OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11."

Transcript

1 OSOVINE I VRATILA Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11. Nositelji kolegija: Prof. dr. sc. Božidar Križan Prof. dr. sc. Saša Zelenika - 1 -

2 OSOVINE I VRATILA Funkcija, opterećenja, naprezanja Osovine su strojni elementi koji na sebi nose strojne dijelove kao što su npr. užnice i kotači. Osovine mogu mirovati dok se dijelovi okreću na njima ili se mogu okretati zajedno s na njima pričvršćenim dijelovima. Užnice na mirujućoj osovini Kotači na rotirajućoj osovini Osovine su opterećene poprečnim silama F Q koje izazivaju savijanje, a ponekad i aksijalnom silom F a koja uzrokuje vlak ili tlak. Smicanje izazvano poprečnim silama se zanemaruje. Osovine ne prenose okretni moment i snagu pa nisu opterećene torzijski

3 Poprečne sile Moment savijanja Aksijalna sila u zavoju Vratila su strojni elementi koji se okreću i prenose okretni moment i snagu. Po obliku su slična osovinama i na sebi najčešće nose razne strojne elemente koji također služe za prijenos snage - zupčanike, remenice, lančanike itd. Dvostupanjski reduktor s parom koničnih i parom cilindričnih zupčanika te tri vratila: - 3 -

4 Vratila su najčešće opterećena i savijanjem, a ponekad i aksijalnom silom koja uzrokuje vlak ili tlak. Smicanje izazvano poprečnim silama se zanemaruje. Vratilo u lančaničkom prijenosniku: Vratila mlinskih kola mlina u Martinovom selu na Rječini - 4 -

5 Pregled naprezanja u osovinama i vratilima: Osovine Vratila Opterećenje M s uvijek F a ponekad M s najčešće F a ponekad T uvijek Naprezanje σ s = M s / W σ = σ s ± σ v, tl σ v, tl = ±F a / A σ s = M s / W σ v, tl = ±F a / A σ = σ s ± σ v, tl 2 σ = σ + 3 ( α τ τ t = T / W p 2 e 0 t ) Posmično naprezanje se zanemaruje. Vlačno i tlačno naprezanje uzrokovano aksijalnom silom je također najčešće zanemarivo u usporedbi sa savijanjem. Rukavci su oni dijelovi osovina i vratila kojima se oslanjaju na klizne ili valjne ležaje ili na nepokretne dijelove. Rukavci koji se nalaze na kraju osovine/vratila se nazivaju čelnim, a ostali unutarnjim. Osovine i vratila imaju obično dva rukavca, tj. ležaja, a dugačka i jače opterećena vratila više njih, npr. koljenasto vratilo motora. Osovine i vratila su rijetko jednakog promjera po čitavoj duljini. Najčešće su stupnjevani, tj. pojedini dijelovi imaju različite promjere. Vratila mogu biti i profilirana, tj. ožlijebljena ili ozubljena

6 Radi smanjenja težine, osovine i vratila mogu biti šuplji, s uzdužnim provrtom, što poskupljuje izradu. Pri tome je korist od smanjenja težine veća nego šteta od smanjenja čvrstoće i krutosti. Npr. vratilo s promjerom provrta 0,5 d je lakše 25 %, a momenti otpora W i W p se smanjuju samo oko 5 %. Primjer: šuplje vratilo s dva zupčanika Materijal Materijali osovina i vratila ISO / DIN / HRN: - Najčešće: S275JR / St 44-2 / Č0451, E295 / St 50-2 / Č0545, za veća opterećenja E335 / St 60-2 / Č Kod većih zahtjeva se koriste čelici za poboljšanje: C35E / Ck 35 / Č1431, C45E / Ck45 / Č1531, 34Cr4 / 34Cr4 / Č4130, 41Cr4 / 41Cr4 / Č4131, 42CrMo4 / 42CrMo4 / Č4732 i sl. - Za vratila vozila se koriste čelici za cementiranje: C15 / C15 / Č1220, 16MnCr5 / 16MnCr5 / Č4320, 20MnCr5 / 20MnCr5 / Č4321, 18CrNi8 /18CrNi8 / Č5421 i sl. - Koljenasta vratila motora s unutarnjim izgaranjem se mogu izrađivati i iz nodularnog lijeva (NL 600) koji ima kuglasti grafit. Čelici za cementaciju su potrebni jer je na pojedinim mjestima (npr. na rukavcu u ležaju) potrebno da vratilo ima tvrdu površinu, dok jezgra vratila ostaje mekana i žilava. Pri tome se koncentracija naprezanja na površini mora maksimalno smanjiti jer su čelici visoke čvrstoće vrlo osjetljivi na zareze. Radi uštede se vratila mogu izrađivati i zavarivanjem iz dva dijela od različitih materijala, npr. od jeftinog Č0545 i skupog Č5421 za zupčanike

7 Izrada Osovine i vratila promjera do 80 mm mogu se dobiti provlačenjem (izvlačenjem) čeličnih šipki na hladno, pri čemu se postižu tolerancije h8...h11, tako da naknadno tokarenje više nije potrebno. Promjeri do 150 mm izrađuju se od čeličnih šipki okruglog presjeka izvlačenjem na toplo, valjanjem na toplo ili tokarenjem. Deblje i složenije osovine i vratila izrađuju se kovanjem, prešanjem ili lijevanjem. Rukavci, prijelazi s manjeg na veći promjer i bočni oslonci se prema postavljenim zahtjevima fino tokare, bruse, poliraju ili tlače. Preporuča se da promjeri osovina/vratila u (mm) budu standardni ili zaokruženi brojevi. Završeci vratila promjera do 28 mm izrađuju se s tolerancijom j6, od 28 do 50 s k6, a veći s m6. Često su završeci izrađeni kao ožljebljeni. Promjeri rukavaca su određeni promjerom ležaja. Oblik ostalog dijela osovine/vratila je osim čvrstoćom i krutošću određen drugim konstrukcijskim zahtjevima, načinom montaže, izmjerama brtvi, uskočnika itd. Osovine i vratila za brzine vrtnje iznad 1500 min 1 uležištena i izbalansirana. moraju biti kruta, kruto Oblikovanje Promjenljivo naprezanje pri savijanju izaziva na svim mjestima gdje postoji koncentracija naprezanja (utori, promjene presjeka, provrti) stalnu opasnost od loma usljed zamora materijala. Stoga oblikovati treba tako da skretanje silnica - zamišljenih linija po kojima se prenosi sila - bude što blaže. To će se postići ako na osovini/vratilu ne bude naglih promjena oblika. Opasnost od zamornog loma će se smanjiti ako površinska obrada na mjestima skretanja sila bude što finija (faktor b 1 u formuli za σ dop din )

