5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2."

Transcript

1 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m U sistemu su x 1, x 2,, x n nepoznate veličine, dok su a ij, 1 i m, 1 j n zadati koeficijenti, a b i, 1 i m zadati slobodni članovi Pri tome broj jednačina m i broj nepoznatih n mogu biti u bilo kom od odnosa m < n, m = n ili m > n Pod rešenjem sistema linearnih jednačina podrazumevamo bilo koji skup od n brojeva α 1, α 2,, α n koji za x 1 = α 1, x 2 = α 2,, x n = α n identički zadovoljavaju sistem Sistem linearnih jednačina ne mora uvek imati rešenje Npr sistem x + y = 1 x + y = 2 nema rešenja jer ne postoje brojevi koji mogu da ga zadovolje Takože, ukoliko sistem ima rešenje, to ne znači da mora imati samo jedno rešenje Tako, npr sistem jednačina x + y = 1 2x + 2y = 2 ima beskonačno mnogo rešenja oblika x = α, y = 1 α gde je α proizvoljan broj Za nepoznatu x se u ovom slučaju kaže da je slobodna a za y da je vezana Uopšte, kada sistem linearnih jednačina ima više od jednog rešenja, onda je barem jedna nepoznata slobodna, što praktično znači da sistem ima beskonačno mnogo rešenja Prema tome da li ima ili nema rešenja, i ukoliko ih ima, da li ima jedno jedino ili više rešenja, sistem linearnih jednačina može biti: 1 odrežen, ako ima samo jedno rešenje, 2 neodrežen, ako ima više od jednog (beskonačno mnogo) rešenja,

2 5 Sistemi linearnih jednačina 48 3 nemoguć (protivrečan) ako nema rešenja Odreženi i neodreženi sistemi se nazivaju jednim imenom saglasnim sistemima Saglasan sistem, dakle, ima bar jedno rešenje Ako su svi slobodni članovi sistema jednaki nuli: b 1 = b 2 = = b n = 0 sistem je homogen, u protivnom je nehomogen saglasan, jer ima bar jedno rešenje: Svaki homogen sistem je x 1 = x 2 = x n = 0 Ovo rešenje se naziva trivijalnim rešenjem Ukoliko je homogen sistem odrežen, on ima samo trivijalno rešenje Neodrežen homogen sistem ima i rešenja koja su netrivijalna Primer 33 Sistem x + y = 0 x y = 0 ima samo trivijalno rešenje, dok sistem x + y = 0 2x + 2y = 0 ima beskonačno mnogo rešenja oblika x = α, y = α Dva sistema linearnih jednačina su ekvivalentna ako je svako rešenje jednog sistema istovremeno i rešenje drugog sistema i obrnuto Transformacije koje sistem linearnih jednačina prevode u njemu ekvivalentan sistem su 1 Zamena mesta dveju jednačina, 2 Množenje svih koeficijenata jedne jednačine konstantom c 0, 3 Dodavanje koeficijenata jedne jednačine odgovarajućim koeficijentima neke druge jednačine Primer 34 Dat je sistem 2x + y z = 2

3 51 Gausov postupak eliminacije 49 x + 2y + 3z = 4 x + y + z = 3 Zamenom mesta prve i treće jednačine dobija se ekvivalentan sistem x + y + z = 3 x + 2y + 3z = 4 2x + y z = 2 Ako se koeficijenti prve jednačine najpre dodaju odgovarajućim koeficijentima druge jednačine, a potom se pomnože sa -2 i dodaju koeficijentima treće jednačine dobija se sistem: x + y + z = 3 3y + 4z = 7 y 3z = 4 Zamenom mesta druge i treće jednačine dobija se: x + y + z = 3 y 3z = 4 3y + 4z = 7 Množenjem koeficijenata druge jednačine sa 3 i njihovim dodavanjem na koeficijente treće jednačine dobija se sistem ekvivalentan polaznom: x + y + z = 3 y 3z = 4 5z = 5 51 Gausov postupak eliminacije Gausov postupak (metoda) eliminacije je postupak kojim se može rešavati bilo koji sistem jednačina m < n, m = n, m > n U Gausovom postupku pretpostavlja se da je 0 Naime, ako u konkretnom sistemu u prvoj jednačini koeficijent uz x 1 ne bi bio različit od nule u sistemu mora postojati bar jedna jednačina u kojoj je koeficijent uz x 1 različit od nule, i onda se ta jednačina i prva jednačina zamene, čime se dobija ekvivalentan sistem u kome je 0

