is F(y) = (y y ) ν for 0 < y < This distributio is a P REF sice f(y) = ν( y)i (0,) (y)exp[( ν)( log(y y ))] MED(Y ) = (/) /ν, ad Example 7 showed that W = log(y Y ) EXP(/ν) The likelihood L(ν) = c ν (y i yi ) ν, ad the log likelihood Hece log(l(ν)) = d + log(ν) + (ν ) d dν log(l(ν)) = ν + log(y i yi ) log(y i y i ) set = 0, or + ν log(y i yi ) = 0, or ˆν = log(y i yi ) Hece This solutio is uique ad ˆν = d log(l(ν)) = dν ν < 0 log(y i Y i ) = log(y i Yi ) is the MLE of ν If T = log(y i Y i ) G(, /ν), the T r is the UMVUE of E(T r ) = ν r Γ(r + ) Γ() for r > I particular, ˆν = T is the MLE ad UMVUE of ν for > 330

58 04 The Trucated Extreme Value Distributio If Y has a trucated extreme value distributio, Y TEV(λ), the the pdf of Y is f(y) = ( ) λ exp y ey λ where y > 0 ad λ > 0 The cdf of Y is [ ] (e y ) F(y) = exp λ for y > 0 MED(Y ) = log( + λlog()) W = e Y is EXP(λ) Notice that f(y) = [ ] λ ey I(y 0)exp λ (ey ) is a P REF Hece Θ = (0, ), η = /λ ad Ω = (, 0) If Y,, Y are iid TEV(λ), the T = (e Y i ) G(, λ) The likelihood L(λ) = c λ exp [ λ ] log(e y i ), ad the log likelihood log(l(λ)) = d log(λ) λ log(e y i ) Hece d log(l(λ)) = dλ λ + log(ey i ) λ set = 0, 33

59 or log(ey i ) = λ, or ˆλ = log(ey i ) This solutio is uique ad d dλ log(l(λ)) = λ log(ey i ) λ 3 = ṋ λ ˆλ ˆλ 3 = ˆλ < 0 Hece ˆλ = log(ey i ) is the UMVUE ad MLE of λ If r >, the T r is the UMVUE of A 00( α)% CI for λ is ( E(T) r = λ rγ(r + ) Γ() T χ, α/, T χ,α/ 04 The Uiform Distributio ) λ=ˆλ (04) If Y has a uiform distributio, Y U(θ, θ ), the the pdf of Y is f(y) = θ θ I(θ y θ ) The cdf of Y is F(y) = (y θ )/(θ θ ) for θ y θ This family is a locatio-scale family which is symmetric about (θ + θ )/ By defiitio, m(0) = c(0) = For t 0, the mgf of Y is m(t) = etθ e tθ (θ θ )t, 33

60 ad the characteristic fuctio of Y is c(t) = eitθ e itθ (θ θ )it E(Y ) = (θ + θ )/, ad MED(Y ) = (θ + θ )/ VAR(Y ) = (θ θ ) /, ad MAD(Y ) = (θ θ )/4 Note that θ = MED(Y ) MAD(Y ) ad θ = MED(Y ) + MAD(Y ) Some classical estimators are ˆθ = Y () ad ˆθ = Y () 043 The Weibull Distributio If Y has a Weibull distributio, Y W(φ, λ), the the pdf of Y is f(y) = φ λ yφ e yφ λ where λ, y, ad φ are all positive For fixed φ, this is a scale family i σ = λ /φ The cdf of Y is F(y) = exp( y φ /λ) for y > 0 E(Y ) = λ /φ Γ( + /φ) VAR(Y ) = λ /φ Γ( + /φ) (E(Y )) E(Y r ) = λ r/φ Γ( + r φ ) for r > φ MED(Y ) = (λlog()) /φ Note that λ = (MED(Y ))φ log() W = Y φ is EXP(λ) W = log(y ) has a smallest extreme value SEV(θ = log(λ /φ ), σ = /φ) distributio Notice that f(y) = φ [ ] λ yφ I(y 0)exp λ yφ is a oe parameter expoetial family i λ if φ is kow 333