8 Povećana naprezanja σ k i τ k na mjestu koncentracije naprezanja i tok sile kod povoljnog i nepovoljnog oblikovanja: Ukoliko na promjenama promjera ne smije biti zaobljenje radi bočnog oslanjanja pojedinih elemenata (valjnog ležaja, zupčanika itd.), izrađuju se žljebovi za izlaz alata koji također smanjuju koncentraciju naprezanja. d d - 8 -

9 Sile i momenti Osovine i vratila su nosači na dva ili rjeđe na više oslonaca. - Na osovine djeluju momenti savijanja M s, a ponekad i aksijalne sile F a. - Na vratila djeluju okretni momenti (momenti torzije) T, najčešće i momenti savijanja M s, a ponekad i aksijalne sile F a. Opterećenja tijekom rada nisu konstantna, nego se mijenjaju, ovisno o radnom i pogonskom stroju. Srednje vrijednosti opterećenja tijekom rada se nazivaju nazivnima: M sn = nazivni moment savijanja T N = nazivni okretni moment (nazivni moment torzije) Najveći moment savijanja M s max i najveći okretni moment T max se obično javljaju pri pokretanju ili zaustavljanju stroja i veći su najčešće za puta od nazivnog momenta savijanja M sn, odnosno nazivnog okretnog momenta T N. Najveće opterećenje pri pokretanju (ili zaustavljanju) M s T Variranje opterećenja tijekom pogona Ms max MsN Ms eq = KA MsN Tmax TN Teq = KA TN t t Najveća opterećenja M s max i T max izazivaju maksimalna naprezanja koja ne smiju uzrokovati trajne plastične deformacije. Veličinama M s max i T max vrši se kontrola plastičnih deformacija osovina i vratila. Radni stroj, a ponekad i pogonski stroj (npr. motor s unutarnjim izgaranjem), proizvode u trajnom pogonu udare pa opterećenja variraju. To se uzima u obzir faktorom primjene K A (u tablici) kojim se množe nazivni momenti M sn i T N

10 Tako se dobivaju ekvivalentni jednakovrijedni momenti: - ekvivalentni moment savijanja: M s eq = K A M sn - ekvivalentni okretni moment: T eq = K A T N Oni će u proračunu rezultirati istom sigurnošću protiv oštećenja kao i realni promjenjivi momenti. Veličinama M s eq i T eq vrši se kontrola zamora materijala osovina i vratila pri dinamičkim opterećenjima, kad može nastupiti zamorni lom. Ekvivalentni moment savijanja M s eq se ne smije zamijeniti s ekvivalentnim 2 momentom ( ) 2 M e M s +, 75 = 0 α T. Faktor primjene K A (pogonski faktor, faktor udara)

11 Ukoliko sve sile i momenti savijanja ne djeluju u jednoj ravnini, radi jednostavnosti proračuna se rastavljaju u komponente u dvije međusobno okomite ravnine i zatim izračunava njihova rezultanta. Primjer: vratilo s pogonskim cilindričnim zupčanikom s kosim zubima. Sila koja s gonjenog djeluje na pogonski zupčanik rastavlja se u tangencijalnu (obodnu) F t, radijalnu F r i aksijalnu komponentu F a. Ležajevi A i B predstavljaju oslonce u kojima spomenute komponente izazivaju odgovarajuće reakcije. pogonski zupčanik gonjeni zupčanik Reakcije u ležajevima se izračunavaju tako da se postavljaju jednadžbe ravnoteže sila ΣF = 0 i ravnoteže momenata ΣM = 0. Obodna sila F t izaziva radijalne reakcije F Ax F b l = t F Bx F a l = t Radijalna sila F r izaziva radijalne reakcije F Ay1 = r F b l F By1 = r F a l Aksijalna sila F a izaziva moment prevrtanja ležajevima d Fa i radijalne reakcije u 2 d Fa F F 2 Ay2 = By2 = l

12 Sile F Ay2 i F By2 su suprotno usmjerene. Rezultirajuće radijalne reakcije u ležajima: F Ar = F 2 Ax + ( F F ) 2 Ay1 Ay2 Br 2 Bx ( F F ) 2 F = F + + By1 By2 Aksijalnu silu na zupčaniku F a može preuzimati samo jedan ležaj. Aksijalna reakcija će biti npr. u ležaju A: F Aa = F a Nakon određivanja reakcija u ležajevima mogu se proračunati momenti savijanja. Prirubnica spojke Sila F t izaziva najveći moment savijanja M x. Sila F r izaziva najveći moment savijanja M y3. Sila F a izaziva reakcije F Ay2 i F By2 koje izazivaju momente savijanja M y1 = F Ay2 a M y2 = F By2 b Najveći moment savijanja je neposredno uz točku C s desne strane i iznosi s 2 x ( M M ) 2 M = M + + y2 y3-12 -

13 Torzijski m oment T (Nm) često se izračunava iz snage P (W) i brzine vrtnje n (s 1 ), odnosno kutne brzine ω (s 1 ): P T =, ω = 2 π n ω Ekvivalentni moment (koji obuhvaća djelovanje i savijanja i torzije) po hipotezi najvećeg deformacijskog rada neposredno uz točku C s desne strane iznosi M 2 e Ms + 0, 75 = α ( T ) 2 0 Ovaj moment treba razlikovati od ekvivalentnog momenta savijanja M s eq =K A M sn. Ekvivalentno naprezanje σ e = M W e Ekvivalentno naprezanje se može izračunati i iz pojedinačno izračunatih normalnih naprezanja uslijed savijanja i tangencijalnih naprezanja uslijed torzije. DIMENZIONIRANJE PREMA KRITERIJU ČVRSTOĆE Približn i proračun Ovim se proračunom približno određuje minimalni potrebni promjer osovine ili vratila d pr. Budući da oblik osovine ili vratila još nije poznat i ne mogu se utvrditi utjecajni faktori (koncentracija naprezanja, površinska obrada itd.), računa se s velikim faktorima sigurnosti S, tj. s malim dopuštenim naprezanjima. Kod osovina treba računati s momentom savijanja M s = M s eq, a kod vratila treba računati s momentom torzije T = T eq. Dakle, u nastavku se neće pisati indeks eq, ali se u proračunu trebaju koristiti te realne ekvivalentne vrijednosti