4 51 Gausov postupak eliminacije 50 Ako se sada prva jednačina podeli sa dobije se ekvivalentan sistem x 1 + a 12 x 2 + a 13 x a 1n x n = b 1 a 21 x 1 + a x 2 + a 23 x a 2n x n = b 2 a m1 x 1 + a m2 x 2 + a m3 x a mn x n = b m Ako se sada prva jednačina ovog sistema pomnoži sa a 21 i doda drugoj jednačini, a zatim pomnoži sa a 31 i doda trećoj jednačini i tako redom, dobija se novi ekvivalentni sistem x 1 + a 12 x 2 + a 13 x a 1n x n = b 1 (a a 12 a 21 )x 2 + (a 23 a 13 a 21 )x (a 2n a 1n a 21 )x n = b 2 b 1 a 21 (a m2 a 12 a m1 )x 2 +(a m3 a 13 a m1 )x 3 + +(a mn a 1n a m1 )x n = b m b 1 a m1 odnosno, ako uvedemo nove oznake a 1j = 1j a ij a 1j a i1 = ij j = 2,, n b 1 = b 1 i = 2,, m j = 2,, n dobijamo sistem b i b 1 a i1 = b i i = 2,, m x x x nx n = b 1 x x nx n = b 2 m2x 2 + m3x mnx n = b m u kome je samo u prvoj jednačini koeficijent uz x 1 različit od nule Drugim rečima, nepoznata x 1 eliminisana je iz svih jednačina počev od druge pa nadalje Mi možemo dalje pretpostaviti da je 0 Ako to ne bi bio slučaj, onda se, kao i u prethodnom koraku, traži jednačina u kojoj je koeficijent uz

5 51 Gausov postupak eliminacije 51 x 2 različit od nule Potom se zamenom mesta te jednačine i druge jednačine postiže da bude 0 Može se, mežutim, desiti i da svi koeficijenti uz x 2 budu jednaki 0, odnosno da važi i2 = 0, i = 2,, m U tom slučaju proverava se da li postoji bar jedan koeficijent ij 0, j {3,, n}, i {2,, m}, odnosno da li postoji koeficijent uz neku promenljivu x j, za j > 2, u nekoj, i-toj jednačini (i 2), koji je različit od 0, u kom slučaju sada promenljive x 2 i x j mogu zameniti mesta tako da opet bude 0 Poslednja mogućnost je da su svi koeficijenti ij, i = 2,, m, j = 2,, n jednaki nuli, odnosno da se sistem sveo na: x x x nx n = b 1 0 = b 2 0 = b m U ovom, poslednjem slučaju Gausov postupak se završava Iz ovako dobijenog sistema jasno je da on može biti saglasan ako i samo ako su svi slobodni koeficijetni b i = 0, i = 2,, m U tom slučaju sistem se praktično svodi na jednu jednačinu sa n nepoznatih, što znači da dobijeni sistem, pa samim tim i njemu ekvivalentan polazni sistem, predstavlja sistem sa beskonačno mnogo rešenja Pri tome je n 1 nepoznatih slobodno, a jedna nepoznata je vezana Ako je, pak, bar jedan od slobodnih koeficijenata b i 0, dobijeni sistem, a time i polazni, je nemoguć Vratimo se sada na pretpostavku da je 0 U tom slučaju deljenjem druge jednačine sa dobija se ekvivalentan sistem x x x nx n = b 1 x 2 + a 23 x a 2n x n = b 2 a m2x 2 + m3x mnx n = b m Dalje, ako se druga jednačina množi redom sa i2 i dodaje i-toj jednačini i = 3,, m, dobija se ekvivalentan sistem:

6 51 Gausov postupak eliminacije 52 x x x nx n = b 1 x 2 + a 23 x a 2n x n = b 2 a ( 33 a 23 a 32)x ( 3n a 2n a 32)x n = b 3 b 2 32 ( m3 a 23 a m2)x ( mn a 2n a m2)x n = b 3 b m m2 odnosno ako se uvedu nove oznake 2j = 2j j = 3,, n b 2 = b 2 ij a 2j i2 = ij i = 3,, m j = 3,, n dobija se sistem b i b 2 i2 = b i i = 3,, m x x x nx n = b 1 x x nx n = b 2 33x nx n = b 3 m3x mnx n = b m Ovaj sistem ekvivalentan je sa polaznim sistemom, a u njemu je sada promenljiva x 2 eliminisana iz svih jednačna počev od treće jednačine pa nadalje Daljim sprovoženjem analognog postupka eliminacije nepoznatih x 3, x 4, postupak će se završiti na ekvivalentnom sistemu koji ima oblik x x x kx k + + 1nx n = b 1 x x kx k + + 2nx n = b 2 x kx k + + 3nx n = b 3 x m + + a (m) mn x n = b (m) m

7 52 Rešavanje sistema linearnih jednačina pomoću determinanti 53 koji je uvek saglasan, ili na sistemu čiji je oblik x x x kx k + + 1nx n = b 1 x x kx k + + 2nx n = b 2 x kx k + + 3nx n = b 3 x k + + a (k) kn x n = b (k) k 0 = b (k) k+1 0 = b (k) m pri čemu je k < m, a koji je saglasan ako i samo ako je b (k) i = 0 za sve vrednosti i = k + 1,, m, dok je u protivnom nemoguć U slučaju kada je ovaj sistem saglasan, on ima praktično isti oblik kao i prethodni, pa ćemo nadalje razmatrati samo ovaj prethodni Ako se radi o saglasnom sistemu i ako je pri tome m = n (odnosno k = n), u kom slučaju se poslednja jednačina svodi na x n = b (n) n onda sistem ima jedinstveno rešenje Vrednosti koje čine ovo rešenje se dobijaju tako što se vrednost za x n dobije iz poslednje jednačine a zatim uvrsti u pretposlednju jednačinu, pa se odatle izračuna vrednost za x n 1 Postupak se nastavlja analogno sve do prve jednačine u kojoj se izračunava x 1 na osnovu već izračunatih vrednosti x n, x n 1,, x 2 Ako je sistem saglasan a pri tome je m < n (odnosno k < n), onda sistem ima beskonačno mnogo rešenja Sve nepoznate x m+1, x m+2,, x n su slobodne, odnosno mogu imati proizvoljne vrednosti, dok su nepoznate x 1, x 2,, x m vezane, odnosno izražavaju se u funkciji slobodnih nepoznatih Gausovom metodom se, prema tome: 1 utvržuje da li je sistem saglasan ili nemoguć i 2 u slučaju saglasnog sistema dobijaju se rešenja sistema 52 Rešavanje sistema linearnih jednačina pomoću determinanti Rešavanje sistema linearnih jednačina pomoću determinanti moguće je samo ukoliko je broj jednačina jednak broju nepoznatih, odnosno, ako je m = n

