Korelacijska i regresijska analiza

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Korelacijska i regresijska analiza"

Transcript

1 Korelacijska i regresijska analiza

2 Odnosi među pojavama Odnos među pojavama može biti: deterministički ili funkcionalni i stohastički ili statistički Kod determinističkoga se odnosa za svaku vrijednost jedne pojave točno zna vrijednost druge pojave. Kod stohastičkoga se odnosa na osnovi vrijednosti jedne pojave ne može e sa sigurnošću u predvidjeti vrijednost druge pojave. Primjeri determinističkih odnosa: stranica kvadrata i njegov opseg, količina ina prodane robe i dobiveni iznos novca. Primjeri stohastičkih odnosa: cijena neke robe i njezina potražnja nja, visina i starost stabla.

3 Osnovna su pitanja koja pri proučavanju odnosa između dviju ili više e pojava postavljamo: Jesu li statističke varijable povezane? Na koji su način povezane? Koliko su snažno no povezane? Može li se povezanost numerički izraziti? Istraživanjem i kvantificiranjem povezanosti među promatranim pojavama, odnosno varijablama bavi se korelacijska analiza. Utvrđivanjem analitičkog izraza povezanosti među pojavama bavi se regresijska analiza.

4 Dijagram raspršenja Polazna točka u korelacijskoj i regresijskoj analizi jest dijagram raspršenja enja. To je grafički prikaz točaka u koordinatnome sustavu koje predstavljaju niz uređenih parova (x 1, y 1 ), (x 2, y 2 ),,, ( (x n, y n ); pri čemu su x 1, x 2,, x n, vrijednosti jedne varijable (X ), a y 1, y 2,, y n, vrijednosti druge varijable (Y ). Uočimo li neku pravilnost u rasporedu točaka u dijagramu raspršenja enja, možemo zaključiti jesu li varijable korelirane ili nisu.

5 Primjeri dijagrama raspršenja Y Y X X Postoji korelacija Nema korelacije

6 Y Y X X Linearna i nelinearna korelacija

7 Y Y X X Korelacije pozitivnog i negativnog smjera

8 Y Y X X Jaka i slaba korelacija

9 Y X Potpuna korelacija

10 Koeficijenti korelacije Koeficijenti korelacije su pokazateljip stupnja statističke povezanosti. Ako se istražuje veza između dviju varijabli i ako je ta veza linearna, stupanj povezanosti izražava ava se koeficijentom linearne korelacije. Istražuje li se postojanje linearne veze jedne varijable u ovisnosti od dviju ili više e drugih varijabli, stupanj povezanosti izražava ava se koeficijentom višestruke linearne korelacije. Stupanj nelinearne ili krivolinijske veze između varijabli izražava ava se koeficijentom krivolinijske korelacije. Ako su promatrane pojave predstavljene redosljednim varijablama, stupanj njihove povezanosti izražava ava se koeficijentom korelacije ranga.

11 Pearsonov * koeficijent korelacije Pearsonov koeficijent korelacije (r ) mjeri jakost i smjer linearne korelacije. Računa se po formuli: r = σ gdje su σ x i σ y standardne devijacije varijabli X i Y, a σ xy je kovarijanca -aritmetička sredina umnožaka odstupanja varijabli od njihovih aritmetičkih sredina. Kovarijanca niza n uređenih parova vrijednosti obilježja X i Y računa se po formuli: σ x xy σ y, ili po formuli: σ xy σ = xy 1 n = n i= 1 n i=1 ( x x n i i y i x)( y i x y y) *Karl Pearson ( ), engleski matematičar, ar, statističar ar i biolog.

12 Uvijek je -1 r 1. Ako je r = 1, veza je funkcionalna; ako je r = 0, 0 ne postoji linearna korelacija među ispitivanim pojavama. Smjer korelacije jednak je predznaku od r. Stupanj jakosti korelacije okvirno je dan saljedećom tablicom: r 0 0-0,5 0,5-0,8 0,8-1 1 Jakost korelacije nema korelacije slaba korelacija srednje jaka korelacija jaka korelacija potpuna korelacija

13 Regresijska analiza Regresijska analiza bavi se određivanjem funkcionalne zavisnosti između dviju ili više varijabli. Analitički izraz te zavisnosti zove se regresijski model. Ako model izražava ava vezu između zavisne i jedne nezavisne varijable, riječ je o jednostavnom regresijskom modelu. Ako model izražava ava vezu između zavisne i dviju ili više e nezavisnih varijabli, riječ je o modelu višestruke regresije. Regresijski modeli mogu izražavati avati i linearne i nelinearne veze između promatranih pojava ili varijabli.

14 Najjednostavniji oblik zavisnosti, odnosno najjednostavniji regresijski model je model jednostavne linearne regresije*: gdje je a, b R. y = ax + b, Ovakvim modelom pokušavamo objasniti veličinu inu y preko samo jedne veličine ine (x),( a svi ostali utjecaji se zanemaruju. Takav je pristup u praksi opravdan jer smo najčešće e u nemogućnosti nosti sagledati sve utjecaje na veličinu inu y,, pa uzimamo u obzir samo najbitnije. *Model je linearan ako svaka varijabla u modelu ima potenciju 1.

15 No moguće e je da se analizom dođe do zaključka ka da je y u značajnoj ajnoj linearnoj zavisnosti od više varijabli. Tada bi određivali model oblika: y = ax 1 + ax ax k + b, gdje je a i, b R, i = 1,, k. To je model višestruke linearne regresije.

16 Podaci za regresijsku analizu nastaju opažanjem anjem ili mjerenjem u statističkim pokusima. U gospodarskim primjenama regresijskog modela podaci se javljaju kao: 1. brojčane vrijednosti pojava za određene gospodarske ili prostorne jedinice 2. vremenski nizovi 3. kombinacija 1. i 2.

17 Model jednostavne linearne regresije Pretpostavimo da je zadan dijagram raspršenja od n točaka ( (x 1, y 1 ), ( (x 2, y 2 ),..., ( (x n, y n ), te da nas oblik tog dijagrama upućuje uje na postojanje linearne korelacije među obilježjima jima X i Y. Pravac regresije p ima jednadžbu bu: y = ax + b. Nagib (a)( ) i odsječak (b)( ) određuju o se metodom najmanjih kvadrata.

18 Metoda najmanjih kvadrata Metoda najmanjih kvadrata bazira se na uvjetu da zbroj kvadrata vertikalnih odstupanja točaka u dijagramu raspršenja od traženog pravca regresije bude minimalan. Y (x 1, y 1 ) ε 2 (x 2, y 2 ) y = ax + b (x 3 y 3 ) ε 1 ε 3 ax 1 + b ax 2 + b ax 3 + b X x 1 x 2 x 3 Vertikalna odstupanja od pravca regresije

19 Iz zadanog uvjeta dobije se: a σxy =, b = y a x, σ 2 x gdje je σ 2 x varijanca varijable X,, a σ xy kovarijanca između varijabli X i Y., Parametar «a» zove se regresijski koeficijent. On pokazuje za koliko se u prosjeku mijenja zavisna varijabla ako se nezavisna varijabla promijeni za jedan. Parametar «b» je konstanta i pokazuje vrijednost zavisne varijable u slučaju kada je nezavisna varijabla jednaka nuli..

20 Primjedba Kao što smo promatrali pravac regresije veličine ine Y u odnosu na veličinu inu X, možemo promatrati i obrnuto: pravac regresije veličine ine X u odnosu na veličinu inu Y.. Taj pravac ima jednadžbu bu: x = a y + b,, gdje je: σxy a =, 2 b = x a y. σ y.

21 Primjer 1: Mjerenjem duljine klipa kukuruza (u cm) i broja zrna na klipu na uzorku od 20 klipova dobiveni su sljedeći podaci: Duljina klipa (X) 17,5 15,5 21,0 26,0 21,5 18,0 19,5 23,0 22,5 19,0 Broj zrna na klipu (Y) Duljina klipa (X ) 20,5 17,0 16,5 15,5 22,0 25,0 21,0 18,0 19,5 23,0 Broj zrna na klipu (Y) Na osnovi dobivenih podataka nacrtan je dijagram raspršenja Ovaj dijagram upućuje na zaključak da postoji linearna korelacija, pa ima smisla tražiti jednadžbu pravca regresije:

22 Za određivanje te jednadžbe treba izračunamti varijancu i kvarijancu, za zadane podatke. Izračunavanjem se dobiva: σ xy = 178,217; σ x = 2,96859; σ y = 71,9731. Uvrštavanjem u formule za određivanje nagiba i odsječka pravca regresije dobivamo: a = 178, = 20,2232 b = y a x = 571,35 20, ,125 = 164,358 Jednadžba pravca regresije je y = 20,2232x + 164,358. Njegov je graf dan je na sljedećoj slici. slici

23

24 Primjer 2: Promatrana je veza između broja proizvedenih proizvoda (X) i ukupnog profita (Y) (u tisućama kuna). Dobiveni podaci dani su u tablici: x i y i a) Nacrtajte dijagram raspršenja. b) Odredite jednadžbu pravca regresije koji pokazuje ovisnost ukupnog profita o broju proizvedenih proizvoda i označite značenje parametara. c) Ucrtajte pravac regresije u prethodni graf. d) Izračunajte regresijske vrijednosti i vrijednosti rezidualnih odstupanja.

25 Rješenje: enje: a) Series

26 b) x i y i x i 2 x i y i

27 x 730 = = 121,67, y 6 = = 34,67 a = x i x y i 2 i nx y nx 2 = ,67 34, ,67 2 = 680,2 2228,47 = 0,30523 b = y bx = 34,67 0, ,67 = 2,46733 Jednadžba pravca regresije je: y = 0,30523x 2,46733

28 d) y = 0,306x - 2,5597 R 2 = 0, Series1 Linear (Series1)

29 d) Izračunavanje regresijskih vrijednosti i vrijednosti rezidualnih odstupanja. x i y i ŷi ε i , , , , , , , , , , , , , y i ˆ = yi

30 Primjer 3: Analiziraju se ukupni troškovi proizvodnje u jednom poduzeću. u. Na temelju kvartalnih podataka utvrđene su količine ine proizvodnje i ukupni troškovi proizvodnje. Podaci su dani u tablici. (a) Nacrtajte dijagram rasipanja. Što zaključujete ujete iz dijagrama? (b) Procijenite vrijednosti parametara regresijskog modela i protumačite njihovo značenje. (c) Izračunajte regresijske vrijednosti. (d) Odredite vrijednosti rezidualnih odstupanja.

31 Uk Uk. tro. troškovi kovi Proizvodnja Proizvodnja

32 x i y i x i 2 y i x i

33 x = = 519,1818 y = = 216, , , ,17 a = = , ,84 b y = 216,9091 0, ,1818 = 19,14236 = 19, ,38092x = 0,38092

34 - 0,0000 0, , , ,72% 0,72% -2,1659 2, , , ,19% 3,19% -8,7390 8, , , ,75% 1,75% 4,6879 4, , , ,39% 0,39% -0,9332 0, , , ,80% 2,80% 6,3510 6, , , ,06% 1,06% 2,2068 2, , , ,82% 4,82% 9,8726 9, , , ,51% 1,51% 2,8719 2, , , ,73% 0,73% 1,2995 1, , , ,38% 5,38% -8,2255 8, , , ,95% 4,95% -7,2262 7, , , u i,rel i,rel u i x i y i x i 2 y i x i i ŷ

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

MODEL JEDNOSTAVNE LINEARNE REGRESIJE

MODEL JEDNOSTAVNE LINEARNE REGRESIJE SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET U RIJECI Specijalistički diplomski stručni studij građevinarstva Odabrana poglavlja inženjerske matematike MODEL JEDNOSTAVNE LINEARNE REGRESIJE Studenti: Sara

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

REGRESIJSKA ANALIZA zavisnost (korelacija) regresijske tehnike kvantitativno zavisnost (korelaciju) linearna regresija

REGRESIJSKA ANALIZA zavisnost (korelacija) regresijske tehnike kvantitativno zavisnost (korelaciju) linearna regresija REGRESIJSKA ANALIZA REGRESIJSKA ANALIZA često imamo dvije ili više varijabli koje su inherentno povezane, odnosno postoji neka zavisnost (korelacija) među njima koju želimo istražiti regresijske tehnike

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI Sadrˇzaj Sadrˇzaj DVODIMENZIONALNI. DISKRETNI DVODIMENZIONALNI............................ KONTINUIRANI -dim tko želi znati više.............................. 5. KOVARIJANCA, KORELACIJA, PRAVCI REGRESIJE........

Διαβάστε περισσότερα

Regresijska zavisnost. Jednostavna regresija

Regresijska zavisnost. Jednostavna regresija Regresijska analiza 1 Regresijska analiza Regresijska zavisnost. Jednostavna regresija Regresijska se analiza koristi za donošenje zaključaka o nizu slučajnih varijabli Y 1,...,Y n koje ovise o nezavisnoj

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

VVR,EF Zagreb. November 24, 2009

VVR,EF Zagreb. November 24, 2009 November 24, 2009 Homogena funkcija Parcijalna elastičnost Eulerov teorem Druge parcijalne derivacije Interpretacija Lagrangeovog množitelja Ako je (x, y) R 2 uredjeni par realnih brojeva, onda je s (x,

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1 χ 2 test (Hi-kvadrat test) Jedan od prvih statističkih testova je χ 2 -test. Predložio ga je K. Pearson 900. godine, pa je poznat i pod nazivom Pearsonov test. χ 2 test je neparametarski test. Pomoću χ

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

11. glava PROSTA KORELACIONA I REGRESIONA ANALIZA

11. glava PROSTA KORELACIONA I REGRESIONA ANALIZA PROSTA KORELACIONA I REGRESIONA ANALIZA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. shvatite razliku između funkcionalne i stohastičke veze i razumete stohastički model. znate

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Matematičke metode u marketingu. Generalizirani linearni model. Lavoslav Čaklović PMF-MO

Matematičke metode u marketingu. Generalizirani linearni model. Lavoslav Čaklović PMF-MO Matematičke metode u marketingu. Generalizirani linearni model Lavoslav Čaklović PMF-MO 2016 Jedan loš linearni model n = 1000, i = 1,..., n { 1 ako yi > 0 y Y = i = 2x i + rnorm(n) 0 inače x i = round(0.001

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

UVOD DEFINICIJA: Statistika planiranje i provođenje pokusa skupljanje podataka interpretacija

UVOD DEFINICIJA: Statistika planiranje i provođenje pokusa skupljanje podataka interpretacija OSNOVE STATISTIKE UVOD DEFINICIJA: Statistika je grana matematike koja obuhvaća sakupljanje, analizu, interpretaciju i prezentaciju podataka te izradu predviđanja koja se temelje na tim podacima. Smatra

Διαβάστε περισσότερα

Prosta linearna regresija (primer)

Prosta linearna regresija (primer) STATISTIKA Prosta linearna regresija (primer) Doc. Dr Slađana Spasić E-mail: sladjana.spasic@singidunim.ac.rs Ass. Ana Simićević E-mail: asimicevic@singidunim.ac.rs 7. 6. 010. Beograd Predavanje 15 Regresiona

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

REGRESIONA I KORELACIONA ANALIZA

REGRESIONA I KORELACIONA ANALIZA REGRESIONA I KORELACIONA ANALIZA Reč regresija dospela je u statistiku kada je 1855.godine Fransis Galton objavio publikaciju u kojoj je analizirao visinu sinova u zavisnosti od visine očeva. Zaključak

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LIMES NIZOVA LIMES MONOTONIH NIZOVA GEOMETRIJSKOG REDA LIMES FUNKCIJA 1 2.4. LIMES NIZA I TEOREMI O LIMESIMA 2.4.1. Definicija limesa i konvergentnog niza 2.4.1.1 Riješeni

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Skupovi brojeva Materijali za nastavu iz Matematike 1

Skupovi brojeva Materijali za nastavu iz Matematike 1 Skupovi brojeva Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 32 Podsjetnik teorije skupova Operacije sa skupovima: A B = {x : x A x B} A B = {x : x A

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

ALFA List - 1. Festival matematike "Split 2013." Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013.

ALFA List - 1. Festival matematike Split 2013. Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013. ALFA List - 1 Točan odgovor: 10 bodova Pogrešan odgovor: 5 bodova Bez odgovora: 0 bodova 1. Ako je (x+ 3): 4=( x ):3, onda je x jednako: A) 1 B) 1 C) 17 D) 17 E) 6. Kut od 1º30' gleda se kroz povećalo

Διαβάστε περισσότερα

3 FUNKCIJE VIŠE VARIJABLI Homogene funkcije, homogenost Parcijalne derivacije Totalni diferencijal

3 FUNKCIJE VIŠE VARIJABLI Homogene funkcije, homogenost Parcijalne derivacije Totalni diferencijal Sadržaj 3 FUNKCIJE VIŠE VARIJABLI 34 3. Homogene funkcije, homogenost................. 34 3.2 Parcijalne derivacije........................ 38 3.3 Totalni diferencijal........................ 40 3.4 Koeficijenti

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

Slučajne varijable Materijali za nastavu iz Statistike

Slučajne varijable Materijali za nastavu iz Statistike Slučajne varijable Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 1 Slučajna varijabla Slučajna varijabla je funkcija X koja elementarnim dogadajima pridružuje

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

Aritmetička sredina Medijan Mod. Harmonijska sredina

Aritmetička sredina Medijan Mod. Harmonijska sredina MJERE CENTRALNE TENDENCIJE Aritmetička sredina Medijan Mod Geometrijska sredina Harmonijska sredina MJERA CENTRALNE TENDENCIJE ili središnja vrijednost jest brojčana vrijednost koja reprezentira skupinu

Διαβάστε περισσότερα

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa Slučajne varijable Statistički podaci su distribuirani po odredenoj zakonitosti. Za matematičko (apstraktno) opisivanje te zakonitosti potrebno je definirati slučajnu varijablu kojoj pripada odredena razdioba

Διαβάστε περισσότερα

Statistika. primjeri i zadaci. Ante Mimica, Marina Ninčević. 30. kolovoza 2010.

Statistika. primjeri i zadaci. Ante Mimica, Marina Ninčević. 30. kolovoza 2010. Statistika primjeri i zadaci Ante Mimica, Marina Ninčević 3. kolovoza. Sadržaj Opisna statistika 5. Zadaci za vježbu................................ 4 Neprekidne slučajne varijable 47. Normalna distribucija..............................

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije Sadržaj REALNE FUNKCIJE JEDNE REALNE VARIJABLE 7. Elementarne funkcije....................... 7. Primjeri ekonomskih funkcija.................. 78.3 Limes funkcije........................... 8.4 Neprekidnost

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Trigonometrija Trigonometrijska kružnica Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Projektna nastava Osnovne trigonometrijske relacije:. +. tgx. ctgx tgx.

Διαβάστε περισσότερα

Ivan Pavić, Đuro Benić, Iraj Hashi MIKROEKONOMIJA

Ivan Pavić, Đuro Benić, Iraj Hashi MIKROEKONOMIJA Ivan Pavić, Đuro Benić, Iraj Hashi MIKROEKONOMIJA Split, 26. Uvod u mikroekonomiju 1 1.1. Temeljna mikroekonomska pitanja 1.1.a. Oskudica kao središnji ekonomski problem 1.1.b. Izbor između alternativa

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

Statistička obrada podataka

Statistička obrada podataka Statistička obrada podataka Ana Anušić Ervin Duraković Hrvoje Maltarić Ivan Pažin Sažetak U ovom članku provodimo statističko istraživanje koje se bazira na zavisnosti uspjeha na prijamnom ispitu i prve

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

STATISTIKA I OSNOVE FIZIKALNIH MJERENJA

STATISTIKA I OSNOVE FIZIKALNIH MJERENJA STATISTIKA I OSNOVE FIZIKALNIH MJERENJA ŽELJKO SKOKO PREDAVANJA: ČETVRTAK, 12-14 h, F25 VJEŽBE: ČETVRTAK, 14-15 h, F25 MIRKO BAĆANI KONZULTACIJE: PETAK, 11-12.30 h ili prema dogovoru e-mail: zskoko@phy.hr

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

Koordinatni sustav u ravnini. Funkcija

Koordinatni sustav u ravnini. Funkcija Koordinatni sustav u ravnini Koordinatni sustav u ravnini Funkcija 4. 1. Koordinatni sustav u ravnini..................... Uvod U drugom smo poglavlju opisali koordinatni sustav na pravcu. Pridruživanjem

Διαβάστε περισσότερα

Prediktor-korektor metodi

Prediktor-korektor metodi Prediktor-korektor metodi Prilikom numeričkog rešavanja primenom KP: x = fx,, x 0 = 0, x 0 x b LVM α j = h β j f n = 0, 1, 2,..., N, javlja se kompromis izmed u eksplicitnih metoda, koji su lakši za primenu

Διαβάστε περισσότερα

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja. r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira

Διαβάστε περισσότερα