14 Osovine Mjerodavna veličina za proračun osovina je najveći lokalni moment savijanja M s (=M s eq ), pri čemu se težina osovine zanemaruje. Naprezanje pri savijanju σ M 2 s s σ sdop = (N/mm ) W Aksijalni moment otpora za puni okrugli presjek W 3 pr d π M s = (mm 3 ) 32 σ sdop Slijedi d pr 32 M s 3 (mm) π σ sdop Ako osovina ne rotira (kotači vagoneta i dizalica, užnice), uzima se da je dinamičko opterećenje ishodišno. Dopušteno naprezanje je σ sdop Rds0 = S = S Ako osovina rotira (kotači vagona), uzima se da je dinamičko opterećenje izmjenično. Dopušteno naprezanje je σ sdop Rds 1 = S = S Vratila Mjerodavna veličina za proračun vratila je moment torzije T (=T eq ), koji je praktički uvijek ishodišnog dinamičkog karaktera. 1. slučaj: nisu poznate izmjere konstrukcije u kojoj će se vratilo nalaziti Naprezanje pri torziji τ t T = τtdop (N/mm 2 ) W t

15 Torzijski moment otpora za puni okrugli presjek W t 3 pr d π T = Wp = (mm 3 ) 16 τ tdop Slijedi d pr 16 T 3 (mm) π τ tdop Dopušteno naprezanje se računa u odnosu na ishodišnu trajnu dinamičku čvrstoću: τ tdop = R S dt0 Ako se radi o vratilima koja su opterećena isključivo torzijom - npr. kardansko vratilo, uzima se faktor sigurnosti S = Ako se radi o vratilima koja će biti opterećena i savijanjem - npr. vratila na kojima su remenice, zupčanici i sl., mora se usvojiti veći faktor sigurnosti S = , budući da se u ovoj fazi proračuna veličina momenata savijanja još ne zna pa se ne može uzeti u obzir u proračunu. 2. slučaj: poznate su bitne izmjere konstrukcije koje omogućavaju određivanje momenta savijanja M s Ako su poznate izmjere konstrukcije na temelju kojih se može odrediti moment savijanja M s (=M s eq ), treba izračunati ekvivalentni moment 2 s ( ) 2 M e = M + 0, 75 α 0 T i dalje računati kao za rotirajuću osovinu, ali s M e : d pr 32 M e 3, π σ sdop σ sdop Rds 1 =, S = S

16 Kontrolni proračun Nakon što je približnim proračunom određen minimalni potrebni promjer osovine ili vratila d pr, određuje se stvarni promjer d. Ako su osovina ili vratilo oslabljeni utorima i slično, to treba uzeti u obzir pa je d d pr d dpr t dpr d dpr t Utor za pero Ožljebljeno vratilo Utor za uskočnik Zatim se utvrđuje način uležištenja i konstruira oblik osovine ili vratila prema postavljenim zahtjevima. Kontrolni proračun se vrši za presjeke za koje se procjenjuje da su kritični. Kritični su presjeci oni gdje se javljaju najveći momenti savijanja ili najveći ekvivalentni momenti, odnosno gdje se nalaze koncentratori naprezanja - promjene promjera, utori i sl. 1, 3 i 4 - kritični presjeci na mjestu promjene promjera (koncentracija naprezanja) 2 - kritični presjek na mjestu najvećeg momenta savijanja

17 Naprezanje pri vlaku/tlaku Naprezanje pri savijanju Naprezanje pri torziji σ σ Fa = (N/mm 2 ) A v, tl ± s = M W p s T τ t = (za neokrugle presjeke W T τ t = ) W t Vrše se sljedeće kontrole (temeljene na normi DIN 743): 1. Kontrola plastičnih deformacija; plastična deformacija se praktički javlja kod naprezanja većih od granice tečenja (razvlačenja) R e, odnosno R p0,2. Osovine i vratila se ne izrađuju od krhkih materijala. 2. Kontrola zamora materijala pri dinamičkim opterećenjima kad može nastupiti zamorni lom

18 Aksijalni momenti otpora W, polarni momenti otpora W p i torzijski momenti otpora W t poprečnog presjeka W W p, W t W t π d 3 32 W t π d 3 16 W t z = broj žlijebova W t W t W t

19 Kontrola plastičnih deformacija (temeljeno na normi DIN 743) Kontrola plastičnih deformacija se načelno obavlja tako da se računa koliko je puta granica tečenja R e (ili R p0,2 ) veća od najvećeg naprezanja. Ova se kontrola mora vršiti za najveća naprezanja koja se mogu javiti kao posljedica najvećih opterećenja (M s max, T max i F a max ). Takva su naprezanja rijetka i uglavnom se pojavljuju pri pokretanju ili zaustavljanju radnog stroja. Ako je kritični presjek osovine opterećen samo savijanjem (σ s ), onda je faktor sigurnosti protiv plastične deformacije S P = R σ es s max = Granica tečenja pri savijanju Najveće naprezanje uslijed savijanja Ako je kritični presjek vratila opterećen samo torzijom (τ t ), onda je faktor sigurnosti protiv plastične deformacije S P = R τ et t max = Granica tečenja pri torziji Najveće naprezanje uslijed torzije Ako je kritični presjek vratila opterećen i savijanjem (σ s ) i torzijom (τ t ), onda je faktor sigurnosti protiv plastične deformacije S P = σ R s max es 2 1 τ + R t max et 2 Osovine i vratila su rijetko znatnije opterećeni vlačno ili tlačno i najčešće se ta naprezanja (σ v,tl max ) mogu zanemariti. U slučaju da to zanemarenje nije moguće, faktor sigurnosti protiv plastične deformacije bio bi 1 S P = (R e = granica tečenja pri vlaku) 2 2 σs max σv,tl max τt max + + Res Re Ret s time da bi kod osovina otpao član s τ t max, a kod vratila koja nisu opterećena savijanjem član sa σ s max