8 52 Rešavanje sistema linearnih jednačina pomoću determinanti 54 Sistem je u tom slučaju x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a x a 2n x n = b 2 a n1 x 1 + a n2 x a nn x n = b n Matrica koju formiraju koeficijenti uz nepoznate a ij a 12 a 1n a 21 a a 2n S = a n1 a n2 a nn se naziva matricom sistema a njena determinanta a 12 a 1n a 21 a a 2n D s = a n1 a n2 a nn determinantom sistema Za rešavanje sistema linearnih jednačina pomoću determinanti, pored determinante sistema, koristi se još n determinanti D k, k = 1,, n koje se dobijaju tako što se u determinanti D s, k-ta kolona zameni kolonom slobodnih članova a 12 a 1k 1 b 1 a 1k+1 a 1n a 21 a a 2k 1 b 2 a 2k+1 a 2n D k = a n1 a n2 a nk 1 b n a nk+1 a nn Primena determinanti za rešavanje sistema linearnih jednačina praktično se zasniva na sledećoj teoremi: Teorema 2 Neka sistem n linearnih jednačina sa n nepoznatih ima bar jedno rešenje Tada, za svako rešenje sistema x 1 = α 1 x 2 = α 2 x n = α n važe jednakosti α k D s = D k k = 1, 2,, n

9 52 Rešavanje sistema linearnih jednačina pomoću determinanti 55 Dokaz 5 Pomnožimo determinantu D s sa α k i to tako što pomnožimo upravo njenu k-tu kolonu: a 1k a 1n α k a 1k a 1n a 21 a 2k a 2n a 21 α k a 2k a 2n α k D s = α k = a n1 a nk a nn a n1 α k a nk a nn U dobijenoj determinanti pomnožimo prvu kolonu sa α 1, pa je dodamo k-toj koloni, zatim drugu kolonu sa α 2, pa i nju dodamo k-toj koloni, i tako redom do n-te kolone koju pomnožimo sa α n i dodamo takože k-toj koloni, tako da konačno dobijemo a 12 a 1k 1 α 1 + a 12 α a 1n α n a 1k+1 a 1n a 21 a a 2k 1 a 21 α 1 + a α a 2n α n a 2k+1 a 2n α k D s = a n1 a n2 a nk 1 a n1 α 1 + a n2 α a nn α n a nk+1 a nn Kako je α 1, α 2,, α n rešenje sistema, to je α 1 + a 12 α a 1n α n = b 1 a 21 α 1 + a α a 2n α n = b 2 pa je a n1 α 1 + a n2 α a nn α n = b n a 12 a 1k 1 b 1 a 1k+1 a 1n a 21 a a 2k 1 b 2 a 2k+1 a 2n α k D s = a n1 a n2 a nk 1 b n a nk+1 a nn = D k što je i trebalo dokazati Ako je, dakle, α 1, α 2, α n rešenje sistema i D s 0, odnosno matrica sistema je regularna, onda je α k = D k D s Za sisteme jednačina u kojima je broj jednačina jednak broju nepoznatih važi tzv Kramerovo pravilo: Ako je matrica sistema regularna, odnosno ako

10 53 Matrične jednačine 56 je D s 0, onda je sistem odrežen, odnosno, saglasan je i ima jedinstveno rešenje x k = D k k = 1, 2,, n D s Sa druge strane, ako je matrica sistema singularna, odnosno ako je D s = 0, a bar jedna od determinanti D k 0, k {1, 2,, n}, onda je sistem nemoguć Naime, ako bi sistem imao rešenje pri D s = 0 i D k 0 za neko k, onda bi važilo D k = α k D s = 0 što protivreči uslovu D k 0 Ukoliko je D s = 0 i D k = 0 k = 1, 2,, n onda sistem sigurno nije odrežen, ali preostaju dve druge mogućnosti: da je sistem neodrežen (ima beskonačno mnogo rešenja) ili da je nemoguć (nema rešenja), ali se do rešenja sistema u ovom slučaju ne može doći pomoću determinanti Konačno, ako je u pitanju homogen sistem jednačina, odnosno sistem u kome su slobodni koeficijenti b 1 = b 2 = = b n = 0, onda će uvek biti D 1 = D 2 = = D n = 0 jer svaka od ovih determinanti sadrži jednu kolonu u kojoj se nalaze slobodni koeficijenti, odnosno same nule Kako je, sa druge strane, homogen sistem uvek saglasan, to znači da za D s 0 sistem ima jedinstveno rešenje, a to je trivijalno rešenje, dok je za D s = 0 sistem neodrežen, odnosno ima beskonačno mnogo rešenja 53 Matrične jednačine Sistem linearnih jednačina x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m može se izraziti u obliku matrične jednačine gde je A X = B

11 54 Kroneker-Kapelijeva teorema 57 A = a 12 a 1n a 21 a a 2n a m1 a m2 a mn matrica sistema, dok su X i B vektori kolone X = x 1 x 2 x n B = b 1 b 2 b m Ako je sistem kvadratan (m = n), a matrica sistema A regularna (deta 0), onda za nju postoji inverzna matrica A 1, pa se rešenje matrične jednačine može dobiti na sledeći način A 1 (AX) = A 1 B (A 1 A) X = A 1 B I X = A 1 B X = A 1 B 54 Kroneker-Kapelijeva teorema Za sistem lineranih jednačina čija je matrica sistema x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m a 12 a 1n a 21 a a 2n A = a m1 a m2 a mn

12 55 Sopstvene vrednosti i sopstveni vektori matrice 58 može se formirati i sledeća matrica a 12 a 1n b 1 a 21 a a 2n b 2 A = a m1 a m2 a mn b m koja se naziva proširenom matricom sistema Teorema 3 (Kroneker-Kapeli) Sistem linearnih jednačina je saglasan ako i samo ako je r = ranga = ranga odnosno ako je rang matrice sistema r jednak rangu proširene matrice sistema Za saglasne sisteme važi: 1 Ako je rang matrice A sistema r = n (pri čemu mora biti n m) onda sistem ima jedinstveno rešenje 2 Ako rang matrice A sistema r < n onda sistem ima beskonačno mnogo rešenja pri čemu je n r nepoznatih slobodno, a r ih je vezano (zavisno od slobodnih nepoznatih) Na osnovu Kroneker-Kapelijeve teoreme direktno sledi da je svaki homogeni sistem saglasan jer se matrica sistema proširuje kolonom slobodnih koeficijenata čije su vrednosti same nule pa se ovakvim proširenjem rang matrice ne može povećati, odnosno ranga = ranga 55 Sopstvene vrednosti i sopstveni vektori matrice Za kvadratne matrice mogu se definisati sopstveni vektori i sopstvene vrednosti Naime, svaka matrica kolona (vektor) X = naziva se sopstveni vektor kvadratne matrice A reda n ako postoji skalar λ takav da je x 1 x 2 x n A X = λx

13 55 Sopstvene vrednosti i sopstveni vektori matrice 59 U tom slučaju se skalar λ naziva sopstvena vrednost matrice A koja odgovara sopstvenom vektoru X Jednačina može da se napiše i kao odnosno Kako je matrica (A λi) = to matričnoj jednačini A X = λx A X λx = 0 (A λi) X = 0 λ a 12 a 1n a 21 a λ a 2n a n1 a n2 a nn λ odgovara homogeni sistem jednačina (A λi) X = 0 Determinanta ovog sistema ( λ)x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + (a λ)x a 2n x n = b 2 a n1 x 1 + a n2 x (a nn λ)x n = b n det(a λi) = λ a 12 a 1n a 21 a λ a 2n a n1 a n2 a nn λ predstavlja polinom po λ i naziva se karakterističnim polinomom matrice A Odgovarajuća algebarska jednačina det(a λi) = 0

14 55 Sopstvene vrednosti i sopstveni vektori matrice 60 naziva se karakterističnom jednačinom matrice A Iz načina formiranja karakterističnog polinoma sledi da rešenja karakteristične jednačine predstavljaju sopstvene vrednosti matrice A, a zamenom sopstvenih vrednosti u sistem (A λi) X = 0 dobijaju se odgovarajući sopstveni vektori matrice A Primer 35 Za zadatu matricu A = karakteristični polinom se dobija rešavanjem determinante A = odakle sledi karakteristična jednačina 3 λ λ λ λ 3 9λ λ 16 = 0 Rešenja ove jednačine su λ 1 = 1, λ 2 = λ 3 = 4 i ona predstavljaju sopstvene vrednosti matrice A Za sopstvenu vrednost λ 1 = 1 dobija se homogeni sistem 2x + y z = 0 x + 2y + z = 0 x + y + 2z = 0 čija su rešenja oblika (α, α, α) Odavde sa sopstveni vektor za λ 1 = 1 može dobiti izborom proizvoljne vrednosti α 0, recimo α = 1, u kom slučaju je odgovarajući sopstveni vektor X 1 = Za λ 2 = λ 3 = 4 imamo sistem x + y z = 0 x y + z = 0

15 55 Sopstvene vrednosti i sopstveni vektori matrice 61 z + y z = 0 čija su rešenja (α β, α, β), odakle se za α = 1 i β = 0 dobija sopstveni vektor 1 X 2 = 1 0 a za α = 0 i β = 1 sopstveni vektor 1 X 3 = 0 1

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

4 Matrice i determinante

4 Matrice i determinante 4 Matrice i determinante 32 4 Matrice i determinante Definicija 1 Pod matricom tipa (formata) m n nad skupom (brojeva) P podrazumevamo funkciju koja preslikava Dekartov proizvod {1, 2,, m} {1, 2,, n} u

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

8 Funkcije više promenljivih

8 Funkcije više promenljivih 8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Linearna algebra i geometrija

Linearna algebra i geometrija Univerzitet u Sarajevu Elektrotehni ki fakultet Linearna algebra i geometrija predavanja Sarajevo, oktobar 2017 Sadrºaj Sadrºaj ii 1 Uvod 1 2 Matrice i determinante 2 3 Sistemi linearnih jedna ina 3 31

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Norme vektora i matrica

Norme vektora i matrica 2 Norme vektora i matrica Pojam norme u vektorskim prostorima se najčešće povezuje sa određenom merom veličine elemenata tog prostora. Tako je u prostoru realnih brojeva R, norma elementa x R najčešće

Διαβάστε περισσότερα

Osnovne definicije i rezultati iz Uvoda u linearnu algebru

Osnovne definicije i rezultati iz Uvoda u linearnu algebru Osnovne definicije i rezultati iz Uvoda u linearnu algebru (0.01) Simetrije Neka je A = [a ij ] kvadratna matrica (matrica oblika n n). a) Za A kažemo da je simetrična matrica kadgod je A = A, tj. kadgod

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 3 Reč autora Ovaj tekst je nastao od materijala sa kursa Linearna algebra i analitička geometrija za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Riješeni zadaci: Linearna algebra

Riješeni zadaci: Linearna algebra Riješeni zadaci: Linearna algebra Matrice Definicija Familiju A od m n realnih (kompleksnih) brojeva a ij, i 1,, m, j 1,, n zapisanih u obliku pravokutne tablice a 11 a 12 a 1n a 21 a 22 a 2n A a m1 a

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

Prediktor-korektor metodi

Prediktor-korektor metodi Prediktor-korektor metodi Prilikom numeričkog rešavanja primenom KP: x = fx,, x 0 = 0, x 0 x b LVM α j = h β j f n = 0, 1, 2,..., N, javlja se kompromis izmed u eksplicitnih metoda, koji su lakši za primenu

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone.

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone. Matrice Uvod u matrice i vektore Pretpostavite da ste odgovorni za iznajmljivanje automobila zaposlenicima svoje firme Sedmični najmovi za različite veličine automobila su: kompaktni 9KM, srednji 60KM,

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia. Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu

Διαβάστε περισσότερα

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. 1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

Glava 1. Z transformacija. 1.1 Pojam z transformacije

Glava 1. Z transformacija. 1.1 Pojam z transformacije Glava 1 Z transformacija 1.1 Pojam z transformacije U elektrotehnici se vrlo često susrećemo sa signalima koji su diskretnog tipa. To znači da je radimo sa signalima koji su zadati svoji vrednostima samo

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA Predrag Tanović February 11, 211 {WARNING: Sadržaj ovog materijala NI U KOM SLUČAJU NE MOŽE ZAMENITI UDŽBENIK: radi se o prepravljanim slajdovima predavanja. Reference

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

Zbirka zadataka iz Matematike I

Zbirka zadataka iz Matematike I UNIVERITET U NOVOM SADU TEHNOLOŠKI FAKULTET Tatjana Došenović Dušan Rakić Aleksandar Takači Mirjana Brdar birka zadataka iz Matematike I - za studente Tehnološkog fakulteta - Novi Sad, 008. UNIVERITET

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

8 Predikatski račun kao deduktivni sistem

8 Predikatski račun kao deduktivni sistem 26 8 Predikatski račun kao deduktivni sistem Neka je L neki jezik prvog reda. Da bismo odredili predikatski račun K L tipa L, prvo ćemo se dogovoriti šta će biti azbuka nad kojom radimo. Znamo da se svaka

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

UVOD. Ovi nastavni materijali namijenjeni su studentima

UVOD. Ovi nastavni materijali namijenjeni su studentima UVOD Ovi nastavni materijali namijenjeni su studentima u svrhu lakšeg praćenja i boljeg razumijevanja predavanja iz kolegija matematika. Ovi materijali čine suštinu nastavnog gradiva pa, uz obaveznu literaturu,

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

Relacije poretka ure denja

Relacije poretka ure denja Relacije poretka ure denja Relacija na skupu A je relacija poretka na A ako je ➀ refleksivna ➁ antisimetrična ➂ tranzitivna Umesto relacija poretka često kažemo i parcijalno ured enje ili samo ured enje.

Διαβάστε περισσότερα

dr L. Stefanović, mr M. Matejić, dr S. Marinković DIFERENCIJALNE ZA STUDENTE TEHNIČKIH FAKULTETA SKC Niš, 2006.

dr L. Stefanović, mr M. Matejić, dr S. Marinković DIFERENCIJALNE ZA STUDENTE TEHNIČKIH FAKULTETA SKC Niš, 2006. dr L. Stefanović, mr M. Matejić, dr S. Marinković DIFERENCIJALNE JEDNAČINE ZA STUDENTE TEHNIČKIH FAKULTETA SKC Niš, 2006. dr Lidija Stefanović, mr Marjan Matejić, dr Slad ana Marinković DIFERENCIJALNE

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Eksponencijalna i logaritamska funkcija

Eksponencijalna i logaritamska funkcija 16 1. UVOD U ANALIZU Rešenje. Kako je ovo neprava funkcija, deljenjem nalazimo da je (11) f() = 1 + 5 6 + 1 3 5 + 6 = 1 + 5 6 + 1 ( )( 3). Prema postupku navedenom u teoremi 1.7, važi razlaganje odnosno

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Celi brojevi su svi nerazlomljeni brojevi, pozitivni, negativni i nula. To su

Celi brojevi su svi nerazlomljeni brojevi, pozitivni, negativni i nula. To su Poglavlje 1 Brojevi i brojni sistemi Cvetana Krstev 1.1 O brojevima Prirodni brojevi su brojevi sa kojima se broji, uključujući i nulu: 0, 1, 2, 3,.... Pojam pozitivnih i negativnih brojeva nije definisan

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Neodred eni integrali

Neodred eni integrali Neodred eni integrali Definicija. Za funkciju F : I R, gde je I interval, kažemo da je primitivna funkcija funkcije f : I R ako je za svako I. F () f() Teorema 1. Ako je F : I R primitivna funkcija za

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Matematika 3 zbirka zadataka sa rešenjima i uputstvima za rešavanje

Matematika 3 zbirka zadataka sa rešenjima i uputstvima za rešavanje Matematika 3 zbirka zadataka sa rešenjima i uputstvima za rešavanje Hijavata 1 Predgovor Pismeni ispit iz matematike 3 obuhvata

Διαβάστε περισσότερα

METODA SEČICE I REGULA FALSI

METODA SEČICE I REGULA FALSI METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)

Διαβάστε περισσότερα

Linearni operatori. Stepenovanje matrica

Linearni operatori. Stepenovanje matrica Linearni operatori Stepenovanje matrica Nea su X i Y vetorsi prostori nad istim poljem salara K Presliavanje A : X Y zovemo operator Za operator A ažemo da je linearan ao je istovremeno 1 aditivan: A(u

Διαβάστε περισσότερα

1. Funkcije više promenljivih

1. Funkcije više promenljivih 1. Funkcije više promenljivih 1. Granične vrednosti funkcija više promenljivih Definicija 1. Funkcija f : D( R n R ima graničnu vrednost u tački (x 0 1, x 0 2,..., x 0 n D i jednaka je broju α R ako važi

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

Matematička logika. novembar 2012

Matematička logika. novembar 2012 Predikatska logika 1 Matematička logika Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia novembar 2012 1 različiti nazivi: predikatska logika, logika prvog

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

KVANTNA MEHANIKA SKRIPTA UZ I DEO KURSA ŠKOLSKA GODINA 2011/2012 VITOMIR MILANOVIĆ JELENA RADOVANOVIĆ

KVANTNA MEHANIKA SKRIPTA UZ I DEO KURSA ŠKOLSKA GODINA 2011/2012 VITOMIR MILANOVIĆ JELENA RADOVANOVIĆ KVANTNA MEHANIKA SKRIPTA UZ I DEO KURSA ŠKOLSKA GODINA / VITOMIR MILANOVIĆ JELENA RADOVANOVIĆ SADRŽAJ. SCHRÖDINGER-OVA JEDNAČINA.. NESTACIONARNA SCHRÖDINGER-OVA JEDNAČINA.. STACIONARNA SCHRÖDINGER-OVA

Διαβάστε περισσότερα

Kosinus-sinus dekompozicija ortogonalnih matrica malog reda

Kosinus-sinus dekompozicija ortogonalnih matrica malog reda V Hari i V Zadelj-Martić: Kosinus-sinus dekompozicija, mathe 10, veljača 007 1/14 Hrvatski matematički elektronski časopis mathe Broj 10 http://emathhr/ Kosinus-sinus dekompozicija ortogonalnih matrica

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 3: Dinamički modeli sistema u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 3: Dinamički modeli sistema u MATLABu OSNOVI AUTOMATSKO UPAVLJANJA POCESIMA Vežba br. : Dinamički modeli itema u MATLABu I Prenone funkcije Dinamički itemi e mogu prikazati u tri domena: vremenkom, Laplace-ovom i frekentnom. U vremenkom domenu

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

ZADATAKA IZ MATEMATIKE 2

ZADATAKA IZ MATEMATIKE 2 Mr VENE T BOGOSLAVOV ZBIRKA REŠENIH ZADATAKA IZ MATEMATIKE 5 ispravljeno izdanje ZAVOD ZA UDŽBENIKE BEOGRAD Redaktor i recenzent DOBRILO TOŠIĆ Urednik MILOLJUB ALBIJANIĆ Odgovorni urednik MILORAD MARJANOVIĆ

Διαβάστε περισσότερα