61 If Y,, Y are iid W(φ, λ), the T = Y φ i G(, λ) If φ is kow, the the likelihood ad the log likelihood L(λ) = c λ exp [ λ y φ i ], log(l(λ)) = d log(λ) λ y φ i Hece or yφ i = λ, or d log(l(λ)) = dλ λ + yφ i λ ˆλ = yφ i This solutio was uique ad d dλ log(l(λ)) = λ yφ i λ 3 = ṋ λ ˆλ ˆλ 3 = ˆλ < 0 Hece ˆλ = Y φ i is the UMVUE ad MLE of λ If r >, the T r is the UMVUE of E(T r + ) ) = λrγ(r Γ() set = 0, λ=ˆλ MLEs ad CIs for φ ad λ are discussed i Example

62 044 The Zeta Distributio If Y has a Zeta distributio, Y Zeta(ν), the the pmf of Y is f(y) = P(Y = y) = y ν ζ(ν) where ν > ad y =,, 3, Here the zeta fuctio ζ(ν) = y ν for ν > This distributio is a oe parameter expoetial family for ν >, ad VAR(Y ) = E(Y ) = y= ζ(ν ) ζ(ν) ζ(ν ) ζ(ν) [ ζ(ν ) ζ(ν) for ν > 3 E(Y r ζ(ν r) ) = ζ(ν) for ν > r + This distributio is sometimes used for cout data, especially by liguistics for word frequecy See Lidsey (004, p 54) 045 Complemets May of the distributio results used i this chapter came from Johso ad Kotz (970a,b) ad Patel, Kapadia ad Owe (976) Bickel ad Doksum (007), Castillo (988), Cohe ad Whitte (988), Cramér (946), DeGroot ad Schervish (00), Ferguso (967), Hastigs ad Peacock (975), Keedy ad Getle (980), Kotz ad va Dorp (004), Leemis (986), Lehma (983) ad Meeker ad Escobar (998) also have useful results o distributios Also see articles i Kotz ad Johso (98ab, 983ab, 985ab, 986, 988ab) Ofte a etire book is devoted to a sigle distributio, see for example, Bowma ad Sheto (988) Abuhassa ad Olive (007) discuss cofidece itervals for the two parameter expoetial, half ormal ad Pareto distributios 335 ]

Some Useful Distributions

Some Useful Distributions Chapter 10 Some Useful Distributions Definition 101 The population median is any value MED(Y ) such that P (Y MED(Y )) 05 andp (Y MED(Y )) 05 (101) Definition 10 The population median absolute deviation

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Theorem 8 Let φ be the most powerful size α test of H

Theorem 8 Let φ be the most powerful size α test of H Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Parameter Estimation Fitting Probability Distributions Bayesian Approach

Parameter Estimation Fitting Probability Distributions Bayesian Approach Parameter Estimatio Fittig Probability Distributios Bayesia Approach MIT 18.443 Dr. Kempthore Sprig 2015 1 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap Outlie Bayesia Approach

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Introduction to the ML Estimation of ARMA processes

Introduction to the ML Estimation of ARMA processes Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Second-order asymptotic comparison of the MLE and MCLE of a natural parameter for a truncated exponential family of distributions

Second-order asymptotic comparison of the MLE and MCLE of a natural parameter for a truncated exponential family of distributions A Ist Stat Math 06 68:469 490 DOI 0.007/s046-04-050-9 Secod-order asymptotic compariso of the MLE ad MCLE of a atural parameter for a trucated expoetial family of distributios Masafumi Akahira Received:

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ 2 0 1 5

Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ 2 0 1 5 Μ Ρ : 0 9 / 0 1 / 2 0 1 6 Ρ. Ρ Ω. : 7 Λ Γ Μ - Λ Γ Μ Μ Η Γ Δ Κ Δ Μ Β Ρ Υ 2 0 1 5 Δ Γ Ρ Ϋ Λ Γ Θ Δ ΚΔ Μ Β Δ Β Ω Θ Δ Δ Ρ Υ Θ Δ 0111 Χ / Γ Δ Θ Μ Θ Δ Ρ Ω Κ - - - 0112 Χ / Γ Λ Ρ Γ Κ Δ 2 3. 2 1 3. 0 0 0, 0 0-2