20 Faktor sigurnosti mora biti S P S Pmin = 1,2. Kod nedovoljno pouzdanih svojstava materijala, mogućnosti veće štete i opasnosti za ljude pri havariji, minimalni faktor sigurnosti S Pmin mora biti i veći od 1,2. Visina stvarne granice tečenja R e (odnosno R p0,2 ) u odnosu na nazivnu granicu tečenja R en, koja je određena za ispitnu epruvetu promjera 16 mm, ovisi o izmjerama osovine/vratila i uzima se u obzir tehnološkim faktorom K t : Za vlak/tlak R e = K t R en (N/mm 2 ) Za savijanje R es = K t R esn Za torziju R et = K t R etn Tehnološki faktor K t uzima u obzir da se s porastom veličine smanjuju granica tečenja, dinamička čvrstoća i tvrdoća koja se može postići toplinskom obradom. Faktor K t se očitava sa slika 1 i 2 ili proračunava po sljedećim izrazima: Ugljični konstrukcijski čelici: a) Ako se faktor K t koristi za proračun stvarne vlačne čvrstoće R m izvedene osovine ili vratila (R m =K t R mn ), koristi se linija 1 na slici 1, tj.: - za D 100 mm : K t = 1 - za 100 < D 300 mm: K t = 1 0,23 lg (D/100) - za D > 300 mm: K t = 0,89 b) Ako se faktor K t koristi za proračun stvarne granice tečenja R e izvedene osovine ili vratila (R e =K t R en ), koristi se linija 2 na slici 1, tj.: - za D 32 mm : K t = 1 - za 32 < D 300 mm: K t = 1 0,26 lg (D/32) - za D > 300 mm: K t = 0,75 Čelici za nitriranje: - za D 100 mm : K t = 1 - za 100 < D 300 mm: K t = 1 0,23 lg (D/100) - za D > 300 mm: K t = 0,89 Čelici za poboljšanje: - za D 16 mm : K t = 1 - za 16 < D 300 mm: K t = 1 0,26 lg (D/16) - za D > 300 mm: K t = 0,

21 Čelici za cementaciju: - za D 11 mm : K t = 1 - za 11 < D 300 mm: K t = 1 0,41 lg (D/11) - za D > 300 mm: K t = 0,41 Tehnološki faktor Kt Tehnološki faktor Kt

22 Nazivna granica tečenja R en (odnosno R p0,2n ) epruvete promjera 16 mm dana je u tablici s mehaničkim karakteristikama materijala za osovine/vratila:

23 Kontrola zamora materijala (temeljeno na normi DIN 743) Određivanje amplitude trajne dinamičke čvrstoće R da (u knjizi B. Križan: "Osnove proračuna i oblikovanja konstrukcijskih elemenata" oznaka je R a ) σ R e R d 1N R d 1K R da 45 σ m Izvedeni konstrukcijski element Epruveta Crtkana linija u Smithovom dijagramu se odnosi na epruvetu (indeks N), a puna na izvedeni element određenog oblika, izmjera i obrade (indeks K). Za srednje naprezanje σ m = 0 (κ = 1) je amplituda dinamičke čvrstoće R da = R d 1K. Budući da se dijagram prema vrhu sužava, R da će biti to manji što je srednje naprezanje σ m veće. Smanjenje R da se uzima u obzir s faktorom ψ koji je određen na temelju približne konstrukcije Smithovog dijagrama pomoću R d 1 i R m. Dakle, faktor ψ (psi) definira granice Smithovog dijagrama, tj. njegovo sužavanje prema vrhu. Isto vrijedi, naravno, i za tangencijalna naprezanja τ

24 Za savijanje (normalno naprezanje) je ψ σ = R ds 1K 2 Rm Rds 1K Za torziju (tangencijalno naprezanje) je ψ τ = R dt 1K 2 Rm Rdt 1K R ds 1K = trajna izmjenična dinamička čvrstoća već oblikovanog elementa pri savijanju (N/mm 2 ) R dt 1K = trajna izmjenična dinamička čvrstoća već oblikovanog elementa pri torziji R m = K t R mn = stvarna vlačna čvrstoća izvedene osovine ili vratila K t = tehnološki faktor za proračun stvarne vlačne čvrstoće (iz dijagrama ili formule) R mn = vlačna čvrstoća epruvete promjera 16 mm (iz tablice) Na temelju Smithovih dijagrama danih u knjizi Roloff/Matek: "Maschinenelemente" (2000.), mogu se usvojiti približne i veće vrijednosti faktora ψ σ i ψ τ, čime se proračun pojednostavnjuje i nalazi se na strani sigurnosti: za savijanje ψ σ 0,35 i za torziju ψ τ 0,19. S kojom amplitudom dinamičke čvrstoće R da treba računati, ovisi o tome da li će pri porastu opterećenja ostati nepromijenjeno srednje naprezanje σ m (τ m ) ili faktor asimetrije naprezanja σ κ = min, odnosno σ max κ τ = τ min max σ (τ) σ a (τ a ) σ a (τ a ) σ min (τ min ) σ m (τ m ) σ max (τ max ) t

25 Jednostavno opterećenje Ovakav je slučaj kad na osovinu djeluje (samo) moment savijanja M s ili na vratilo djeluje samo moment torzije T. Variranje naprezanja tijekom pogona treba uzeti u obzir faktorom primjene K A i zapravo računati odmah s opterećenjima M s eq, odnosno T eq. a) Srednje naprezanje je konstantno: σ sm = konst., odnosno τ tm = konst. Ovakav slučaj se npr. javlja kod mirujuće osovine užnice. Smithov dijagram: Amplituda dinamičke čvrstoće za izvedeni element pri savijanju, odnosno torziji, bit će R dsa = R ds 1K ψ σ σ sm (N/mm 2 ) R dta = R dt 1K ψ τ τ tm

26 b) Faktor asimetrije naprezanja κ = konst. Ovakav slučaj se npr. javlja kod vratila reduktora. Smithov dijagram: τ ta, R dt R et R dt 1N R dt 1K τ tm τta τta RdtA RdtA RdtAN RdtAN Amplituda dinamičke čvrstoće je za takvo vratilo pri torziji R R dt 1K dta = (N/mm 2 ) τ 1 + ψ tm τ τ ta a za savijanje osovine s κ = konst. bi bilo R RdsA σ 1 + ψσ σ = ds 1K sm sa

27 Složeno opterećenje Vratila su najčešće podvrgnuta složenom opterećenju, tj. i momentu savijanja M s i momentu torzije T. Variranje naprezanja tijekom pogona treba uzeti u obzir faktorom primjene K A i zapravo računati odmah s vrijednostima M s eq i T eq. Potrebno je izračunati srednja ekvivalentna naprezanja kojima se uzima u obzir ukupni utjecaj normalnih i tangencijalnih naprezanja koja istodobno djeluju: σ i em = σ 2 sm + 3 τ 2 tm σ τ em = 3 em S ovim srednjim ekvivalentnim naprezanjima se zatim proračunavaju amplitude dinamičke čvrstoće R dsa i R dta : a) Srednje naprezanje je konstantno: σ sm = konst., odnosno τ tm = konst. R dsa = R ds 1K ψ σ σ em (N/mm 2 ) R dta = R dt 1K ψ τ τ em b) Faktor asimetrije naprezanja κ = konst. R R ds 1K dsa = (N/mm 2 ) σ 1 + ψ em σ σ R RdtA τ 1 + ψτ τ = dt 1K sa em ta

