Παράλληλοι Υπολογισµοί (Μεταπτυχιακό)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παράλληλοι Υπολογισµοί (Μεταπτυχιακό)"

Transcript

1 Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης ΕΚΠΑ 19 Απριλίου 2010 ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

2 Παράλληλοι Αριθµητικοί Αλγόριθµοι Σχήµατα ιαχωρισµού (ή Απεικόνισης) ενός πίνακα στους επεξεργαστές 1. ιαχωρισµός σε λωρίδες α) σε οµάδες λωρίδων (i) (ii) σε οµάδες συνεχών γραµµών σε οµάδες συνεχών στηλών β) κυκλικά σε λωρίδες (i) (ii) κυκλικά σε γραµµές κυκλικά σε στήλες γ) κυκλικά σε οµάδες λωρίδων 2. ιαχωρισµός σε τετράγωνες ή ορθογώνιες περιοχές ή υποπίνακες ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

3 Οµοιόµορφος διαχωρισµός σε λωρίδες ενός πίνακα σε 4 επεξεργαστές Σχήµα: (α) σε οµάδες συνεχών στηλών (ϐ) κυκλικά συνεχών γραµµών ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

4 Οµοιόµορφος διαχωρισµός σε τετράγωνα τεµάχια ενός 8 8 πίνακα σε 16 επεξεργαστές Σχήµα: (α) σε οµάδες συνεχών τετραγώνων (ϐ) κυκλικά σε τετράγωνα ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

5 Στον διαχωρισµό ενός n n πίνακα σε οµάδες συνεχών στηλών σε p επεξεργαστές P 0, P 1,, P p 1, ο επεξεργαστής P i περιέχει τις στήλες µε δείκτες : (n/p)i, (n/p)i + 1,, (n/p)(i + 1) 1 Στον διαχωρισµό ενός n n πίνακα κυκλικά σε οµάδες στηλών σε p επεξεργαστές P 0, P 1,, P p 1, ο επεξεργαστής P i περιέχει τις γραµµές µε δείκτες : i, i + p, i + 2p,, i + n p Στον διαχωρισµό ενός n n πίνακα κυκλικά σε οµάδες λωρίδων (π.χ οριζοντίων) ο πίνακας διαχωρίζεται σε οµάδες των q γραµµών (q < n/p) και αυτές κατανέµονται κυκλικά στους p επεξεργαστές. Ο διαχωρισµός ενός n n πίνακα σε τετράγωνα τεµάχια αντιστοιχεί ϕυσικά σε ένα διδιάστατο τετραγωνικό πλέγµα επεξεργαστών. Παράδειγµα Μπορούµε να απεικονίσουµε ένα n n πίνακα σε ένα δίκτυο µε π-επεξεργαστές υποδιαιρώντας αυτόν σε οµάδες (υποπίνακες) µεγέθους (n/ p) (n/ p). ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

6 1. Αναστροφή Πίνακα Ο ανάστροφος ενός n n πίνακα A είναι ένας πίνακας A T ίδιας διάστασης, τέτοιος ώστε να ισχύει: A T [i, j] = A[j, i] για κάθε i, j = 0, 1,, n 1. Στην διαδικασία της αναστροφής ενός πίνακα, όλα τα στοιχεία του κάτω από την κύρια διαγώνιο µετακινούνται στις αντίστοιχες ϑέσεις πάνω από την κύρια διαγώνιο και αντίστροφα. Αν υποτεθεί ότι για την ανταλλαγή(αντιµετάθεση) ενός Ϲεύγους στοιχείων του πίνακα απαιτείται µια χρονική µονάδα, τότε ο ακολουθιακός χρόνος για την αναστροφή ενός n n πίνακα A είναι (n 2 n)/2 ( ή προσεγγιστικά n 2 /2). Στη συνέχεια µελετώνται παράλληλοι αλγόριθµοι για την αναστροφή ενός τετραγωνικού πίνακα µε τη χρήση διαφόρων σχηµάτων διαχωρισµού του. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

7 1.1 ιαχωρισµός σε τετράγωνα Θεωρούµε ότι ένας n n πίνακας A απεικονίζεται σε ένα λογικό τετραγωνικό πλέγµα επεξεργαστών και ότι είναι διαχωρισµένος σε τετράγωνα τεµάχια. Ενα λογικό πλέγµα µπορεί να εµφυτευθεί α) σε ένα ϕυσικό πλέγµα ή ϐ) σε ένα υπερκύβο. Στη συνέχεια περιγράφουµε παράλληλους αλγορίθµους για τις δύο αυτές αρχιτεκτονικές. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

8 1.1.1 Πλέγµα(mesh) Περίπτωση 1: p = n 2 Υποθέτουµε ότι ο n n πίνακας A καταχωρείται σε ένα τετραγωνικό πλέγµα επεξεργαστών έτσι ώστε ο κάθε επεξεργαστής να κατέχει ένα µόνο στοιχείο του πίνακα (Σχ.3(α)). Στο ακόλουθο σχήµα παρουσιάζεται η διαδικασία της αναστροφής ενός τετραγωνικού πίνακα διάστασης n = 4 σε ένα τετραγωνικό πλέγµα µε p = 16 επεξεργαστές. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

9 Σχήµα 3 : Αναστροφή ενός 4 4 πίνακα µε διαχωρισµό σε τετράγωνα σε πλέγµα µε 16 επεξεργαστές Σχήµα: (α) ϐήµατα Επικοινωνίας (ϐ) Τελική κατάσταση ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