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Lecture 7: Overdispersion in Poisson regression

Lecture 7: Overdispersion in Poisson regression Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ

ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΓΕΩΠΟΝΙΑΣ, ΔΑΣΟΛΟΓΙΑΣ ΚΑΙ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΓΕΩΠΟΝΙΑΣ ΤΟΜΕΑΣ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ Πτυχιούχου Γεωπόνου Κατόχου Μεταπτυχιακού

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Lecture 12: Pseudo likelihood approach

Lecture 12: Pseudo likelihood approach Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

γ δ ε ζ τ υ φ χ ψ ω ᾇ ᾇ ᾇ ι κ λ ᾇ ᾇ ᾇ GFS PYRSOS ΕΤΑΙΡΕΙΑ ΕΛΛΗΝΙΚΩΝ ΤΥΠΟΓΡΑΦΙΚΩΝ ΣΤΟΙΧΕΙΩΝ GREEK FONT SOCIETY ὧ ὓ ῤ ἳ ή ἐ

γ δ ε ζ τ υ φ χ ψ ω ᾇ ᾇ ᾇ ι κ λ ᾇ ᾇ ᾇ GFS PYRSOS ΕΤΑΙΡΕΙΑ ΕΛΛΗΝΙΚΩΝ ΤΥΠΟΓΡΑΦΙΚΩΝ ΣΤΟΙΧΕΙΩΝ GREEK FONT SOCIETY ὧ ὓ ῤ ἳ ή ἐ ᾇ ᾇ ᾇ ᾇ ᾇ ᾇ ο ο πζ σ ρ θ μ ξ τ ὧ ὓ ῤ ἳ ή ἐ ν π π η θ ι κ λ ἒ ν ὀ ὦ ψ ΐ ὤ ἒ ὤ ῑ β γ δ ε ζ τ υ φ χ ψ ω ΕΤΑΙΡΕΙΑ ΕΛΛΗΝΙΚΩΝ ΤΥΠΟΓΡΑΦΙΚΩΝ ΣΤΟΙΧΕΙΩΝ GREEK FONT SOCIETY GFS PYRSOS GFS Pyrsos ελληνικά open type

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 3: Asymptotic Normality of M-estimators

Lecture 3: Asymptotic Normality of M-estimators Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ. «Γ λ υ κ ό κ α λ ο κ α ι ρ ά κ ι» της Γ ω γ ώ ς Α γ γ ε λ ο π ο ύ λ ο υ

ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ. «Γ λ υ κ ό κ α λ ο κ α ι ρ ά κ ι» της Γ ω γ ώ ς Α γ γ ε λ ο π ο ύ λ ο υ ΤΑ Π ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ Εφη μ ε ρ ί δ α τ ο υ τ μ ή μ α τ ο ς Β τ ο υ 1 9 ου Δ η μ ο τ ι κ ο ύ σ χ ο λ ε ί ο υ Η ρ α κ λ ε ί ο υ Α ρ ι θ μ ό ς φ ύ λ λ ο υ 1 Ι ο ύ ν ι ο ς 2 0 1 5 «Γ λ υ κ ό κ α λ ο κ α ι ρ

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Advanced Statistics. Chen, L.-A. Distribution of order statistics: Review : Let X 1,..., X k be random variables with joint p.d.f f(x 1,...

Advanced Statistics. Chen, L.-A. Distribution of order statistics: Review : Let X 1,..., X k be random variables with joint p.d.f f(x 1,... Avace Statistics Che, L.-A. Distributio of orer statistics: Review : Let X,..., X k be raom variables with joit p..f f(x,..., x k a Y h (X,..., X k, Y h (X,..., X k,..., Y k h k (X,..., X k be - trasformatio

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα