Τμήμα Μηχανικών Παραγωγής και Διοίκησης. Διπλωματική εργασία: Νευροασαφής έλεγχος σε ευφυή ράβδο

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τμήμα Μηχανικών Παραγωγής και Διοίκησης. Διπλωματική εργασία: Νευροασαφής έλεγχος σε ευφυή ράβδο"

Transcript

1 Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Καταγάς Μιχαήλ Α.Μ.: Επιβλέπων καθηγητής: Σταυρουλάκης Γεώργιος Διπλωματική εργασία: Νευροασαφής έλεγχος σε ευφυή ράβδο Χανιά, Οκτώβριος 2012

2 Περιεχόμενα Κεφάλαιο 1 ο Εισαγωγή...2 Κεφάλαιο 2 ο Παρουσίαση προβλήματος...3 Γραμμικός Τετραγωνικός Ελεγκτής(LQR)...3 Ασαφής λογική...4 Δημιουργία ασαφούς ελεγκτή(sugeno_lqr)...5 Κεφάλαιο 3 ο Παρουσίαση *.mdl αρχείων...10 Κεφάλαιο 4 ο Παρουσίαση αποτελεσμάτων

3 Κεφάλαιο 1 ο Εισαγωγή Η παρούσα διπλωματική εργασία πραγματοποιήθηκε υπό την επίβλεψη του καθηγητή κ.γεώργιου Σταυρουλάκη, καθηγητή του τμήματος Μηχανικών Παραγωγής και Διοίκησης του Πολυτεχνείου Κρήτης και αποτελεί συνέχεια προηγούμενων εργασιών πάνω στο ίδιο θέμα. Σκοπός της εργασίας είναι η μελέτη διαφόρων μοντέλων σχετικά με τον έλεγχο μιας ευφυούς ράβδου η οποία αποτελείται από αισθητήρες και διεγέρτες από πιεζοηλεκτρικά υλικά. Βασικά στοιχεια που εξετάζουμε,όσον αφορά τον έλεγχο, είναι το εύρος τιμών της μετατόπισης, της ταχύτητάς και της επιτάχυνσης του σημείου ελέγχου, τα οποία είναι ενδεικτικά μέτρα για την καταπόνηση της ράβδου.τα εργαλεία τα οποία χρησιμοποιήθηκαν για την επίτευξη αυτού του σκοπού είναι ο ασαφής έλεγχος και ο μαθηματικός έλεγχος, και πιο συγκεκριμένα ο Γραμμικός Τετραγωνικός Έλεγχος(LQR). Το βασικό σύστημα πάνω στο οποίο γίνεται η έρευνα έχει υλοποιηθεί από τον κ.γεώργιο Ταϊρίδη στην μεταπτυχιακή του διατριβή. 2

4 Κεφάλαιο 2 ο 1. Παρουσίαση προβλήματος Το σύστημα το οποίο μελετάμε αποτελείται από μια δοκό μήκους 0,8m η οποία χαρακτηρίζεται από την εξίσωση κίνησης: M*u +C*u +K*u= F όπου, M είναι ο πίνακας μάζας C είναι ο πίνακας απόσβεσης K είναι ο πίνακας δυσκαμψίας Και u είναι το δυάνυσμα της μετατόπισης Ορίζουμε 2 μοντέλα που θα μελετήσουμε τα οποία βασίζονται στο παραπάνω σύστημα: Μοντέλο Α, όπου ο έλεγχος γίνεται με βάση τη μέτρηση της μετατόπισης ενός σημείου ελέγχου. 3

5 Μοντέλο Β, όπου ο έλεγχος γίνεται με βάση τη μέτρηση της ταχύτητας δύο σημείων ελέγχου. 2. Γραμμικός Τετραγωνικός Ρυθμιστής(LQR) Θεωρούμε την ακόλουθη τετραγωνική συνάρτηση προς ελαχιστοποίηση: Όπου ο πίνακας Q αφορά το βάρος του διανύσματος κατάστασης (μετατόπιση, ταχύτητα) και ο πίνακας R το βάρος της ενέργειας που δαπανά το σύστημα για τον έλεγχο της ράβδου. Το J είναι στην ουσία μια μορφή συμβιβασμού μεταξύ της σπουδαιότητας του διανύσματος κατάστασης και της ενέργειας. 4

6 3. Ασαφής λογική Η κλασσική λογική ορίζει οτι μια πρόταση είναι αληθής ή ψευδής σύμφωνα με αντικειμενικά κριτήρια.για παράδειγμα αν θέλουμε να ισχυριστούμε οτι ο αριθμός 2 είναι μεγαλύτερος απο τον αριθμό 1 μπορούμε να το κάνουμε με απόλυτη σιγουριά. Όμως,αντίθετα με ένα σύνολο αριθμών, πολλά σύνολα δεν είνα αυστηρά ορισμένα και σε αυτή την περίπτωση η κλασσική λογική δεν μπορεί να τα προσδιορίσει. Η ασαφής λογική ορίζει οτι μια πρόταση μπορεί να είναι αληθής με κάποιο βαθμό βεβαιότητας.για παράδειγμα, αν έχουμε το σύνολο Χ={ } το οποίο περιγράφει ταχύτητες και θέλουμε να ορίσουμε το σύνολο Α= μεγάλη ταχύτητα, με την ασαφή λογική μπορούμε να ισχυριστούμε οτι η ταχύτητα 20Km/h είναι μεγάλη με βεβαιότητα 20% και οτι η ταχύτητα 60Km/h είναι μεγάλη με βεβαιότητα 60%. Τα παραπάνω ποσοστά είναι τα βάρη(μ Α ) τα οποία χαρακτηρίζουν τη συμμετοχή του εκάστοτε στοιχείου x στο σύνολο Α. Η λογική αυτή προσεγγίζει πολύ την ανθρώπινη και είναι ιδιαιτερα λειτουργική όταν θέλουμε να μοντελοποιήσουμε ποιοτικά χαρακτηριστικά και λεκτικές μεταβλητές.στον ελεγκτή sugeno1 που χρησιμοποιήθηκε για τις ανάγκες της εργασίας ορίσαμε τα σύνολα far left, left, equilibrium, right και far right με βάση το σύνολο [ ],το οποίο εκφράζει την μετατόπιση του σημείου ελέγχου.τα σύνολα αυτά μπορούμε να τα αναπαραστήσουμε σε ενα σύστημα αξόνων και να δημιουργήσουμε τη συνάρτηση συμμετοχής του κάθε συνόλου. Αντίστοιχη διαδικασία έγινε και για την ταχύτητα του σημείου ελέγχου. Οι συναρτήσεις συμμετοχής για κάθε δεδομένο εισόδου (μετατόπιση και ταχύτητα) του ασαφούς ελεγκτή φαίνεται στις εικόνες 1 και 2 παρακάτω. 5

7 4. Δημιουργία νευροασαφούς ελεγκτή (sugeno_lqr) Αρχικά προσομοιώνουμε τη λειτουργία του συστήματος με έλεγχο lqr (control2.mdl) ωστε να αποθηκευτούν στη δομή με το όνομα data τα δεδομένα που θα χρησιμοποιηθούν για την εκπαίδευση του ελεγκτή. Στη συνέχεια ανοίγουμε τον ασαφή ελεγκτή sugeno1 που έχουμε δημιουργήσει εμπειρικά: Εικόνα 1: συναρτήσεις συμμετοχής του sugeno1 για την μετατόπιση 6

8 Εικόνα 2: συναρτήσεις συμμετοχής του sugeno1 για την ταχύτητα Εικόνα 3: σταθερές εξόδου (δύναμη ελέγχου) και επιλέγουμε edit Anfis. 7

9 Εικόνα 4 Επιλέγουμε Load data from workspace και στη συνέχεια πληκτρολογούμε τη διεύθυνση στην οποία είναι αποθηκευμένα τα δεδομένα. Εικόνα 5 8

10 Πατάμε στο κουμπί Generate FIS με επιλογή Sub clustering Εικόνα 6 Και τέλος, πατάμε Train Now και Test Now για να δούμε την απόκλιση της νέας δύναμης ελέγχου του νευροασαφούς ελεγκτή(sugeno_lqr) από εκείνη του ασαφούς ελεγκτη (sugeno1). 9

11 Εικόνα 7 Με παρόμοια διαδικασία έχουν δημιουργηθεί και οι ελεγκτές sugeno2, sugeno5 για τα μοντέλα Α και Β αντίστοιχα. Τα δεδομένα που χρησιμοποιήθηκαν είναι τα data και data5 όπως φαίνεται παρακάτω στα μοντέλα control1.mdl και control6a.mdl (έχοντας κάνει πρώτα την προσομοίωση με αποσυνδεδεμένους τους ελεγκτές από το υπόλοιπο σύστημα). 10

12 Κεφάλαιο 3 ο Παρουσίαση αρχείων *.mdl 1. Control1.mdl - Χωρίς έλεγχο 2. Control2.mdl - Έλεγχος lqr 11

13 3. Control3.mdl - Έλεγχος με sugeno2 12

14 4. Control4.mdl - Έλεγχος με sugeno_lqr 13

15 5. Έλεγχος με συvδυασμό νευροασαφούς και lqr ελεγκτή a) Control5a.mdl - Lqr-sugeno2 b) Control5b.mdl - Lqr-sugeno_lqr 14

16 6. Έλεγχος σε 2 σημεία a) control6a 15

17 b) control6b c) control6c 16

18 Κεφάλαιο 4 ο Παρουσίαση αποτελεσμάτων 1. Control1.mdl-Αποτελέσματα μοντέλου χωρίς έλεγχο 17

19 2. Control2.mdl-Διερεύνηση του πίνακα Q Οι δύο βασικές παράμετροι του ελέγχου lqr είναι ο πίνακας R και ο πίνακας Q. Ο R αφορά την ενέργεια που δαπανά το σύστημα για τον έλεγχο και ο Q το διάνυσμα κατάστασης (μετατόπιση και ταχύτητα). Στο σημείο αυτό εξετάζουμε τον τρόπο με τον οποίο οι τιμές του πίνακα Q καθορίζουν τον έλεγχο της δοκού, αρχικά δίνοντας την ίδια τιμή σε όλη τη διαγώνιο του πίνακα και στη συνέχεια δίνοντας διαφορετική τιμή στο πρώτο μισό (που αφορά τη μετατόπιση) και διαφορετική στο δεύτερο μισό (που αφορά την ταχύτητα του σημείου ελέγχου). Q=5 18

20 Q=30 19

21 Q=70 20

22 Q=100 21

23 Q=130 22

24 Q=100( το πρώτο μισό του πίνακα έχει την τιμή 5*10^11) 23

25 Παρατηρώντας τα διαγράμματα της συγκεκριμένης περίπτωσης συμπεραίνουμε οτι όσο η τιμή του πίνακα Q αυξάνεται, το εύρος της ταλάντωσης μειώνεται αλλά το σύστημα αργεί να σταθεροποιηθεί με αποτελέσμα η ράβδος να καταπονείται περισσότερο.η διαφοροποίηση των στοιχείων της διαγωνίου του πίνακα επιφέρει αλλαγή στο σύστημα μόνο αν το πρώτο μισό έχει τιμή πολύ μεγαλύτερη του δεύτερου μισού. Όταν συμβαίνει αυτό προσεγγίζει ελεγκτές μικρότερης τιμής του πίνακα Q, στην περίπτωση αυτή τον lqr για την τιμή Q=30. Τα αριθμητικά αποτελέσματα φαίνονται συγκεντρωμένα στα διαγράμματα που ακολουθούν: 2 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 displacement(x10^-4) 1,9 1,45 1,45 1,15 1,025 0,94 displacement(x10^-4) '' 24

26 4 3,5 3 2,5 2 1,5 1 0,5 0 velocity(x10^-3) 3,8 2,85 2,85 2,29 2,05 1, '' velocity(x10^-3) 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0 acceleration 0,075 0,057 0,057 0,045 0,04 0, '' acceleration Για τις επόμενες περιπτώσεις που θα αναφερθούν παρακάτω, όποτε εμπλέκεται ελεγκτής lqr στο σύστημα θα χρησιμοποιείται εκείνος που έχει την τιμή Q=

27 3. Control3.mdl - Έλεγχος με sugeno2 (νευροασαφής ελεγκτης sugeno εκπαιδευμένος με βάση τα αποτελέσματα του μοντέλου χωρίς έλεγχο) 26

28 4. Control4.mdl - Έλεγχος με sugeno_lqr (νευροασαφής ελεγκτης sugeno εκπαιδευμένος με βάση τα αποτελέσματα του απλού ελέγχου lqr) 27

29 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 displacement(x10^-4) 1,445 1,1 displacement(x10^-4) control3 control4 3 2,5 2,19 velocity(x10^-3) 2,69 2 1,5 1 velocity(x10^-3) 0,5 0 control3 control4 28

30 0,12 0,1 acceleration 0,103 0,08 0,06 0,04 0,02 0,0618 acceleration 0 control3 control4 Ο νευροασαφής ελεγκτής που εκπαιδεύτηκε από τα δεδομένα του lqr ελέγχου μειώνει αρκετά ικανοποιητικά την μετατόπιση και την ταχύτητα της δοκού αλλά επιφέρει μεγαλύτερη επιτάχυνση.αντίθετα ο sugeno2 μειώνει τις τιμές όλων των χαρακτηριστικών που εξετάζουμε και γι αυτό το λόγο προτιμάται. Ο χρόνος που χρειάζεται το σύστημα για να σταθεροποιηθεί είναι ίδιος και για τις δύο περιπτώσεις. 29

31 5. Έλεγχος με συνδυασμό νευροασαφούς και lqr ελεγκτή. Ενδιαφέρον παρουσιάζει και ένα σύστημα το οποίο θα συνδυάζει και τους δύο τύπους ελέγχου που έχουν προαναφερθεί. Το μοντέλο αυτό ελέγχει την αξιοπιστία του νευροασαφούς sugeno συγκρίνοντάς τον με τον lqr ελεγκτή κάθε χρονική στιγμή. Το μέτρο σύγκρισης είναι η δύναμη ελέγχου που παράγει ο καθένας. a) Control5a.mdl - Σύγκριση lqr με sugeno2 30

32 b) Control5b.mdl - Σύγκριση lqr με sugeno_lqr 31

33 Όπως αναμενόταν η δύναμη ελέγχου του νευροασαφούς sugeno δεν ξεπέρασε το όριο που είχαμε θέσει (δηλαδή τη μέγιστη τιμή της δύναμης ελέγχου του lqr) και ο κλασσικός ελεγκτής lqr δεν χρειάστηκε να λειτουργήσει σαν δικλείδα ασφαλείας. 6. Έλεγχος σε 2 σημεία (με πράσινο χρώμα τα αποτελέσματα του εξωτερικού σημείου ελέγχου και με μωβ του εσωτερικού) Αυτή η περίπτωση ελέγχου αφορά το μοντέλο 2 που έχει παρουσιαστεί στο 2 ο κεφαλαιο. Control6.mdl - Χωρίς έλεγχο 32

34 a) Control6a.mdl - lqr και στα δύο σημεία 33

35 b) Control6b.mdl - lqr στον εσωτερικό κόμβο sugeno2 στον εξωτερικό c) Control6c.mdl - lqr στον εσωτερικό κόμβο sugeno5 στον εξωτερικό 34

36 Όπως φαίνεται στα διαγράμματα του ελέγχου δύο σημείων, τα ζεύγη lqr-lqr και lqr-sugeno2 μειώνουν σε μικρό βαθμό το εύρος της ταλάντωσης, σε αντίθεση με το ζεύγος lqr-sugeno5 το οποίο μειώνει αισθητά το εύρος των μετατοπίσεων και των ταχυτήτων αλλά αυξάνει πολύ την μέγιστη τιμή της επιτάχυνσης ανάμεσα στο 1,59s και στο 1.6s.Παρακάτω φαίνονται συγκριτικά οι μέγιστες τιμές των παραπάνω διαγραμμάτων: Εξωτερικό σημείο ελέγχου: 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 displacement(x10^-5) 1,48 1,35 1,285 0,66 displacement(x10^-5) control6a control6b control6c control6 35

37 3,5 3 2,73 2,7 velocity(x10^-4) 2,97 2,5 2 1,5 1 0,5 0 1,65 control6a control6b control6c control6 velocity(x10^-4) 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0 acceleration 0,0806 0,025 0,02 0,006 control6a control6b control6c control6 acceleration 36

38 Εσωτερικό σημείο: 0,6 0,5 0,4 0,47 displacement(x10^-5) 0,45 0,52 0,3 0,2 0,1 0 0,23 control6a control6b control6c control6 displacement(x10^-5) 1,2 1 0,8 0,6 0,4 0,2 0 velocity(x10^4) 1,03 0,95 0,94 0,595 control6a control6b control6c control6 velocity(x10^4) 37

39 0,012 0,01 acceleration 0,0098 0,008 0,006 0,004 0,002 0,002 0, ,002 acceleration 0 control6a control6b control6c control6 Συμπεράσματα Όσον αφορά το μοντέλο Α, ο εκπαιδευμένος sugeno επιφέρει ελαφρώς υψηλότερες μέγιστες τιμές στα χαρακτηριστικά που εξετάζουμε αλλά χρειάζεται αισθητά μικρότερο χρόνο για να σταθεροποιηθεί το σύστημα οπότε και είναι σχετικά προτιμότερος από τον lqr. Για το μοντέλο Β, σύμφωνα με την παραπάνω έρευνα, είναι φανερό οτι χρησιμοποιώντας τον νευροασαφή sugeno 5 το σύστημα βελτιώνει τα χαρακτηριστικά της μετατόπισης και της ταχύτητας αλλά επιδεινώνει την επιτάχυνση με αποτέλεσμα η ράβδος να καταπονείται πολύ για ένα μικρό χρονικό διάστημα.το παραπάνω πρόβλημα πιθανώς να επιδέχεται βελτίωση με τη χρήση κατάλληλων αλγορίθμων βελτιστοποίησης. 38

40 Βιβλιογραφία [1] Ταϊρίδης Γεώργιος, Προσομοίωση σύνθετων ευφυών μηχανικών συστημάτων με αισθητήρες και διεγέρτες από πιεζοηλεκτρικά υλικά.σύνδεση με ευφυείς μεθόδους ελέγχου, 2009 [2] Παπαχρήστου Ιωάννης, Μελέτη για την απόδοση ενός ασαφούς συστήματος ελέγχου για την μείωση των ταλαντώσεων σε μηχανικές κατασκευές, 2009 [3] Σαλονικήδης Σαλόνικος, Μελέτη για την απόδοση ενός ασαφούς συστήματος ελέγχου για την μείωση των ταλαντώσεων σε μηχανικές κατασκευές, 2010 [4] Τζινευράκης Εμμ. Στυλιανός, Σταυρουλάκης Γεώργιος, Παραδείγματα μοντέλων δυναμικής στο περιβάλλον simulink της matlab., 2008 [5] Magdalene Marinaki, Yannis Marinakis, Georgios Stavroulakis, Fuzzy control optimized by PSO for vibration suppression of beams, 2010 [6] Howard Demuth, Mark Beale, Neural Network Toolbox,

'Διερεύνηση αποτελεσματικότητας ασαφούς ελεγκτή για διαφορετικές θέσεις αισθητήρα-διεγέρτη'

'Διερεύνηση αποτελεσματικότητας ασαφούς ελεγκτή για διαφορετικές θέσεις αισθητήρα-διεγέρτη' 'Διερεύνηση αποτελεσματικότητας ασαφούς ελεγκτή για διαφορετικές θέσεις αισθητήρα-διεγέρτη' ΟΝΟΜΑ ΦΟΙΤΗΤΗ: ΣΕΛΛΗΣ ΗΛΙΑΣ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ: 2004010054 ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ ΣΑΛΟΝΙΚΙΔΗΣ ΣΑΛΟΝΙΚΟΣ 2004010053 Επιβλέπων: Σταυρουλάκης Γεώργιος Συνεργάτες: Παπαχρήστου Ιωάννης Διπλωµατική εργασία Μελέτη για την απόδοση ενός

Διαβάστε περισσότερα

ANFIS(Από την Θεωρία στην Πράξη)

ANFIS(Από την Θεωρία στην Πράξη) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Βασ. Σοφίας 12 67100 Ξάνθη HELLENIC REPUBLIC DEMOCRITUS UNIVERSITY OF THRACE SCHOOL OF ENGINEERING Department

Διαβάστε περισσότερα

«Έλεγχος σύνθετων πιεζοηλεκτρικών πλακών με χρήση ασαφούς λογικής»

«Έλεγχος σύνθετων πιεζοηλεκτρικών πλακών με χρήση ασαφούς λογικής» ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ Εργαστήριο Υπολογιστικής Μηχανικής & Βελτιστοποίησης ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Έλεγχος σύνθετων πιεζοηλεκτρικών πλακών με χρήση ασαφούς λογικής» Αντώνιος

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ. Ρύθμιση παραμέτρων ασαφούς ελέγχου σε ευφυείς κατασκευές

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ. Ρύθμιση παραμέτρων ασαφούς ελέγχου σε ευφυείς κατασκευές ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ Εργαστήριο Υπολογιστικής Μηχανικής & Βελτιστοποίησης ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ρύθμιση παραμέτρων ασαφούς ελέγχου σε ευφυείς κατασκευές Επιμέλεια: Βαλσαμόπουλος

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #7: Ευφυής Ελεγκτής Μέρος Α Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ. ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ Aρ. Συμβουλίου: 1 o Άρτα, 13/01/2015

ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ. ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ Aρ. Συμβουλίου: 1 o Άρτα, 13/01/2015 ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ Aρ. Συμβουλίου: 1 o Άρτα, 13/01/2015 ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΔΙΚΟΥ ΛΟΓΑΡΙΑΣΜΟΥ ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ Σήμερα 13 Ιανουαρίου 2015 ημέρα Τρίτη και ώρα 10:00 π.μ. η Ολομέλεια της Επιτροπής

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Αξιοποίηση ερευνητικών στοιχείων δοκών τύπου sandwich με χρήση Νευρωνικών Δικτύων»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Αξιοποίηση ερευνητικών στοιχείων δοκών τύπου sandwich με χρήση Νευρωνικών Δικτύων» ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Αξιοποίηση ερευνητικών στοιχείων δοκών τύπου sandwich με χρήση Νευρωνικών Δικτύων» Τσογκάκης Παναγιώτης Επιβλέπων καθηγητής

Διαβάστε περισσότερα

Προσομοίωση Νευρωνικού Δικτύου στο MATLAB. Κυριακίδης Ιωάννης 2013

Προσομοίωση Νευρωνικού Δικτύου στο MATLAB. Κυριακίδης Ιωάννης 2013 Προσομοίωση Νευρωνικού Δικτύου στο MATLAB Κυριακίδης Ιωάννης 2013 Εισαγωγή Ένα νευρωνικό δίκτυο αποτελεί μια πολύπλοκη δομή, όπου τα βασικά σημεία που περιλαμβάνει είναι τα εξής: Πίνακες με τα βάρη των

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης. (AeppAcademy.com)

Αλγόριθμοι Αναζήτησης. (AeppAcademy.com) Αλγόριθμοι Αναζήτησης (AeppAcademy.com) 1. Γιατί τους χρειαζόμαστε Συχνά χρειάζεται να βρίσκουμε ένα συγκεκριμένο στοιχείο δεδομένων ανάμεσα σε λίγα ή πολλά (εκατοντάδες, χιλιάδες, εκατομμύρια ή περισσότερα)

Διαβάστε περισσότερα

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 467 ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ Βαρυπάτη Αθηνά Φυσικός- Επιμορφώτρια Τ.Π.Ε. avarypat@de.sch.gr Μαστραλέξης Δημήτρης Φυσικός-Επιμορφωτής Τ.Π.Ε. dmastral@de.sch.gr

Διαβάστε περισσότερα

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος

Διαβάστε περισσότερα

Μαθήματα Διατμηματικού Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσε

Μαθήματα Διατμηματικού Π.Μ.Σ. Μαθηματικά των Υπολογιστών και των Αποφάσε Διατμηματικού Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσε - «Μαθηματικές Θεμελιώσεις της Επιστήμης των Υπολογιστών» - «Στατιστική, Επιχειρησιακή Έρευνα» - «Θεωρία Αριθμητικών Υπολογισμών» Μεταπτυχιακά

Διαβάστε περισσότερα

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Καθ. Καρατζάς Γεώργιος Υπ. Διδ. Δόκου Ζωή Σχολή Μηχανικών

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 10 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Προσομοίωση απόκρισης συστήματος στο MATLAB μέσω της συνάρτησης ode45 (Runge-Kutta) Προσομοίωση απόκρισης

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 4.. Εισαγωγή Στο παρόν κεφάλαιο θα μελετηθούν οι ελεύθερες ταλαντώσεις συστημάτων που περιγράφονται

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink Δυναμική Μηχανών I 5 6 Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ Εργαστήριο Υπολογιστικής Μηχανικής & Βελτιστοποίησης Διπλωματική εργασία: «Ιδιομορφική ανάλυση και έλεγχος κατασκευών με χρήση ασαφούς λογικής και

Διαβάστε περισσότερα

Εισαγωγή στην Αριθμητική Ανάλυση

Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον

Διαβάστε περισσότερα

Μελέτη και έλεγχος της διατήρησης της μηχανικής ενέργειας στην ελεύθερη πτώση σώματος. (Ανάλυση video μέσω του Σ.Σ.Λ.Α, LoggerPro της Vernier)

Μελέτη και έλεγχος της διατήρησης της μηχανικής ενέργειας στην ελεύθερη πτώση σώματος. (Ανάλυση video μέσω του Σ.Σ.Λ.Α, LoggerPro της Vernier) Μελέτη και έλεγχος της διατήρησης της μηχανικής ενέργειας στην ελεύθερη πτώση σώματος. (Ανάλυση video μέσω του Σ.Σ.Λ.Α, LoggerPro της Vernier) Στόχοι Να μελετήσουμε τις μεταβολές της κινητικής και της

Διαβάστε περισσότερα

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe 3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe 67 3.2 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe Στις επόμενες σελίδες παρουσιάζεται βήμα-βήμα ο τρόπος με τον οποίο μπορεί

Διαβάστε περισσότερα

Βιογραφικό σημείωμα Ψύχας Ηρακλής - Δημήτριος

Βιογραφικό σημείωμα Ψύχας Ηρακλής - Δημήτριος Βιογραφικό σημείωμα Ψύχας Ηρακλής - Δημήτριος Βιογραφικό Σημείωμα Ψύχας Ηρακλής - Δημήτριος Σελίδα 1 Προσωπικές Πληροφορίες Επώνυμο: Ψύχας Όνομα: Ηρακλής - Δημήτριος Έτος γεννήσεως: 1987 Διεύθυνση: Ξεν.

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515

Διαβάστε περισσότερα

ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ

ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε Πτυχιακή εργασία ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΘΕΣΗΣ ΓΡΑΦΙΔΑΣ ΕΚΤΥΠΩΤΗ ΕΚΠΟΝΗΣΗ: ΚΟΛΙΩΤΣΑ ΜΑΡΙΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΤΣΙΡΙΓΩΤΗΣ

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 2 Kg με αρχική ταχύτητα υ 0 8i κινείται με σταθερή επιτάχυνση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Matlab GUI για FWSVM και Global SVM

ΚΕΦΑΛΑΙΟ 5. Matlab GUI για FWSVM και Global SVM ΚΕΦΑΛΑΙΟ 5 Matlab GUI για FWSVM και Global SVM Προκειμένου να γίνουν οι πειραματικές προσομοιώσεις του κεφαλαίου 4, αναπτύξαμε ένα γραφικό περιβάλλον (Graphical User Interface) που εξασφαλίζει την εύκολη

Διαβάστε περισσότερα

Τυπικές χρήσεις της Matlab

Τυπικές χρήσεις της Matlab Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις

Διαβάστε περισσότερα

Καινοτόμο σύστημα ενεργειακής διαχείρισης πανεπιστημιουπόλεων Δ. Κολοκοτσά Επικ. Καθηγήτρια Σχολής Μηχ. Περιβάλλοντος Κ. Βασιλακοπούλου MSc

Καινοτόμο σύστημα ενεργειακής διαχείρισης πανεπιστημιουπόλεων Δ. Κολοκοτσά Επικ. Καθηγήτρια Σχολής Μηχ. Περιβάλλοντος Κ. Βασιλακοπούλου MSc Καινοτόμο σύστημα ενεργειακής διαχείρισης πανεπιστημιουπόλεων Δ. Κολοκοτσά Επικ. Καθηγήτρια Σχολής Μηχ. Περιβάλλοντος Κ. Βασιλακοπούλου MSc Αρχιτέκτων www.campit.gr ΕΙΣΑΓΩΓΗ Πανεπιστημιουπόλεις: Μικρές

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα

Πολυβάθμια Συστήματα Πολυβάθμια Συστήματα Εισαγωγή Πολυβάθμια Συστήματα: Δ19-2 Η βασική προϋπόθεση για την προσομοίωση μίας κατασκευής ως μονοβάθμιο ταλαντωτή είναι πως η μάζα, ο μηχανισμός απόσβεσης και η ακαμψία μπορούν

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Ε. Τσιτοπούλου, Ι.

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Ε. Τσιτοπούλου, Ι. ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Ε. Τσιτοπούλου, Ι. Χριστακόπουλος] Για τον καθηγητή Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων

Διαβάστε περισσότερα

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί?

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί? Τι είναι σεισμός? Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα Πού γίνονται σεισμοί? h

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ

Διαβάστε περισσότερα

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Αργυροπούλου Αιμιλία

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Η λύση του προβλήματος των ιδιοτιμών και ιδιομορφών είναι εύκολη μόνο σε περιπτώσεις συστημάτων λίγων Β.Ε. Μέθοδος Rayleigh

Η λύση του προβλήματος των ιδιοτιμών και ιδιομορφών είναι εύκολη μόνο σε περιπτώσεις συστημάτων λίγων Β.Ε. Μέθοδος Rayleigh Η λύση του προβλήματος των ιδιοτιμών και ιδιομορφών είναι εύκολη μόνο σε περιπτώσεις συστημάτων λίγων Β.Ε. Μέθοδος Raylegh βασίζεται στο ομώνυμο πηλίκο προσεγγίζει το άνω όριο της τιμής της πρώτης ιδιοτιμής

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εργαστηριακή και Βιομηχανική Ηλεκτρονική Ηλ. Αμφ. 2, 3. Γλώσσες Προγραμματισμού Ι. Ηλ. Αμφ. 1, 2, 3, 4, 5

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εργαστηριακή και Βιομηχανική Ηλεκτρονική Ηλ. Αμφ. 2, 3. Γλώσσες Προγραμματισμού Ι. Ηλ. Αμφ. 1, 2, 3, 4, 5 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ Ακαδημαϊκό Έτος 2016-2017 Περίοδος Ιουνίου 2017 Έκδοση 08.06.2017 ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Εργαστήριο Βιομηχανικής Πληροφορικής Τμήμα Πληροφορικής και Επικοινωνιών, ΤΕΙ Σερρών

Εργαστήριο Βιομηχανικής Πληροφορικής Τμήμα Πληροφορικής και Επικοινωνιών, ΤΕΙ Σερρών ΑΣΚΗΣΗ 1 Έστω ένας εργοστασιακός φούρνος. Το αν οι αντιστάσεις του φούρνου λειτουργούν ή όχι, εξαρτάται από μια μεταβλητή C η οποία παίρνει τιμές από 0 μέχρι και 10. Με μηδέν σημαίνει ότι δεν περνάει καθόλου

Διαβάστε περισσότερα

Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0

Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0 Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0 Παράθυρα των εγγράφων Επιφάνεια του σχεδίου. Σχεδιάστε εδώ νέα αντικείμενα με τα εργαλεία σημείων, διαβήτη, σχεδίασης ευθύγραμμων αντικειμένων και κειμένου.

Διαβάστε περισσότερα

Σκοπός. Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL

Σκοπός. Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL Δυνατότητα ανάπτυξης, μεταγλώττισης και εκτέλεσης προγραμμάτων στη PASCAL. Κατανόηση της σύνταξης των προτάσεων της PASCAL. Κατανόηση της εντολής εξόδου για

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. 1, 2 Ηλ. Αιθ. 001, 002. Γλώσσες Προγραμματισμού Ι Ηλ. Αμφ.

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. 1, 2 Ηλ. Αιθ. 001, 002. Γλώσσες Προγραμματισμού Ι Ηλ. Αμφ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2015-2016 Περίοδος Ιουνίου 2016 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

Υλοποίηση τεχνικών για την αποφυγή συμφόρησης σε τοπικά ασύρματα δίκτυα αισθητήρων

Υλοποίηση τεχνικών για την αποφυγή συμφόρησης σε τοπικά ασύρματα δίκτυα αισθητήρων Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Ηλεκτρονικής και Υπολογιστών Εργαστήριο Ηλεκτρονικών Εφαρμογών Υλοποίηση τεχνικών για την αποφυγή συμφόρησης σε τοπικά

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Πολυβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Συστήματα με Κατανεμημένη Μάζα και Δυσκαμψία 1. Εξίσωση Κίνησης χωρίς Απόσβεση: Επιβαλλόμενες

Διαβάστε περισσότερα

Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής

Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής Αριστοποίηση παραγωγής ηλεκτρικής ενέργειας από συντονισμένη αξιοποίηση υδροηλεκτρικών και συμβατικών μονάδων ηλεκτροπαραγωγής με χρήση μικτού ακέραιου τετραγωνικού προγραμματισμού. Φ. Δογάνης I. Bafumba

Διαβάστε περισσότερα

Προσομoίωση Απόκρισης Συστήματος στο MATLAB

Προσομoίωση Απόκρισης Συστήματος στο MATLAB Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Προσομoίωση Απόκρισης Συστήματος στο MATLAB Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Προσομoίωση Απόκρισης Συστήματος στο MATLAB του καθ. Ιωάννη

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515

Διαβάστε περισσότερα

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ )

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η σύγκριση των πειραματικών

Διαβάστε περισσότερα

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Στην πράξη, για πολύ σημαντικές εφαρμογές, γίνονται μετρήσεις τιμών μιας ποσότητας σε μια κλινική, για μια σφυγμομέτρηση,

Διαβάστε περισσότερα

The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007

The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007 The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007 Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: 1. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν

Διαβάστε περισσότερα

Μελέτη αναρτήσεων με μεταβαλλόμενη σταθερά ελατηρίου με έλεγχο ασαφούς λογικής

Μελέτη αναρτήσεων με μεταβαλλόμενη σταθερά ελατηρίου με έλεγχο ασαφούς λογικής ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μελέτη αναρτήσεων με μεταβαλλόμενη σταθερά ελατηρίου με έλεγχο ασαφούς λογικής Διπλωματική Εργασία Βασιλόπουλος Γεώργιος Επιβλέπων Καθηγητής:

Διαβάστε περισσότερα

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Εισαγωγή Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης: Δ18- Η δυναμική μετατόπιση u(t) είναι δυνατό να προσδιοριστεί με απ ευθείας αριθμητική ολοκλήρωση της εξίσωσης

Διαβάστε περισσότερα

του προγράμματος diagrama_rohs.zip )

του προγράμματος diagrama_rohs.zip ) έκδοση 3.20 ( κατέβασμα του προγράμματος diagrama_rohs.zip ) Το πρόγραμμα αυτό γράφτηκε όχι να γίνει μια γλώσσα προγραμματισμού, αλλά να γίνει ένα εργαλείο για την εισαγωγή των μαθητών στον προγραμματισμό.

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

Διαχείριση Ταμιευτήρα

Διαχείριση Ταμιευτήρα Διαχείριση Ταμιευτήρα Μονοκριτηριακή βελτιστοποίηση Διαχείριση υδατικών πόρων Ανάγκη σύνθεσης επιστημών Σημερινό μάθημα: έμφαση στη χρήση εννοιών και μεθόδων από την επιχειρησιακή έρευνα Κουτσογιάννης,

Διαβάστε περισσότερα

Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ι Α Σ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας. Εργαστήριο Φυσικών και Χημικών Διεργασιών

Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ι Α Σ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας. Εργαστήριο Φυσικών και Χημικών Διεργασιών Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ι Α Σ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας Εργαστήριο Φυσικών και Χημικών Διεργασιών Αντίστροφος Σχεδιασμός και Βελτιστοποίηση Δικτύων Σωληνώσεων

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του

Διαβάστε περισσότερα

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Θέματα Εξετάσεων Εξεταστικής Σεπτεμβρίου στο μάθημα «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΔΙΔΑΣΚΩΝ: Δρ. Ηλ. Μηχ. & Τ.Υ. Αριστομένης Θανόπουλος Ημερομηνία: 12 / 2 / 2015

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ασάφεια (Fuzziness) Ποσοτικοποίηση της ποιοτικής πληροφορίας Οφείλεται κυρίως

Διαβάστε περισσότερα

MATLAB. Εισαγωγή στο SIMULINK. Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής

MATLAB. Εισαγωγή στο SIMULINK. Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής MATLAB Εισαγωγή στο SIMULINK Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής Εισαγωγή στο Simulink - Βιβλιοθήκες - Παραδείγματα Εκκίνηση BLOCKS click ή Βιβλιοθήκες Νέο αρχείο click ή Προσθήκη block σε αρχείο

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

Εξαγωγή κανόνων από αριθµητικά δεδοµένα

Εξαγωγή κανόνων από αριθµητικά δεδοµένα Εξαγωγή κανόνων από αριθµητικά δεδοµένα Συχνά το σύστηµα που θέλουµε να µοντελοποιήσουµε η να ελέγξουµε αντιµετωπίζεται ως µαύρο κουτί και η πληροφορία για τη λειτουργία του διατίθεται υπό µορφή ζευγών

Διαβάστε περισσότερα

Το μοντέλο Perceptron

Το μοντέλο Perceptron Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο

Διαβάστε περισσότερα

Ειδικά θέματα Πληροφορικής Κινηματογραφίας

Ειδικά θέματα Πληροφορικής Κινηματογραφίας Ειδικά θέματα Πληροφορικής Κινηματογραφίας Real Time Design and Animation of Fractal Plants and Trees Peter E. Oppenheimer New York Institute of Technology Computer Graphics Lab Δανάη Τσούνη dpsd06051

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j

ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j Πειραματικές Προσομοιώσεις ΚΕΦΑΛΑΙΟ 4 Όλες οι προσομοιώσεις έγιναν σε περιβάλλον Matlab. Για την υλοποίηση της μεθόδου ε-svm χρησιμοποιήθηκε το λογισμικό SVM-KM που αναπτύχθηκε στο Ecole d Ingenieur(e)s

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Τεχνικής Μηχανικής Διαγράμματα Ελευθέρου Σώματος (Δ.Ε.Σ.) Υπολογισμός Αντιδράσεων Διαγράμματα Φορτίσεων Διατομών (MNQ) Αντοχή Φορέα? Αντικείμενο Τεχνικής Μηχανικής Σχήμα 2 F Y A Γ B A Y B Y 1000N

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

1ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Κινηµατική Υλικού Σηµείου

1ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Κινηµατική Υλικού Σηµείου 1ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Κινηµατική Υλικού Σηµείου Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1

Διαβάστε περισσότερα

Προσοµοίωση σύνθετων ευφυών µηχανικών συστηµάτων µε αισθητήρες και διεγέρτες από πιεζοηλεκτρικά υλικά. Σύνδεση µε ευφυείς µεθόδους ελέγχου.

Προσοµοίωση σύνθετων ευφυών µηχανικών συστηµάτων µε αισθητήρες και διεγέρτες από πιεζοηλεκτρικά υλικά. Σύνδεση µε ευφυείς µεθόδους ελέγχου. Πολυτεχνείο Κρήτης Τµήµα Μηχανικών Παραγωγής και ιοίκησης Τοµέας Συστηµάτων Παραγωγής Επιβλέπων καθηγητής: Γεώργιος Σταυρουλάκης Προσοµοίωση σύνθετων ευφυών µηχανικών συστηµάτων µε αισθητήρες και διεγέρτες

Διαβάστε περισσότερα

Εισαγωγή στη Matlab Βασικές Συναρτήσεις

Εισαγωγή στη Matlab Βασικές Συναρτήσεις Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας Εισαγωγή στη Matlab Βασικές Συναρτήσεις 2016-2017 Εισαγωγή στη Matlab Matlab

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ Συνοπτική περιγραφή Μελετάμε την κίνηση μιας ράβδου που μπορεί να περιστρέφεται γύρω από σταθερό οριζόντιο άξονα,

Διαβάστε περισσότερα

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους:

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους: ΜΑΘΗΜΑ 6 ο : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ (ΣΥΝΑΡΤΗΣΕΙΣ LYAPUNOV) O Aleksadr Lyapuv (857-98) έθεσε τις βάσεις της μαθηματικής θεωρίας της ευστάθειας που φέρει το όνομά του εμπνευσμένος από μια απλή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. Περιγραφή της Μεθόδου ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΜΕΘΟΔΟΥ

ΚΕΦΑΛΑΙΟ 3. Περιγραφή της Μεθόδου ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΜΕΘΟΔΟΥ ΚΕΦΑΛΑΙΟ 3 Περιγραφή της Μεθόδου Το αντικείμενο αυτής της εργασίας είναι η χρήση μιας μεθόδου προσέγγισης συναρτήσεων που έχει προταθεί από τον hen-ha huang και ονομάζεται Ασαφώς Σταθμισμένη Παλινδρόμηση

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 1η εξεταστική περίοδος από 4/10/15 έως 08/11/15 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α Α Στις ερωτήσεις Α1-Α4 να επιλέξετε τη σωστή

Διαβάστε περισσότερα

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014 Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 204 ΘΕΜΑ Ο (2,0 μονάδες) Η διαδικασία διεύθυνσης ενός αυτοκινήτου κατά την οδήγησή του μπορεί να περιγραφεί με ένα σύστημα αυτομάτου ελέγχου κλειστού βρόχου.

Διαβάστε περισσότερα

Δίκτυα Perceptron. Κυριακίδης Ιωάννης 2013

Δίκτυα Perceptron. Κυριακίδης Ιωάννης 2013 Δίκτυα Perceptron Κυριακίδης Ιωάννης 2013 Αρχιτεκτονική του δικτύου Το δίκτυο Perceptron είναι το πρώτο νευρωνικό δίκτυο το οποίο θα κατασκευάσουμε και στη συνέχεια θα εκπαιδεύσουμε προκειμένου να το χρησιμοποιήσουμε

Διαβάστε περισσότερα

ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ

ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ υναμική Ανάλυση Ραβδωτών Φορέων Μετακινήσεις στη μέθοδο επαλληλίας των ιδιομορφών,

Διαβάστε περισσότερα

Πολυδιάστατα Δεδομένα

Πολυδιάστατα Δεδομένα Ανίχνευση Συμβάντος σε Πολυδιάστατα Δεδομένα Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Διπλωματική Εργασία Μεταπτυχιακού Προγράμματος Ηλεκτρονικού Αυτοματισμού Καλβουρίδη Ειρήνη Ανίχνευση Συμβάντος

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης Κεφάλαιο 5 ΣΥΜΠΕΡΑΣΜΑΤΑ Το σηµαντικό στην επιστήµη δεν είναι να βρίσκεις καινούρια στοιχεία, αλλά να ανακαλύπτεις νέους τρόπους σκέψης γι' αυτά. Sir William Henry Bragg 5.1 Ανακεφαλαίωση της διατριβής

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΑΝΑΛΥΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΩΝ ΟΔΗΓΩΝ ΣΕ ΣΥΝΘΗΚΕΣ ΚΑΝΟΝΙΚΕΣ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΕ ΑΣΤΙΚΗ ΟΔΟ. Δανάη Βουτσινά

ΣΥΓΚΡΙΤΙΚΗ ΑΝΑΛΥΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΩΝ ΟΔΗΓΩΝ ΣΕ ΣΥΝΘΗΚΕΣ ΚΑΝΟΝΙΚΕΣ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΕ ΑΣΤΙΚΗ ΟΔΟ. Δανάη Βουτσινά Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τομέας Μεταφορών και Συγκοινωνιακής Υποδομής ΣΥΓΚΡΙΤΙΚΗ ΑΝΑΛΥΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΩΝ ΟΔΗΓΩΝ ΣΕ ΣΥΝΘΗΚΕΣ ΚΑΝΟΝΙΚΕΣ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΕ ΑΣΤΙΚΗ ΟΔΟ Δανάη

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος

Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος 1 Τι είναι τα Matlab και Simulink? Το Matlab (MATrix LABoratory) είναι ένα περιβάλλον επιστημονικού

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515

Διαβάστε περισσότερα

2). V (s) = R(s) + γ max T (s, a, s )V (s ) (3)

2). V (s) = R(s) + γ max T (s, a, s )V (s ) (3) ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Παράδοση: 5 Απριλίου 2012 Μιχελιουδάκης Ευάγγελος 2007030014 ΠΛΗ513: Αυτόνομοι Πράκτορες ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Εισαγωγή Η εργασία με

Διαβάστε περισσότερα

4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης

4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης 4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων Δρ Μ.Σπηλιώτης Ολοκληρωμένη διαχείριση υδατικών πόρων (integrated water resources management), έμφαση στην εξέταση όλων των πτυχών

Διαβάστε περισσότερα

1 ο Διαγώνισμα Α Λυκείου Κυριακή 15 Νοεμβρίου 2015

1 ο Διαγώνισμα Α Λυκείου Κυριακή 15 Νοεμβρίου 2015 1 ο Διαγώνισμα Α Λυκείου Κυριακή 15 Νοεμβρίου 2015 Διάρκεια Εξέτασης 3 ώρες Ονοματεπώνυμο. ΘΕΜΑ Α: Στις ερωτήσεις Α1 ως και Α4 επιλέξτε την σωστή απάντηση: Α1. Αν υ η ταχύτητα ενός κινητού και α η επιτάχυνσή

Διαβάστε περισσότερα

Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1

Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1 Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 7/3/5 Σκοπός αυτού του εργαστηρίου είναι να δούμε πως μπορούμε να επιλύσουμε συστήματα διαφορικών εξισώσεων, με την χρήση του Matlab. Συστήματα

Διαβάστε περισσότερα

Λογισμικό για Μαθηματικά

Λογισμικό για Μαθηματικά Λογισμικό για Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 6 Αυγούστου 2012 Λογισμικό 2 Λογισμικό Με τον όρο λογισμικό υπολογιστών, ή λογισμικό (software), ορίζεται η συλλογή από προγράμματα

Διαβάστε περισσότερα