10 Ας ϕανταστούµε µια διαγώνια διαδροµή διαµέσου των επεξεργαστών P 0, P 5, P 10, P 15. Για να γίνει η αναστροφή πρέπει τα στοιχεία του πίνακα που ϐρίσκονται κάτω από την κύρια διαγώνιο να µετακινηθούν στις αντίστοιχες διαµετρικά αντίθετες ϑέσεις πάνω από την κύρια διαγώνιο και αντίστροφα. Κάθε στοιχείο που ϐρίσκεται κάτω από τη κύρια διαγώνιο µετακινείται πρώτα προς τα πάνω µέχρι τη διαγώνιο και µετά προς τα δεξιά στον αντίστοιχο επεξεργαστή του προορισµού του. Παρόµοια, κάθε στοιχείο που ϐρίσκεται πάνω από τη κύρια διαγώνιο µετακινείται πρώτα προς τα κάτω µέχρι τη διαγώνιο και µετά προς τα αριστερά στον αντίστοιχο επεξεργαστή του προορισµού του. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

11 Σχ. 3(α): Η µορφή επικοινωνίας Για παράδειγµα το στοιχείο του πίνακα που ϐρίσκεται αρχικά στον P 8 µετακινείται στον P 2 διερχόµενο διαµέσου των P 4, P 0 και P 1 και το αρχικό στοιχείο του P 2 µετακινείται στον P 8 διερχόµενο διαµέσου των P 6, P 10 και P 9. Σχ. 3(ϐ): Η τελική κατανοµή των στοιχείων στους επεξεργαστές ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

12 1.1.2 Πλέγµα (mesh) Περίπτωση 2: p < n 2 Θεωρούµε ότι ο n n πίνακας A διαµοιράζεται στους p επεξεργαστές µε τη χρήση ενός οµοιόµορφου διαχωρισµού σε οµάδες τετραγώνων. Η αναστροφή του A µπορεί να υπολογιστεί σε δύο ϕάσεις όπως ϕαίνεται στο σχήµα 4. 1η ϕάση Στην 1η φάση οι οµάδες του πίνακα µεταχειρίζονται ως αδιαίρετες ενότητες(µονάδες) και αναστρέφεται ο διδιάστατος πίνακας που έχει ως στοιχεία του τις οµάδες (σχ. 4(α)). Σε αυτό το ϐήµα απαιτείται µια εσωτερική επικοινωνία παρόµοια εκείνης στο σχήµα 3(α), εκτός του ότι επικοινωνούν (αντί των στοιχείων του πίνακα) οι (n/ p) (n/ p) οµάδες. 2η ϕάση Στην 2η φάση πρέπει όλες οι οµάδες να αναστραφούν τοπικά µέσα στους αντίστοιχους επεξεργαστές τους (σχ. 4(β)). ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

13 Σχήµα 4 : Οι δυό ϕάσεις της αναστροφής ενός 8 8 πίνακα µε διαχωρισµό σε τετράγωνα σε πλέγµα µε 16 επεξεργαστές Σχήµα: (α) ϐήµατα Επικοινωνίας (ϐ) Τοπική Αναδιάταξη ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

14 Οπως ϕαίνεται στο σχήµα 4(α) τα µονοπάτια επικοινωνίας των οµάδων στην ίδια γραµµή ή στήλη επικαλύπτονται. Π.χ. όλες οι οµάδες που αρχικά ϐρίσκονται στην πρώτη στήλη (δηλ. οι P 4, P 8 και P 12 ) διέρχονται διαµέσου της P 0 για να ϕθάσουν στους αντίστοιχους προορισµούς τους στην πρώτη γραµµή (που είναι οι P 1, P 2 και P 3 αντίστοιχα). Συνεπώς, πρέπει να συγχρονίζονται τα διάφορα ϐήµατα επικοινωνίας έτσι ώστε µόνο ένα µήνυµα να µεταφέρεται κατά µήκος µιας σύνδεσης ανά χρονική στιγµή. Π.χ. στο πρώτο ϐήµα ο P 12 µεταφέρει την οµάδα του στον P 8, ο P 8 την µεταφέρει στον P 4 και ο P 4 την µεταφέρει στον P 0. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

15 Κατά τη διάρκεια της ϕάσης της επικοινωνίας, οι οµάδες του πίνακα που ϐρίσκονται αρχικά στους κάτω-αριστερά και πάνω-δεξιά επεξεργαστές (σχ. 5(α)) διανύουν τις µέγιστες αποστάσεις για να ανταλλάξουν τις ϑέσεις τους. Τα µονοπάτια αυτά, διανύοντας το καθένα προσεγγιστικά 2 p συνδέσεις, καθορίζουν τον συνολικό χρόνο επικοινωνίας. Επειδή κάθε οµάδα περιέχει n 2 /p στοιχεία, για την µετακίνησή της διαµέσου µιας απλής σύνδεσης απαιτείται χρόνος ίσος µε t s + t w n 2 /p. Συνεπώς για την µετακίνηση όλων των οµάδων στους τελικούς προορισµούς τους απαιτείται συνολικός χρόνος ίσος µε 2(t s + t w n 2 /p) p. Ο κάθε επεξεργαστής απαιτεί προσεγγιστικά n 2 /2p χρονικές µονάδες για την αναστροφή του (n/ p) (n/ p) υποπίνακα που κατέχει. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