28 Određivanje faktora sigurnosti S D Kod kontrole zamora materijala se načelno računa koliko puta je amplituda dinamičke čvrstoće R da iz Smithovog dijagrama veća od amplitude naprezanja σ sa, odnosno τ ta. Amplituda naprezanja Amplituda dinamičke čvrstoće τ ta, R dt R et Amplituda naprezanja Amplituda dinamičke čvrstoće R dt 1N R dt 1K τ tm τta τta RdtA RdtA RdtAN RdtAN Variranje naprezanja tijekom pogona treba uzeti u obzir faktorom primjene K A i naprezanja proračunavati s vrijednostima M s eq, odnosno T eq

29 Ako je kritični presjek osovine dinamički opterećen samo savijanjem s amplitudom naprezanja σ sa, onda je faktor sigurnosti protiv zamora materijala S = D R σ dsa sa Ako je kritični presjek vratila dinamički opterećen samo torzijom s amplitudom naprezanja τ ta, onda je sigurnost protiv zamora materijala S = D R τ dta ta Ako je kritični presjek vratila opterećen i savijanjem i torzijom s amplitudama naprezanja σ sa i τ ta, onda je sigurnost protiv zamora materijala S D = σ R sa dsa 2 1 τ + R ta dta 2 Mora biti S D S Dmin = 1,2. Kod nedovoljno pouzdanih svojstava materijala, mogućnosti veće štete i opasnosti za ljude pri havariji, minimalni faktor sigurnosti S Dmin treba biti veći od 1,2. Osovine i vratila mogu biti opterećeni i vlačno/tlačno, ali se to najčešće može zanemariti pa ni u ovom proračunu nije uzeto u obzir. Određivanje trajne izmjenične dinamičke čvrstoće već oblikovanog elementa R ds 1K i R dt 1K Dosada je bilo objašnjeno kako se može izračunati amplituda dinamičke čvrstoće za savijanje R dsa i torziju R dta iz trajne izmjenične dinamičke čvrstoće već oblikovanog elementa pri savijanju R ds 1K i pri torziji R dt 1K. Te trajne izmjenične čvrstoće već oblikovanog elementa se izračunavaju pomoću sljedećih izraza:

30 Za savijanje R ds 1K Kt Rds 1N = (N/mm 2 ) K σ Za torziju R dt 1K = K t R dt 1N K τ K t = tehnološki faktor za proračun stvarne vlačne čvrstoće (dijagram) R ds-1n i R dt-1n = trajne izmjenične dinamičke čvrstoće za epruvetu promjera 16 mm - iz tablice K σ i K τ = konstrukcijski faktori za normalno i tangencijalno naprezanje Određivanje konstrukcijskih faktora K σ i K τ Ovi faktori uzimaju u obzir koncentraciju naprezanja (β k ), veličinu komada (K g ), hrapavost površine (K 0 ) i utjecaj ojačanja površinskog sloja, npr. sačmarenjem (K V ). Za savijanje Za torziju K K τ σ β = K β = K ks 1 1 g g + K 0σ 0τ 1 K 1 K kt K V V Efektivni faktori koncentracije naprezanja za savijanje β ks i torziju β kt za najčešće oblike koncentratora naprezanja mogu se naći u sljedećim dijagramima, a u ovisnosti o vlačnoj čvrstoći materijala izvedene osovine ili vratila R m = K t R mn gdje su: K t = tehnološki faktor za proračun vlačne čvrstoće (dijagram) i R mn = vlačna čvrstoća epruvete (tablica)

31 - 31 -

32 - 32 -

33 K g je geometrijski faktor veličine : Za savijanje i torziju: - za d 7,5 mm: K g = 1 - za 7,5 < d < 150 mm: K g lg( d / 7,5) = 1 0,2 lg20 - za d 150 mm: K g = 0,8 Na mjestima promjene promjera osovine/vratila, u proračun treba uzeti manji promjer. Faktor K g odgovara faktoru b 2 u formuli za dopušteno naprezanje pri dinamičkom opterećenju. K 0 je faktor utjecaja hrapavosti površine. Kod savijanja (normalno naprezanje) se računa s K 0σ (dijagram, prva formula u dijagramu). Kod torzije (tangencijalno naprezanje) se najprije odredi K 0σ, a zatim po drugoj formuli K 0τ

34 Faktor K 0 odgovara faktoru b 1 u formuli za dopušteno naprezanje pri dinamičkom opterećenju. Faktor ojačanja površinskog sloja K V : Karbonitriranje (cijaniranje)

35 KONTROLNI PRORAČUN OSOVINA I VRATILA Dijagram toka za pomoć pri proračunu S P : R en, R esn, R etn (iz tablice) K t za određivanje R e (iz dijagrama ili formula) M smax, T max, F a max R e, R es, R et σ s max, τ t max, σ v, tl S P 1,2 Dijagram toka za pomoć pri proračunu S D : K t za određivanje R m (iz dijagrama ili formule) R mn (iz tablice) R m R ds 1N, R dt 1N (iz tablice) K σ, K τ (iz formula, dijagrama i tablica) R ds 1K, R dt 1K M s eq, T eq ψ σ, ψ τ σ sm, τ tm σ sa, τ ta Jednostavno opterećenje: samo M s ili samo T Složeno opterećenje: M s i T σ em, τ em Samo za κ = konst. R dsa, R dta S D 1,2-35 -

36 DIMENZIONIRANJE PREMA KRITERIJU KRUTOSTI Dimenzije dobivene na temelju kriterija čvrstoće često su premale da bi osovina ili vratilo pri savijanju i torziji bili dovoljno kruti za postizanje dobre funkcionalnosti. Takav je npr. slučaj kod alatnih strojeva (progib), kod vratila zupčaničkih prijenosnika (progib), dugih transmisijskih vratila (kut uvijanja) itd. Progibi kod savijanja ovise o modulu elastičnosti E, a kut uvijanja kod torzije o modulu smicanja G. Stoga se te deformacije ne mogu smanjiti čvršćim čelicima koji imaju iste module E i G, nego samo većim momentima tromosti I i I p poprečnog presjeka nosača ili promjenom konstrukcije. Progib osovina i vratila Ako je promjer osovine ili vratila konstantne vrijednosti, progib f se može izračunati pomoću formula za progib greda iz nauke o čvrstoći. Ako je promjer promjenljiv, proračun progiba je složeniji i treba koristiti odgovarajuće formule iz literature o konstrukcijskim elementima. Dopuštene vrijednosti progiba: - kod grubih pogona (transmisijska vratila, poljoprivredni strojevi): f max 0,5 mm / m duljine - u općem strojarstvu: f max 0,3 mm / m duljine - kod alatnih strojeva, zupčanika: f max 0,2 mm / m duljine - kod elektromotora se preporuča da progib bude manji od 1/10 zračnosti između statora i rotora. Kut nagiba u osloncu treba približno biti: 1. α 0,001 rad kod dugačkih kliznih ležajeva 2. α 0,002 rad kod kratkih kliznih ležajeva i valjnih ležajeva

37 Približno se može uzeti da razmak između ležajeva prema uvjetu najvećeg progiba treba biti l 316 d l (mm), d (mm) a prema uvjetu najvećeg kuta nagiba u osloncu α 0,001 rad l d l (mm), d (mm) Preveliki progibi vratila zupčanika dovode do nepravilnog zahvata zubi zupčanika pa se oni oštećuju, a moguć je i lom zuba. U kliznim se pak ležajevima mogu oštetiti blazinice zbog velikih rubnih pritisaka, osim ako je ležaj samopodešavajući. Brodska propelerska vratila, koljenasta vratila motora, vratila generatora i sl. proračunavaju se i prema propisima klasifikacijskih društava - Hrvatski registar brodova, Lloyd's Register, Bureau Veritas, Det Norske Veritas itd.) Kut uvijanja vratila T l ϕ = (rad) G I p Za puni okrugli presjek je 32 T l ϕ = tj. 4 G π d I p 4 π d = i

38 d 4 32 T ϕ G π l dop Dozvoljen je kut uvijanja 0,25...0,5 po metru duljine vratila. Kod kardanskih vratila automobila se dopušta i do 2 /m. ϕ Uz uvjet l dop = 0,25 o / m = 4, rad/m i G = 0, N/m 2 dobiva se potreban promjer vratila d 4 0,013 T d (mm), T (Nm) Kod većih kuteva uvijanja vratilo počinje djelovati kao opruga, prilikom deformacije akumulira rad i može doći do vibracija. Mala krutost vratila daje i malu kritičnu brzinu vrtnje pri kojoj dolazi do rezonancije. Kut uvijanja je važan kod dugačkih vratila, npr. transmisijskih vratila te vratila za pogon kotača dizalice i pogon mačke dizalice. Pri pokretanju će se pogonski moment sa zupčanika preko kratkog dijela vratila duljine l 1 brzo prenijeti do lijevog kotača i on će početi rotirati. U tom trenutku će desni kotač još uvijek stajati, budući da će se znatno više uvijati desni dio vratila znatno veće duljine l 2. Javit će se tendencija zakošavanja vratila

39 KRITIČNA BRZINA VRTNJE Fleksijska kritična brzina vrtnje Osovine i vratila, zajedno s masama koje su na njima smještene, predstavljaju fleksijske (savojne) opruge. Djelovanjem neke vanjske sile počet će te mase vibrirati frekvencijom vlastitih titraja. Budući da se stvarne izmjere, u granicama dopuštenih odstupanja, razlikuju od nazivnih, stvarni položaj težišta T neće se poklapati potpuno s teoretskim. Stoga se prilikom rotacije osovina i vratila mogu javiti periodični impulsi centrifugalne sile. Frekvencija ovih impulsa će biti jednaka brzini vrtnje. Ako se brzina vrtnje poklopi s frekvencijom vlastitih titraja sustava, nastat će rezonancija. Amplitude titraja y će se izrazito povećati pri čemu može doći i do loma. e = odstupanje težišta od osi (mm) y = progib izazvan centrifugalnom silom (mm) f = progib u mirovanju u horizontalnom položaju uslijed vlastite težine G osovine/vratila i masa na njima (mm) Progibi koji su nastali djelovanjem radijalnih sila na vratilo kod zupčanika, remenica i sl., ne uzimaju se u obzir budući da sile djeluju uvijek u istoj ravnini i ne rezultiraju dodatnim centrifugalnim silama. Koeficijent krutosti F G C = c = (N/mm) y f

40 Centrifugalna sila F c = mrω 2 = m (y + e) ω 2 = Cy Slijedi 2 meω y = /: mω 2 2 C mω y = e C 2 mω 1 U slučaju da kutna brzina dosegne kritičnu vrijednost ω = C m, tj. C ω 2 =, m nazivnik bi bio jednak nuli i progib y beskonačno velik. Došlo bi do rezonancije i teoretski bi nastupio lom osovine/vratila. Ipak, zbog raznih prigušenja u materijalu, zglobovima i sl., progib ne dostiže veoma velike vrijednosti. Kritična kutna brzina G C f g ω k = = = = = ω k (s 1 ), f (mm), g (mm/s 2 ) m G f f f g Kritična brzina vrtnje n k = ωk n k (min 1 ), f (mm) π f

41 Kritična brzina vrtnje ipak ovisi i o načinu uležištenja, što se uzima u obzir faktorom načina uležištenja K: n k 950 = K f Vratilo (ili osovina) se okreće Osovina je nepokretna Vratilo (ili osovina) s konzolno K = 1 K = 1,3 uležištenim dijelom K = 0,9 Veličina kritične brzine ne ovisi o tome da li su osovina ili vratilo horizontalni, kosi ili vertikalni. Dugačke i tanke osovine i vratila imaju nižu, a kratke i debele osovine i vratila višu kritičnu brzinu vrtnje. Često se zbog složenosti konstrukcije n k ne može računski točno odrediti pa se određuje eksperimentalno. Radna brzina vrtnje n osovina i vratila u strojevima ne smije biti blizu kritične brzine vrtnje n k. Strojevi trebaju raditi u podrezonantnom području n < 0,8 n k, ili nadrezonantnom području n > 1,2 n k. Najčešće sistem radi u podrezonantnom području pa je poželjno da n k bude što viši. To se postiže: - malim razmakom ležaja kako bi progib f bio manji, - balansiranjem sistema kako bi se smanjilo djelovanje centrifugalne sile i - minimiziranjem težine kako bi progib f bio manji. Ako sistem radi u nadrezonantnom području, pri puštanju stroja u rad i pri zaustavljanju područje kritične brzine treba brzo prijeći

42 Torzijska kritična brzina vrtnje Vratilo s masama na njemu je i torzijska opruga. Ako je torzijski moment promjenljiv, mijenja se i kut uvijanja i može doći do torzijskih vibracija i rezonancije kod torzijske kritične brzine vrtnje n kt. Ovakva se opasnost javlja kod klipnih motora, tj. kod motornih vozila, a naročito kod sporohodnih brodskih dizelskih motora. Radi sprečavanja torzijskih vibracija se najčešće ugrađuju elastične spojke ili posebni prigušivači torzijskih vibracija