16 Ετσι λοιπόν, ο συνολικός χρόνος της παράλληλης διάτρεξης είναι: T p = n2 2p + 2t n 2 s p + 2tw p Αρα το κόστος του παράλληλου συστήµατος είναι: p T p = n t sp tw n 2 p Ο όρος που συνδέεται µε το t w καταλήγει σε ένα κόστος Θ(n 2 p) που είναι µεγαλύτερο από το Θ(n 2 ) της ακολουθιακής αναστροφής. Ο συνολικός χρόνος επικοινωνίας του αλγορίθµου αυτού είναι η ίδια και για τις δύο τεχνικές αποστολής µηνυµάτων. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

17 Υπερκύβος Είδαµε προηγουµένως ότι αν ένας τετραγωνικός πίνακας είναι οµοιόµορφα διαχωρισµένος σε οµάδες ίσου µεγέθους τότε η αναστροφή του µπορεί να γίνει σε δυό ϕάσεις: 1. πρώτα η αναστροφή των οµάδων τετραγώνων και 2. έπειτα η αναστροφή των στοιχείων µέσα στην κάθε οµάδα. Λαµβάνοντας υπόψη τα ανωτέρω αναπτύσσουµε τον γνωστό αναδροµικό αλγόριθµο αναστροφής (Recursive Transposition Algorithm) (RTA) που είναι κατάλληλος για την αρχιτεκτονική του υπερκύβου(σχ. 5). ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

18 Ο αναδροµικός αλγόριθµος αναστροφής (RTA) Αν ο πίνακας A είναι διαχωρισµένος σε 4 οµάδες τετραγώνων η εργασία της αναστροφής του περιλαµβάνει την ανταλλαγή της πάνω-δεξιάς και κάτω-αριστεράς οµάδας (Σχ. 5(α)) και µετά τον υπολογισµό του αναστρόφου κάθε µιας από τις 4 οµάδες εσωτερικά. Ο υπολογισµός των µετασχηµατισµών αυτών των οµάδων µπορεί να γίνει παράλληλα µε την επιπλέον υποδιαίρεση καθεµιάς από αυτές σε 4 υποοµάδες (Σχ. 5(β)) και µε επανάληψη της διαδικασίας. Η διαδικασία της υποδιαίρεσης και αναστροφής των οµάδων επαναλαµβάνεται αναδροµικά µέχρις ότου όλος ο πίνακας αναστραφεί(σχ. 5(γ) και (δ)). ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

19 Σχήµα 5 Ο αναδροµικός αλγόριθµος αναστροφής (RTA) ενός 8 8 πίνακα (α) ιαίρεση του πίνακα σε 4 οµάδες (ϐ) ιαίρεση της κάθε οµάδας σε 4 υποοµάδες και ανταλλαγή της πάνω-δεξιάς και ανταλλαγή της πάνω δεξιάς µε την κάτω-αριστερή οµάδα µε την κάτω-αριστερή υποοµάδα ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

20 Ο αλγόριθµος (RTA) αντιστοιχεί ϕυσικά σε ένα υπερκύβο Σχήµα: (γ) Τελευταία υποδιαίρεση και Αναστροφή δ) Τελική κατάσταση ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

21 Ο αλγόριθµος RTA αντιστοιχεί ϕυσικά σε ένα υπερκύβο Στο 1ο ϐήµα του αλγορίθµου, ϑεωρούµε ότι ένας υπερκύβος µε π επεξεργαστές αποτελείται από 4 υποκύβους µε p/4 επεξεργαστές ο καθένας (αν p είναι δύναµη του 2). Καθεµιά από τις 4 οµάδες, που προκύπτουν από την πρώτη υποδιαίρεση του πίνακα, αντιστοιχεί στον καθένα από τους υποκύβους. Στα επόµενα ϐήµατα ένας υποκύβος ϑεωρείται ως ένας συνδυασµός από 4 µικρότερους υποκύβους. Στο τελικό αναδροµικό ϐήµα, οι υποκύβοι περιέχουν ένα µόνο επεξεργαστή ο καθένας. Επειδή στο κάθε αναδροµικό ϐήµα το µέγεθος των υποκύβων υποτετραπλασιάζεται, συνολικά εκτελούνται log 4p = (log 2p)/2 ϐήµατα. Υποθέτουµε ότι ένας n n πίνακας διαµοιράζεται σε p επεξεργαστές µε τη χρήση του διαχωρισµού σε οµάδες τετραγώνων. Τα ϐήµατα της επικοινωνίας που υλοποιεί ο αλγόριθµος RTA παρουσιάζονται στο σχήµα 6 για n = 8 και p = 16. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

22 Σχήµα 6 Βήµατα επικοινωνίας στον RTA σε έναν υπερκύβο 16 επεξεργαστών. (α) ιαίρεση του πίνακα σε 4 οµάδες (ϐ) ιαίρεση της κάθε οµάδας σε 4 υποοµάδες και ανταλλαγή της πάνω-δεξιάς και ανταλλαγή της πάνω δεξιάς µε την κάτω-αριστερή οµάδα µε την κάτω-αριστερή υποοµάδα ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

23 Παράδειγµα: n = 8 και p = 16 Η µορφή επικοινωνίας χρησιµοποιεί την ιδιότητα του δικτύου ενός υπερκύβου σύµφωνα µε την οποία κάθε σύνολο των αντιστοίχων επεξεργαστών στους 4 υποκύβους είναι ένας υπερκύβος 4 επεξεργαστών. Στο σχήµα 6(α), ένας υπερκύβος µε 16 επεξεργαστές υποδιαρείται σε 4 υποκύβους µε 4 επεξεργαστές ο καθένας. Στους 4 αυτούς υποκύβους, οι επεξεργαστές P 0, P 2, P 10 και P 8 κατέχουν τις αντίστοιχες ϑέσεις (πάνω αριστερή γωνία) και είναι συνδεδεµένες σε ένα υπερκύβο. Οταν τα πάνω-δεξιά και κάτω αριστερά (τέταρτα) τµήµατα του πίνακα ανταλλάσονται, ο P 8 στέλνει τα δεδοµένα του στον P 2 διαµέσου του P 0 και ο P 2 στέλνει τα δεδοµένα του στον P 8 διαµέσου του P 10. Κατά τη διάρκεια της επικοινωνίας αυτής οι P 0, P 10 παρίστανται στην ανταλλαγή των δεδοµένων µεταξύ P 2 και P 8 αλλά δεν εκτελούν καµµιά επικοινωνία µε τα δικά τους (δεδοµένα). ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

24 Στο κάθε αναδροµικό ϐήµα του αλγορίθµου, τα Ϲεύγη των επεξεργαστών ανταλλάσουν τις οµάδες του πίνακα έτσι ώστε ένας ενδιάµεσος επεξεργαστής να δέχεται πρώτα τα δεδοµένα από τον πηγαίο και έπειτα να τα προωθεί στον προορισµό τους. Μετά από κάθε ϐήµα, το πρόβληµα ανάγεται στην αναστροφή ενός πίνακα µε διάσταση 1/4 της διάστασης του αρχικού πίνακα. Μετά από (log 2 p)/2 ϐήµατα, ο n n πίνακας έχει υποδιαιρεθεί σε οµάδες τετραγώνων διάστασης n/ p n/ p, οι οποίες αναστρέφονται τοπικά στον κάθε επεξεργαστή. Επειδή το µέγεθος της κάθε ατοµικής οµάδας δεδοµένων που επικοινωνεί είναι n 2 /p, το κάθε ϐήµα επικοινωνίας απαιτεί t s + t w n 2 /p χρονικές µονάδες (υποθέτοντας ότι η αποστολή µηνυµάτων γίνεται µε αποθήκευση και προώθηση (store-and-forward routing)). ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

25 Ο συνολικός χρόνος για την εκτέλεση των log 2 p ϐηµάτων επικοινωνίας είναι: T 1 = (t s + t w n 2 p )logp. Επίσης ο χρόνος που απαιτείται για την εκτέλεση της αναστροφής στις τοπικές οµάδες είναι: T 2 = n2 2p. Εποµένως ο συνολικός χρόνος της παράλληλης διάτρεξης του αλγορίθµου RTA είναι: n 2 n2 T = T 1 + T 2 = (t s + t w )logp + p 2p. Αν υποθέσουµε ότι η αποστολή µηνυµάτων στον υπερκύβο γίνεται µε διαχωρισµό και απόδοση (cut-through routing)) τότε ο χρόνος επικοινωνίας του αλγορίθµου RTA ϐελτιώνεται και είναι: T = (t s + t w n 2 /p + 2t h )logp. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

26 Συµπέρασµα Αρα στον υπερκύβο(όπως και στην περίπτωση πλέγµατος), η αναστροφή πίνακα µε διαχωρισµό σε τετράγωνα δεν έχει ϐέλτιστο κόστος. Το υπολογιστικό κόστος του παράλληλου αλγορίθµου και για τις δυό τεχνικές αποστολής µηνυµάτων είναι: p T p = Θ(n 2 logp). ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

27 1.2 ιαχωρισµός σε λωρίδες Θεωρούµε ότι ένας n n πίνακας A απεικονίζεται σε n επεξεργαστές έτσι ώστε ο κάθε επεξεργαστής να περιέχει µιά πλήρη γραµµή του πίνακα. Με αυτή την απεικόνιση, ο επεξεργαστής P i αρχικά περιέχει τα στοιχεία της i γραµµής του πίνακα µε δείκτες [i, 0], [i, 1],, [i, n 1]. Μετά την αναστροφή, το στοιχείο a[i, 0] ανήκει στον P 0, το στοιχείο a[i, 1] ανήκει στον P 1, κ.ο.κ. Γενικά, το στοιχείο a[i, j] αρχικά µένει στον P i, αλλά κατά τη διάρκεια της αναστροφής µετακινείται στον P j. Το σχήµα της µεταφοράς δεδοµένων ϕαίνεται στο σχήµα 7 για ένα 4 4 πίνακα που απεικονίζεται σε 4 επεξεργαστές µε τη χρήση του διαχωρισµού σε γραµµές. Κάθε επεξεργαστής στέλνει ένα µόνο στοιχείο του πίνακα σε κάθε άλλο επεξεργαστή, δηλαδή γίνεται µια επικοινωνία όλων προς όλους προσωπικά. Γενικά, αν p n τότε ο κάθε επεξεργαστής αρχικά αποθηκεύει n/p γραµµές(δηλ. n 2 /p στοιχεία) του πίνακα. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

28 Σχήµα 7 Επικοινωνία όλων προς όλους προσωπικά για την αναστροφή ενός 4 4 πίνακα µε p = 4 επεξεργαστές Με την εκτέλεση της αναστροφής γίνεται µιά επικοινωνία όλων προς όλους προσωπικά µεταξύ των οµάδων του πίνακα µεγέθους n/p n/p, αντί των µεµονωµένων στοιχείων. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

29 Στο τέλος της ϕάσης επικοινωνίας, ο κάθε επεξεργαστής εκτελεί µιά εσωτερική αναστροφή σε αυτές τις οµάδες. Υποθέτοντας ότι κάθε ανταλλαγή ενός Ϲεύγους στοιχείων απαιτεί µια χρονική µονάδα, µια τέτοια οµάδα πίνακα µπορεί να αναστραφεί σε n 2 /(2p 2 ) χρονικές µονάδες. Επειδή ο κάθε επεξεργαστής έχει p τέτοιες οµάδες, για την αναστροφή τους απαιτούνται n 2 /(2p) χρονικές µονάδες. Οι εκφράσεις για τον χρόνο µιας όλων προς όλους προσωπικής επικοινωνίας σε διάφορες αρχιτεκτονικές προκύπτει από τον σχετικό πίνακα(σχήµα 8), αν αντικαταστήσουµε το µέγεθος m του µηνύµατος µε n 2 /p 2. Ο αλγόριθµος έχει ϐέλτιστο κόστος µόνο σε υπερκύβο µε αποστολή µηνυµάτων µε διαχωρισµό και απόδοση, όπου ο χρόνος επικοινωνίας προσεγγιστικά είναι: T comm = t s (p 1) + t w n 2 p t hplogp. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

30 Ο συνολικός χρόνος της παράλληλης διάτρεξης είναι: T p = n2 2p + t s(p 1) + t w n 2 p t hplogp. Αρα το κόστος του παράλληλου συστήµατος είναι: p T p = n2 2 + t sp(p 1) + t w n t hp 2 logp. Ο όρος που συνδέεται µε το t w καταλήγει σε ένα κόστος Θ(n 2 ) που είναι ϐέλτιστο. ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

31 Σχήµα 8 Χρόνοι Επικοινωνίας των διαφόρων λειτουργιών σε διάφορες αρχιτεκτονικές µε επικοινωνία µιας σύνδεσης(link) µε διαχωρισµό και απόδοση Αρχιτεκτονική Λειτουργία ακτύλιος ιδιάστατο πλέγµα Υπερκύβος (αναδιπλούµενο τετραγωνικό) Ενας προς όλους (t s + t wm)logp (t s + t wm)logp (t s + t wm)logp +t h (p 1) +2t h ( p 1) Ολοι προς όλους (t s + t wm)(p 1) 2t s( p 1) + t wm(p 1) t slogp + t wm(p 1) Ενας προς όλους (t s + t wm)(p 1) 2t s( p 1) + t wm(p 1) t slogp + t wm(p 1) προσωπικά Ολοι προς όλους (t s + t wp/2)(p 1) (2t s + t wmp)( p 1) (t s + t wm)(p 1) + (t h /2)plogp προσωπικά Κυκλικά χ-ολισθήσεις (t s + t wm) p/2 (t s + t wm)(2 p/2 + 1) t s + t wm + t h (logp γ(q)) t s : ο χρόνος εκκίνησης t w : ο χρόνος µεταφοράς µιας λέξης t h : ο χρόνος αναµονής(ή ανίχνευσης) γ(q) : ο µέγιστος ακέραιος j τέτοιος ώστε ο 2 j δεν διαιρεί τον q ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου / 31

Παράλληλη Επεξεργασία Κεφάλαιο 7 ο Αρχιτεκτονική Συστημάτων Κατανεμημένης Μνήμης

Παράλληλη Επεξεργασία Κεφάλαιο 7 ο Αρχιτεκτονική Συστημάτων Κατανεμημένης Μνήμης Παράλληλη Επεξεργασία Κεφάλαιο 7 ο Αρχιτεκτονική Συστημάτων Κατανεμημένης Μνήμης Κωνσταντίνος Μαργαρίτης Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας kmarg@uom.gr http://eos.uom.gr/~kmarg

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 Πάτρα 5/5/2015 Ονοματεπώνυμο:.. Θέμα Α Α1. α. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006 Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006 Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 Πάτρα 5/5/2015 Ονοματεπώνυμο:.. Α1. α. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Μάθημα 3: Αρχιτεκτονική Υπολογιστών

Μάθημα 3: Αρχιτεκτονική Υπολογιστών Μάθημα 3: Αρχιτεκτονική Υπολογιστών 3.1 Περιφερειακές μονάδες και τμήμα επεξεργασίας Στην καθημερινή μας ζωή ερχόμαστε συνέχεια σε επαφή με υπολογιστές. Ο υπολογιστής είναι μια συσκευή που επεξεργάζεται

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas)

Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas) Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas) Εστω το ακόλουθο n n τριδιαγώνιο γραµµικό σύστηµα Ax = d A = b 1 c 1 a 2 b 2 c 2 0 a 3 b 3 c

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ. Εξετάζουμε ενδεικτικά ορισμένες περιπτώσεις: 1 ο 2 ο. 3 ο 4 ο

ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ. Εξετάζουμε ενδεικτικά ορισμένες περιπτώσεις: 1 ο 2 ο. 3 ο 4 ο ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ Δίνεται ορθογώνιο παραλληλόγραμμο διάστασης m n όπου m,n φυσικοί αριθμοί, το οποίο είναι διαιρεμένο σε τετράγωνα που το καθένα ισούται με την μονάδα μέτρησης του εμβαδού του. Να βρεθεί

Διαβάστε περισσότερα

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E.

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E. Οι γλώσσες των Μηχανών Turing Αποφασισιµότητα / Αναγνωρισιµότητα Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L Αποδέχεται όταν (η είσοδος στην TM) w L. Ορέστης Τελέλης telelis@unipi.gr Τµήµα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1. α. Να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,

Διαβάστε περισσότερα

Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Επιλογή ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός k, 1 k n. Υπολογισμός

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012

Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012 Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012 Ενδεικτικές απαντήσεις 1 ου σετ ασκήσεων. Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του χρόνου εκτέλεσης τριών

Διαβάστε περισσότερα

Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης

Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης Σύνοψη Προηγούμενου Πίνακες (Arrays Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Διαδικαστικά θέματα. Aντικείμενο Μαθήματος. Aντικείμενα, Κλάσεις, Μέθοδοι, Μεταβλητές.

Διαβάστε περισσότερα

Πρόβληµα Επιλογής. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1

Πρόβληµα Επιλογής. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1 Πρόβληµα Επιλογής Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1 Πρόβληµα Επιλογής Πίνακας Α[ Αριθµός k, 1 k n. ] µε n στοιχεία (όχι ταξινοµηµένος). Υπολογισµός του k-οστού µικρότερου στοιχείου (στοιχείο

Διαβάστε περισσότερα

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x+ y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y

Διαβάστε περισσότερα

Εργασία για το μεταπτυχιακό μάθημα Παράλληλοι υπολογισμοί από τον φοιτητή Μουζακίδη Αλέξανδρο AM M 853

Εργασία για το μεταπτυχιακό μάθημα Παράλληλοι υπολογισμοί από τον φοιτητή Μουζακίδη Αλέξανδρο AM M 853 Εργασία για το μεταπτυχιακό μάθημα Παράλληλοι υπολογισμοί από τον φοιτητή Μουζακίδη Αλέξανδρο AM M 853 Θέμα Παράλληλη Αριθμητική Επίλυση Μερικών Διαφορικών Εξισώσεων με τις μεθόδους Jacob και Jacob over

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ

Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ Εισαγωγή στην επιστήµη των υπολογιστών Πράξεις µε µπιτ 1 Πράξεις µε µπιτ 2 Αριθµητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασµός, Διαίρεση 3 Πρόσθεση στη µορφή συµπληρώµατος ως προς δύο

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο

Διαβάστε περισσότερα

Επιλογή. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Επιλογή. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Επιλογή ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή

Διαβάστε περισσότερα

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. (α) Αλγόριθµος: ηµιούργησε το σύνολο P που αποτελείται από τα άκρα όλων των ευθυγράµµων τµηµάτων. Βρες το κυρτό περίβληµα του P µε τον αλγόριθµο του Graham. Ορθότητα:

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

Προβλήµατα. 1st International Olympiad in Informatics Held in Pravetz, Bulgaria May 16-19, 1989.

Προβλήµατα. 1st International Olympiad in Informatics Held in Pravetz, Bulgaria May 16-19, 1989. 1989-1 η ιεθνής Ολυµπιάδα Πληροφορικής Προβλήµατα 1st International Olympiad in Informatics Held in Pravetz, Bulgaria May 16-19, 1989. Έξι Προβλήµατα Παρουσιάστηκαν στη διενέργεια της ΙΟΙ 89 ***PROBLEM

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Διαβάστε περισσότερα

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου

Διαβάστε περισσότερα

Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές

Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές Επιλογή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση

Διαβάστε περισσότερα

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 19 εκεµβρίου 2018 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί

Διαβάστε περισσότερα

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται

Διαβάστε περισσότερα

Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ

Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ Εντολές επανάληψης Κεφάλαια 02-08 οµές Επανάληψης Επιτρέπουν την εκτέλεση εντολών περισσότερες από µία φορά Οι επαναλήψεις ελέγχονται πάντοτε από κάποια συνθήκη η οποία καθορίζει την έξοδο από το βρόχο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2011-2012 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ

Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ Εισαγωγή στην επιστήµη των υπολογιστών Πράξεις µε µπιτ 1 Πράξεις µε µπιτ 2 Αριθµητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασµός, Διαίρεση Ο πολλαπλασιασµός και η διαίρεση στο επίπεδο του

Διαβάστε περισσότερα

Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες.

Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC STAGE II ΑΠΡΙΛΗΣ 08 Χρόνος Εξέτασης: ώρες Ημερομηνία: 5/04/08 Ώρα εξέτασης: 5:45-7:45 Να απαντήσετε τα θέματα και αιτιολογώντας πλήρως τις απαντήσεις

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 23 Μαρτίου 2017 1 / 20 Επιλογή Το πρόβληµα

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α :

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

1η Σειρά Γραπτών Ασκήσεων

1η Σειρά Γραπτών Ασκήσεων 1/20 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 1η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 1 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 2 3 4 5 2/20

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013

Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013 Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013 Λυμένες Ασκήσεις Σετ Α: Ανάλυση Αλγορίθμων Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του

Διαβάστε περισσότερα

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα)

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 20 1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 1.3.1 Ορισµός- Είδη - Χρήση Σκαρίφηµα καλείται η εικόνα ενός αντικειµένου ή εξαρτήµατος που µεταφέρεται σε χαρτί µε ελεύθερο χέρι (χωρίς όργανα σχεδίασης ή

Διαβάστε περισσότερα

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7)

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης

Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης Ουρές Προτεραιότητας: Υπενθύμιση Σωροί / Αναδρομή / Ταξινόμηση Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς (Abstract Data Type) με μεθόδους: Μπορεί να υλοποιηθεί με

Διαβάστε περισσότερα

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων EΠΛ Αλγόριθµοι και Πολυπλοκότητα Φεβρουάριος 00 Κατ οίκον Εργασία Σκελετοί Λύσεων. Ο αλγόριθµος διαίρει και βασίλευε για το πρόβληµα έχει ως εξής: Μοίρασε τον πίνακα σε δύο µισά. Υπολόγισε αναδροµικά τα

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και

Διαβάστε περισσότερα

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ: Γ2-Γ3

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ: Γ2-Γ3 ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ: Γ2-Γ3 ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ

Διαβάστε περισσότερα

Διάλεξη 4: Εκλογή Προέδρου σε Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 4: Εκλογή Προέδρου σε Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 4: Εκλογή Προέδρου σε Δακτύλιους ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Δακτύλιοι Το πρόβλημα της Εκλογής Προέδρου Εκλογή Προέδρου σε Ανώνυμους Δακτύλιους Ασύγχρονος Αλγόριθμος με

Διαβάστε περισσότερα

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3. ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 12/10/2017

Διαβάστε περισσότερα

Fast Fourier Transform

Fast Fourier Transform Fast Fourier Transform Παναγιώτης Πατσιλινάκος ΕΜΕ 19 Οκτωβρίου 2017 Παναγιώτης Πατσιλινάκος (ΕΜΕ) Fast Fourier Transform 19 Οκτωβρίου 2017 1 / 20 1 Εισαγωγή Στόχος Προαπαιτούμενα 2 Η ιδέα Αντιστροφή -

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Ταξινόμηση. Σαλτογιάννη Αθανασία

Ταξινόμηση. Σαλτογιάννη Αθανασία Ταξινόμηση Σαλτογιάννη Αθανασία Ταξινόμηση Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Ταξινόμηση Τι εννοούμε όταν

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =

Διαβάστε περισσότερα

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Μέχρι στιγμής εξετάσθηκαν μέθοδοι ταξινόμησης µε πολυπλοκότητα της τάξης Θ ) ή Θlog ). Τι εκφράζει

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΣΥΝ ΕΤΙΚΑ ΙΚΤΥΑ ΤµήµαΜηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής Εργαστήριο Πληροφοριακών Συστηµάτων Υψηλών Επιδόσεων ιασυνδετικά ίκτυα ( ) Γενικές Έννοιες Για την υλοποίηση ενός

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Quicksort ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 62] Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Εισαγωγή στο Σχεδιασμό & την Ανάλυση Αλγορίθμων Εξέταση Ιουνίου 2015 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΜΕΤΡΑ ΑΠΟ ΟΣΗΣ & ΕΞΙΣΟΡΡΟΠΗΣΗ ΦΟΡΤΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΨΗΛΩΝ ΕΠΙ ΟΣΕΩΝ ΒΑΘΜΟΣ ΠΑΡΑΛΛΗΛΙΣΜΟΥ Η υλοποίηση

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort

Διαβάστε περισσότερα

num(m(w 1 ;... ; w k )) = f(num(w 1 ),..., num(w k ))

num(m(w 1 ;... ; w k )) = f(num(w 1 ),..., num(w k )) Υπολογισμοί με Μ.Τ. Εστω M = (K, Σ, δ, s, {y, n}) μια Μ.Τ. Κάθε συνολική κατάσταση τερματισμού της οποίας η κατάσταση τερματισμού είναι το y, θα ονομάζεται συνολική κατάσταση αποδοχής, ενώ αν η κατάσταση

Διαβάστε περισσότερα

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις Ο ΑΤΔ Λεξικό Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος Υλοποιήσεις Πίνακας με στοιχεία bit (0 ή 1) (bit vector) Λίστα ακολουθιακή (πίνακας) ή συνδεδεμένη Είναι γνωστό το μέγιστο

Διαβάστε περισσότερα

Πιθανοτικός Συμπερασμός: Πού βρίσκομαι στο πλέγμα; [ΠΛΗ 513] Αυτόνομοι πράκτορες - Project Εξαμήνου ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Πιθανοτικός Συμπερασμός: Πού βρίσκομαι στο πλέγμα; [ΠΛΗ 513] Αυτόνομοι πράκτορες - Project Εξαμήνου ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Πιθανοτικός Συμπερασμός: Πού βρίσκομαι στο πλέγμα; [ΠΛΗ 513] Αυτόνομοι πράκτορες - Project Εξαμήνου Γεωργαρά Αθηνά (A.M. 2011030065) ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Διαβάστε περισσότερα

7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή

7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή 7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή O θόρυβος 2Δ μας δίνει τη δυνατότητα να δημιουργίας υφής 2Δ. Στο παρακάτω παράδειγμα, γίνεται σχεδίαση γραμμών σε πλέγμα 300x300 με μεταβαλόμενη τιμή αδιαφάνειας

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 036653 367784 Fax: 036405 e mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Paneistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΟΡΓΑΝΩΤΙΚΗ ΕΠΙΤΡΟΠΗ ΟΛΥΜΠΙΑΔΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 1989 ΑΘΗΝΑ 1 ΑΠΡΙΛΙΟΥ ΘΕΜΑΤΑ 1 ης ΠΡΟΚΑΤΑΡΚΤΙΚΗΣ ΦΑΣΗΣ ΓΙΑ ΤΗΝ ΟΛΥΜΠΙΑΔΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1989

ΚΕΝΤΡΙΚΗ ΟΡΓΑΝΩΤΙΚΗ ΕΠΙΤΡΟΠΗ ΟΛΥΜΠΙΑΔΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 1989 ΑΘΗΝΑ 1 ΑΠΡΙΛΙΟΥ ΘΕΜΑΤΑ 1 ης ΠΡΟΚΑΤΑΡΚΤΙΚΗΣ ΦΑΣΗΣ ΓΙΑ ΤΗΝ ΟΛΥΜΠΙΑΔΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1989 ΚΕΝΤΡΙΚΗ ΟΡΓΑΝΩΤΙΚΗ ΕΠΙΤΡΟΠΗ ΟΛΥΜΠΙΑΔΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 1989 ΑΘΗΝΑ 1 ΑΠΡΙΛΙΟΥ 1989 ΘΕΜΑΤΑ 1 ης ΠΡΟΚΑΤΑΡΚΤΙΚΗΣ ΦΑΣΗΣ ΓΙΑ ΤΗΝ ΟΛΥΜΠΙΑΔΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1989 ΘΕΜΑ 1 ο Δίνονται τα παρακάτω ύψη 40 µαθητών µιας τάξης

Διαβάστε περισσότερα

Χρωματίζουμε τα σημεία του επιπέδου με τρία χρώματα. Αποδείξτε ότι υπάρχουν δύο

Χρωματίζουμε τα σημεία του επιπέδου με τρία χρώματα. Αποδείξτε ότι υπάρχουν δύο 1.1 ΠΡΟΒΛΗ ΜΑ Χρωματίζουμε τα σημεία του επιπέδου με δύο χρώματα. Αποδείξτε ότι υπάρχουν δύο τουλάχιστον σημεία με το ίδιο χρώμα που απέχουν απόσταση 1. Έστω ότι χρωματίζουμε τα σημεία του επιπέδου κόκινα

Διαβάστε περισσότερα

https://youtu.be/mw-0bzwogwq?t=12.

https://youtu.be/mw-0bzwogwq?t=12. Το παράδοξο του τροχού του Αριστοτέλη ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Το παράδοξο του τροχού του Αριστοτέλη διατυπώνεται ως εξής: Αν στερεώσουµε

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6α: Αναζήτηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 24: Μη Ντεντερμινιστικές Μηχανές Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Outline. 6 Edit Distance

Outline. 6 Edit Distance Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι και Δυναμικός Προγραμματισμός Ασκήσεις CoReLab ΣΗΜΜΥ - Ε.Μ.Π. 16 Νοεμβρίου 216 (CoReLab - NTUA) Αλγόριθμοι - Ασκήσεις 16 Νοεμβρίου 216 1 / 52 Outline 1

Διαβάστε περισσότερα

ΟΠΤΙΚΗ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ηµήτρης Παπάζογλου. ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών «Οπτική και Όραση»

ΟΠΤΙΚΗ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ηµήτρης Παπάζογλου. ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών «Οπτική και Όραση» ΟΠΤΙΚΗ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ηµήτρης Παπάζογλου ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών «Οπτική και Όραση» Πανεπιστήµιο Κρήτης 2005 Διατμηματικό Μεταπτυχιακό πρόγραμμα

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος

Διαβάστε περισσότερα

Θέμα Α 1. 1 Τα θέματα προέρχονται από Επαναληπτικά Διαγωνίσματα από το "Στέκι των Πληροφορικών" και Π. Τσιωτάκη

Θέμα Α 1. 1 Τα θέματα προέρχονται από Επαναληπτικά Διαγωνίσματα από το Στέκι των Πληροφορικών και Π. Τσιωτάκη ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΣΤΡΙΤΣΙΟΥ ΠΑΡΑΣΚΕΥΗ 5 Μαΐου 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση 3 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο

Διαβάστε περισσότερα

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012)

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012) Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός

Διαβάστε περισσότερα

Λύσεις Παλιών Θεµάτων. Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης

Λύσεις Παλιών Θεµάτων. Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης Λύσεις Παλιών Θεµάτων Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης Θέµα Φεβρουάριος 2003 1) Έστω ένας υπερκύβος n-διαστάσεων. i. Να βρεθεί ο αριθµός των διαφορετικών τρόπων

Διαβάστε περισσότερα

Quicksort. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Quicksort. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Quicksort ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2016-2017 Πάτρα 3/5/2017 Ονοματεπώνυμο:.. Α1. Να γράψετε στην κόλλα σας τον αριθμό

Διαβάστε περισσότερα