43 PRIMJER 1: VRATILO OPTEREĆENO TORZIJSKIM MOMENTOM Zadatak: Vratilo izrađeno iz čelika E295 (Č0545) opterećeno je nazivnim torzijskim momentom T N = 80 Nm. Savijanja nema. Dinamičko opterećenje je ishodišnog karaktera (κ = 0). Faktor κ pri porastu opterećenja ostaje konstantan. Pri pokretanju se očekuju snažni udari do T max = 2,5 T N, dok se u radu očekuju jaki udari - K A 2. Vratilo je izrađeno tokarenjem s prosječnom visinom neravnina Rz 12,5 μm. Površinski sloj nije dodatno ojačan. Kritični presjek 1-1 je na mjestu utora za pero. Treba izvesti: a) Kontrolu plastičnih deformacija b) Kontrolu zamora materijala

44 PRIMJER 2: VRATILO OPTEREĆENO TORZIJOM I SAVIJANJEM Rukavac vratila izrađenog od čelika za poboljšanje C45E (Č1531), opterećen je statičkim (konstantnim) nazivnim torzijskim momentom T N = 2300 Nm i izmjeničnim nazivnim momentom savijanja M sn = 1600 Nm. Pri promjenama opterećenja srednje naprezanje pri savijanju ostaje konstantno: σ sm = 0 = konst. Faktor primjene K A = 1,5. Kako nisu zadana opterećenja pri pokretanju, može se računati da su od nazivnih vrijednosti također veća za veličinu K A, tj. 1,5 puta. Prijelazni dio rukavca (presjek 1-1) izveden je s hrapavošću Rz 6,3 μm. Površinski sloj nije dodatno ojačan. Treba izvesti: a) Kontrolu plastičnih deformacija b) Kontrolu zamora materijala

45 PRIMJER 3: VRATILO OPTEREĆENO TORZIJOM I SAVIJANJEM Pogonsko vratilo zupčastog reduktora prenosi nazivnu snagu P N = 20 kw pri brzini vrtnje n = 1460 min 1. Vratilo je izrađeno od ugljičnog konstrukcijskog čelika E295 (Č0545). Pri pokretanju i zaustavljanju se javljaju kratkotrajna vršna opterećenja koja su 2,5 puta veća od nazivnih. U trajnom pogonu uz κ = konst. vratilo je opterećeno promjenljivim opterećenjem uz faktor primjene K A = 1,5. Vratilo je izrađeno tokarenjem s prosječnom visinom neravnina Rz 12,5 μm. Površinski sloj nije dodatno ojačan. Kritični presjek 1-1 je na mjestu utora za pero, kritični presjek 2-2 pokraj oslonca A. Polumjer zaobljenja u presjeku 2-2 je R = 1,5 mm. Reakcija u ležaju A je F A = 3500 N. Kritični presjek 1-1 je opterećen samo torzijski jer je spoj s pogonskim strojem izveden pomoću elastične spojke. Torzijski moment je ishodišnog dinamičkog karaktera (κ t = 0). Kritični presjek 2-2 je opterećen savijanjem i torzijom. Moment savijanja je izmjeničnog dinamičkog karaktera (κ s = 1). Za oba kritična presjeka treba izvesti: a) Kontrolu plastičnih deformacija b) Kontrolu zamora materijala

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2006./07.

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2006./07. OSOVINE I VRATILA Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2006./07. Nositelji kolegija: Prof. dr. sc. Božidar Križan Doc. dr. sc. Saša Zelenika - 1 - OSOVINE I VRATILA

Διαβάστε περισσότερα

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2011./12.

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2011./12. OSOVINE I VRATILA Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2011./12. Nositelj kolegija: Prof. dr. sc. Božidar Križan - 1 - OSOVINE I VRATILA Funkcija, opterećenja,

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

σ = PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA

σ = PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA OSNOVE NAUKE O ČVRSTOĆI Nauka o čvrstoći proučava ravnotežu između vanjskih i unutarnjih sila i deformacije čvrstih tijela uzrokovanih vanjskim silama. Na

Διαβάστε περισσότερα

ISPIT GRUPA A - RJEŠENJA

ISPIT GRUPA A - RJEŠENJA Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,

Διαβάστε περισσότερα

SRĐAN PODRUG ELEMENTI STROJEVA

SRĐAN PODRUG ELEMENTI STROJEVA S V E U Č I L I Š T E U S P L I T U FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE U SPLITU SRĐAN PODRUG ELEMENTI STROJEVA Predavanja za stručni studij BRODOGRADNJE za šk. god. 2006/2007. Split, 2006.

Διαβάστε περισσότερα

OPRUGE. Podjela prema upotrebi: Podjela prema vrsti naprezanja (najčešći tipovi):

OPRUGE. Podjela prema upotrebi: Podjela prema vrsti naprezanja (najčešći tipovi): OPUGE Opruge su konstrukcijski elementi koji svrsishodnim oblikovanjem i upotrebom visokoelastičnih materijala mogu mehanički rad elastičnom deformacijom pretvoriti u potencijalnu energiju i obratno, potencijalnu

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE

FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE Katedra za elemente strojeva REDUKTOR Uputstvo za proračun Split, travanj 005. Ovaj predložak za konstrukcijske vježbe se sastoji od dijelova uputstava

Διαβάστε περισσότερα

Proizvoljno opterećenje tijela može zahtijevati složenu analizu naprezanja i deformacija,

Proizvoljno opterećenje tijela može zahtijevati složenu analizu naprezanja i deformacija, 1. Osnove čvrstoće 1.1. Pojam i vrste opterećenja Nauka o čvrstoći proučava utjecaj vanjskih sila i momenata na ponašanje čvrstih (realnih) tijela. Djelovanje vanjskih sila i momenata na tijelo naziva

Διαβάστε περισσότερα

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 Napomene: Pitanja služe kao priprema za izradu testova iz Otpornosti Materijala I, koji se polažu parcijalno i integralno. Testovi su koncipirani kao

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama. Štap optereen na savijanje naivamo nosa ili grea. Savijanje nosaa a) Napreanja ( i τ) b) Deformacije progib (w) Os štapa se ko savijanja akrivljuje to je elastina ili progibna linija nosaa. Savijanje ravnog

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

6. Plan armature prednapetog nosača

6. Plan armature prednapetog nosača 6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

SPOJEVI S GLAVINOM. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11.

SPOJEVI S GLAVINOM. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2010./11. SPOJEVI S GLAVINOM Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 010./11. Nositelji kolegija: Prof. dr. sc. Božidar Križan Prof. dr. sc. Saša Zelenika - 1 - SPOJEVI S GLAVINOM

Διαβάστε περισσότερα

4. STATIČKI PRORAČUN STUBIŠTA

4. STATIČKI PRORAČUN STUBIŠTA JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja 5 5 4 6 8 5 6 0

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15.07.2015 Marko Srdanović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

STATIČKI ODREĐENI SUSTAVI

STATIČKI ODREĐENI SUSTAVI STTIČKI ODREĐENI SUSTVI STTIČKI ODREĐENI SUSTVI SVOJSTV SUSTV Kod statički određenih nosača rješenja za reakcije i unutrašnje sile su jednoznačna. F C 1. F x =0 C 2. M =0 3. F y =0 Jednoznačno rješenje

Διαβάστε περισσότερα

20 mm. 70 mm i 1 C=C 1. i mm

20 mm. 70 mm i 1 C=C 1. i mm MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujan 2015. Marija Vidović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJE

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

SRĐAN PODRUG ELEMENTI STROJEVA

SRĐAN PODRUG ELEMENTI STROJEVA S V E U Č I L I Š T E U S P L I T U FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE U SPLITU SRĐAN PODRUG ELEMENTI STROJEVA Predavanja za stručni i preddiplomski studij BRODOGRADNJE za školsku godinu

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Prof. dr. sc. Vedrana Kozulić TEHNIČKA MEHANIKA 2 Predavanja Akad. god. 2008/09

Prof. dr. sc. Vedrana Kozulić TEHNIČKA MEHANIKA 2 Predavanja Akad. god. 2008/09 Prof. dr. sc. Vedrana Koulić EHNČK EHNK Predavanja kad. god. 008/09 OPORNOS ERJL Otpornost materijala je grana tehničke mehanike koja proučava probleme čvrstoće, krutosti i stabilnosti pojedinih dijelova

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine ašinski fakultet Univerziteta u Beogradu/ ašinski elementi 1/ Predavanje.1 OSOVINE I VRATILA.1.1. Uvod Vratila i osovine, kao osnovni elementi obrtnog kretanja, moraju uvek biti preko kliznih i kotrljajnih

Διαβάστε περισσότερα

Srednja mašinska škola Mašinski elementi Nastavnik: Sima Pastor 3525$&8138=12*3$5$ n1 = 1450min 1. zadato. zadato. usvojeno, od 1 do 5

Srednja mašinska škola Mašinski elementi Nastavnik: Sima Pastor 3525$&8138=12*3$5$ n1 = 1450min 1. zadato. zadato. usvojeno, od 1 do 5 525$&882*$5$ Polazni podaci ulazne vrednosti_ne menjati velicine usvojene_mogu se menjati A Nominalna snaga P 5kW zadato savet _ ne menjati A2 Broj obrtaja pogon. masine n 450min zadato azurirati obavezno

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca . Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:

Διαβάστε περισσότερα

Proračun nosivosti elemenata

Proračun nosivosti elemenata Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično

Διαβάστε περισσότερα

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Materijal: Beton: C25/30 C f ck /f ck,cube valjak/kocka f ck 25 N/mm 2 karakteristična tlačna čvrstoća fcd proračunska tlačna

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujna 2015. Mario Aračić SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

SPREGNUTE KONSTRUKCIJE

SPREGNUTE KONSTRUKCIJE SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Konvencija o znacima za opterećenja grede

Konvencija o znacima za opterećenja grede Konvencija o znacima za opterećenja grede Levo od preseka Desno od preseka Savijanje Čisto savijanje (spregovima) Osnovne jednačine savijanja Savijanje silama Dimenzionisanje nosača izloženih savijanju

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

VAŽNO. Posmino naprezanje τ

VAŽNO. Posmino naprezanje τ UVIJANJE ŠTAPOVA 1 VAŽNO Posmino naprezanje τ τ ρ I o 2 aksimalno posmino naprezanja τ za: ρ r d 2 τ maks W 0 3 Polarni momen romosi: I o 4 d π 32 [ ] 4 cm Polarni momen opora: W o 3 d π 16 cm [ ] 3 4

Διαβάστε περισσότερα

Aksijalno napregnuti elementi su elementi izloženi samo na zatezanje ili pritisak.

Aksijalno napregnuti elementi su elementi izloženi samo na zatezanje ili pritisak. * Aksijalno napregnuti elementi su elementi izloženi samo na zatezanje ili pritisak. JM Gere, BJ Goodno, Mechanics of Materials,, Cengage g Learning, Seventh Edition, 2009. *RC Hibbeler, Mechanics of Materials,

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

BUŠENJE I Fo F r o m r ul u e l

BUŠENJE I Fo F r o m r ul u e l BUŠENJE I Formule Površina prstenastog presjeka NIZ BUŠAĆIH ALATKI A = π (D 2 4 d 2 ) A površina prstenastog presjeka (m 2 ) D vanjski promjer prstenastog presjeka (m) d unutarnji promjer prstenastog presjeka

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

4. Tolerancije i dosjedi

4. Tolerancije i dosjedi 4. Tolerancije i dosjedi 4.1. Općenito o tolerancijama Dok se u pojedinačnoj proizvodnji ili nekom remontu stroja može u montaži dopustiti tzv. podešavanje i prilagodba dijelova koji trebaju raditi skupa,

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Izvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole

Izvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole Izvođenje diferencijalne jednačine elastične linije Elastična linija, čija je jednačina y(z), je krivolinijski oblik ose nosača izazvan opterećenjem. Koordinatni sistem ćemo uvek uzimati tako da je koordinatni

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

ZAVARENI SPOJEVI. Definicija (DIN 1910 HRN C.T3001): zavarenih dijelova: zavareni sklop.

ZAVARENI SPOJEVI. Definicija (DIN 1910 HRN C.T3001): zavarenih dijelova: zavareni sklop. Nastavna jedinica: ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) Definicija (DIN 1910 HRN C.T001): Zavareni spoj: spoj komponenata pomoću zavara. Više elemenata međusobno povezanih zavarivanjem:

Διαβάστε περισσότερα

7 Izvijanje, gubitak elastične stabilnosti Vrste ravnoteže... 1

7 Izvijanje, gubitak elastične stabilnosti Vrste ravnoteže... 1 11. travnja 2013. Prof.dr.sc. Joško Krolo IZVIJANJE, GUBITAK ELASTIČNE STABILNOSTI Sadržaj 7 Izvijanje, gubitak elastične stabilnosti 1 7.1 Vrste ravnoteže................................ 1 7.2 Izvijanje

Διαβάστε περισσότερα

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα