PERHITUNGAN WAKTU SOLAT MENGGUNAKAN ALMANAK FALAK SYARIE. Stesen rujukan = Kg. Gedangsa (Zon 1, Selangor)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PERHITUNGAN WAKTU SOLAT MENGGUNAKAN ALMANAK FALAK SYARIE. Stesen rujukan = Kg. Gedangsa (Zon 1, Selangor)"

Transcript

1 PERHITUNGAN WAKTU SOLAT MENGGUNAKAN ALMANAK FALAK SYARIE Data Contoh Hitungan Stesen rujukan = Kg. Gedangsa (Zon 1, Selangor) Latitud, φ L = 3 44' Utara Longitud, λ L = ' Timur = 6 jam 45m 32s Longitud Piawai λ S = ' 00" Timur = 8 jam Tarikh Kiraan = 11 Julai 2006 Data Matahari bulan Julai 2006 dirujuk. 1.1 Hitungan Waktu Matahari Istiwa Ketika matahari istiwa iaitu ketika pusat badan matahari melintasi tepat Meridian Samawi Tempatan (stesen rujukan), sudut Waktu Tempatan Matahari Istiwa Istiwa) adalah bersamaan 0 jam ataupun bersamaan jam jika merujuk kepada hari sebelumnya. Hubungan sudut Waktu Tempatan Matahari dengan sudut Waktu Greenwich Matahari Istiwa) dapat dituliskan sebagai: Istiwa = Istiwa - λ L merujuk kepada data kiraan: λ L = 6j 45m 32s istiwa = j 0m 0s istiwa = j 0m 0s - 6j 45m 32s = 17j 14m 28s Seterusnya, di dalam AFS diberikan hubungan di antara GHA Matahari dan Waktu Piawai Malaysia (WPM). Oleh itu Waktu Piawai Malaysia ketika matahari istiwa Istiwa) bagi stesen rujukan dapat ditentukan berdasarkan GHA

2 @ Istiwa yang diperoleh. Rumus berikut digunakan untuk mendapat Istiwa: Istiwa = Istiwa - h 1 X j h 2 - h 1 Di mana h 1 = Sudut waktu Greenwich 0j pada tarikh kiraan h 2 = Sudut Waktu Greenwich 0j pada tarikh sehari selepas kiraan Merujuk kepada data tersebut, untuk tarikh kiraan 11 Julai 2006 didapati: h 1 = 11.0 h 2 = 12.0 Istiwa = 17j 14m 28s h 1 = 3j 54m 37s h 2 = 3j 54m 29s + j = 27j 54m 29s Oleh itu: Istiwa = 17j 14m 28s - 3j 54m 37s 27j 54m 29s - 3j 54m 37s X j = 13j 19m 55s Kesimpulan: Waktu matahari istiwa Kg. Gedangsa pada 11 Julai 2006 adalah pada pukul 13j 19m 55s atau digenapkan 1:20 petang. 1.2 Hitungan Awal Waktu Zohor Awal waktu Zohor adalah waktu matahari istiwa ditambah semi diameter matahari.

3 Oleh itu: Waktu Zohor = Istiwa + semi diameter matahari, SD pada 11 Julai 2006 = 13j 19m 55s + 1m 3s (SD/15) = 13j 20m 58s = 1:21 petang 1.3 Hitungan Awal Waktu Asar Hitungan sudut waktu matahari awal waktu Asar, t A memerlukan maklumat deklinasi matahari ketika Asar, δ A ; jarak zenit, Z A dan φ L. (a) Hitungan deklinasi, δ A dapat diperoleh daripada AFS dengan kaedah tentu dalaman (interpolasi) kerana di dalam AFS cuma diberikan deklinasi ketika 0j dan j sahaja. Bagi membuat tentu dalaman, kita perlu meletakkan waktu anggaran. Waktu anggaran masuk solat Asar bagi kita di Malaysia adalah kira-kira pukul 4.00 petang (16.00). δ A = 16 x ( δ - δ 0 ) = 16 x (22 3' 48" ' 42") = 16 x (-0 7' 54") = -0 5' 16" δ A = δ o + δ A = 22 11' 42" - 0 5' 16" = 22 6' 26" Utara (b) Hitungan Z A = tan -1 [1 + tan / ( φ L - δ A) ) / ] = tan -1 [1 + tan /(3 44' ' 26") /] = tan -1 [1 + tan /(18 22' 26")/] = tan -1 [ ] Z A = 53 6' 20"

4 (c) Hitungan t A cos Z A - sin δ A sin φ L t A = cos -1 [ ] cos δ A cos φ L cos 53 6' 20" - (sin 22 6' 26") (sin 3 44') = cos -1 [ ] cos ( 22 6' 26") (cos 3 44 ) = cos -1 [ ] = cos -1 [ ] = 51 28' 31" t A = 3j 25m 54s Oleh itu: Waktu Asar = Istiwa + t A = 13j 19m 55s + 3j 25m 54s = 16j 45m 50s = 4:46 petang 1.4 Hitungan Awal Waktu Maghrib Waktu anggaran masuk solat Maghrib adalah pukul 7.00 petang (19:00). (a) Hitungan deklinasi, δ M δ M = 19 x (-0 7' 54") = -0 6' 15" δ M = ' 15" = 22 5' 27" Utara

5 (b) Dari takrifan, Z M = 90 + semi diameter biasan junaman ufuk (c) Hitungan sudut waktu, t M cos t M = cos 90 49' sin (22 5' 27") sin (3 44') cos (22 5' 27") cos (3 44 ) = = t M = 92 ' 54" = 6j 9m 40s Oleh itu: Waktu Maghrib = Istiwa + t M = 13j 19m 55s + 6j 9m 40s = 19j 29m 35s = 7:30 malam 1.5 Hitungan Awal Waktu Solat Isyak Waktu anggaran masuk solat Isyak adalah pukul 8:00 malam (20:00). (a) Hitungan deklinasi, δ I δ I = 20 x (-0 7' 54") = -0 6' 35" δ I = 22 11' 42" - 0 6' 35" = 22 5' 7" (b) Dari takrifan, Z I = 108

6 (c) Hitungan sudut waktu, t I Cost I = Cos sin (22 5' 7") sin (3 44 ) (Cos 22 5' 7") (Cos 3 44') = = t I = 111 8' 29" Oleh itu: = 7j m 34s Waktu Isyak = istiwa + t I = 13j 19m 55s + 7j m 34s = 20j 44m 29s = 8:45 malam 1.5 Hitungan Awal Solat Subuh Waktu anggaran masuk solat Subuh adalah pukul 6.00 pagi (6:00). (a) Hitungan deklinasi, δ S δ S = 6 x ( -0 7' 54") = -0 1' 59 δ S = ' 59 (b) Dari takrifan, Z S = 110 = (c) Hitungan sudut waktu, t S

7 Cost S = Cos (sin 22 9' 43") (sin 3 44 ) (Cos 22 9' 43") (Cos 3 44') = = t S = ' 12" = 7j 33m 29s Oleh itu: Waktu Subuh = Istiwa - t S = 13j 19m 55s - 7j 33m 29s = 5j 46m 26s = 5:47 pagi 1.6 Hitungan Waktu Matahari Terbit Waktu matahari terbit menandakan tamat solat Subuh. Di Malaysia, waktu anggaran matahari terbit adalah pukul 7.00 pagi (7:00). (a) Hitungan deklinasi, δ T δ T = 7 x (-0 7' 54") = -0 2' 18" δ T = 22 11' 42" - 0 2' 18" = 22 9' " (b) Dari takrif z T = 90 + semi diameter biasan junaman ufuk (c) Hitungan sudut waktu, t T

8 Cos t T = Cos 90 49' (Sin 22 9' ") (Sin 3 44 ) (Cos 22 9' ") (Cos 3 44 ) = = t T = 92 25' 14" = 6j 9m 41s Oleh itu; Waktu matahari terbit= WPM Istiwa - t T = 13j 19m 55s - 6j 9m 41s = 7j 10m 15s = 7:10 pagi

9 2. Penentuan Waktu Solat Di Negara-Negara Latitud Tinggi Negara-negara latitud tinggi ditafsirkan negara-negara yang terletak melebihi latitud 66 Utara dan Selatan. Negara-negara tersebut akan mengalami perubahan siang dan malam yang terlalu singkat atau tidak akan berubah langsung. Manakala di negara-negara yang latitudnya melebihi 45 Utara seperti Sweden, Norway, Kanada dan Russia, perubahan siang dan malamnya berlaku secara jelas, tetapi perbezaan jangkamasa siang dan malamnya begitu ketara. Terdapat tiga resolusi mengenai penentuan waktu solat di negara-negara berlatitud tinggi. (1) Menurut Hamidullah dalam bukunya Introduction To Islam, negaranegara di latitud melebihi 45 Utara dan Selatan disifatkan sebagai zon tak normal. Oleh itu, untuk penentuan waktu solat dan imsak, negaranegara berkenaan boleh menggunakan waktu-waktu yang ditentukan di kedudukan latitud 45 sahaja, tetapi menggunakan longitud tempatan. Contoh: Bandar Oslo di Norway yang terletak di latitud 59.5 Utara dan longitud Timur. Waktu solat dan imsak yang boleh digunakan ialah waktu yang diberikan pada kedudukan latitud 45 Utara dan longitud Timur. (2) Keputusan Majlis Syariah Islam, Rabitah al-alami al-islami (1982). Majlis ini membahagikan kawasan-kawasan tinggi kepada tiga kawasan iaitu: a. Kawasan berhampiran kutub di mana waktu siang ataupun malam berpanjangan selama jam. Waktu solat dan imsak di kawasan-kawasan ini sepatutnya dihisab berdasarkan kawasan terdekat yang siang dan malamnya dapat dibezakan dalam masa jam. b. Kawasan-kawasan di mana masa senja bercantum dengan fajar. Keadaan ini akan menimbulkan masalah mengenai penentuan waktu Isyak, Imsak dan Subuh. Oleh itu waktu-waktu tersebut boleh ditentukan mengikut waktu terakhir musim sebelumnya dalam keadaan mega merah dan fajar sadiq dapat dibezakan dengan jelas.

10 c. Kawasan-kawasan di mana waktu siang dan malam terlalu panjang. Kawasan-kawasan yang dimaksudkan umpamanya tempoh siang 21 jam atau malam 23 jam atau sebaliknya, waktu solat perlulah dilakukan mengikut waktunya. Begitu juga semasa bulan Ramadan, makan dan minum hanya boleh dibuat pada waktu malam. Jika seorang itu tidak dapat berpuasa kerana waktu siang yang panjang dan dengan ikhlas beliau yakin puasa yang terlalu panjang akan membawa kemudharatan kepada dirinya atau selepas dinasihati oleh seorang doktor yang jujur, maka mereka boleh berbuka. Walau bagaimanapun wajiblah mereka mengqadakkan puasa yang tertinggal itu. (3) Keputusan Seminar Islam di Islamic Cultural Centre, London (Mei 1984). Secara umum seminar tersebut telah mencapai suatu keputusan yang seragam dan memuaskan. Setelah mengkaji semua teks syariah yang telah dikemukakan oleh para ulama, secara rasional memperkenalkan prinsip saintifik termasuk ilmu falak tanpa mengetepikan ciri-ciri Syariah Islam yang menekankan soal perpaduan dan keselesaan untuk beribadat. Seminar tersebut telah merumuskan beberapa perkara: i. Pada hari yang jelas perbezaan waktu siang dan malam, pembahagian waktu solat adalah mengikut ketetapan syarak. ii. iii. iv. Ketika mega merah شفق الاحمر) ) dan fajar sadiq sukar dibezakan, waktu solat Subuh dan Isyak boleh ditentukan berdasarkan tempoh terbenam matahari dan Isyak di latitud 48 Utara atau 48 Selatan di mana tanda-tanda perubahan langit dapat dibezakan. Kadar perbezaan tersebut boleh digunakan untuk penentuan waktu solat di kawasan-kawasan yang lebih Utara atau Selatan. Para ulama berpendapat, bagi mereka yang kesulitan untuk menunggu waktu Isyak yang sebenar disebabkan terlalu lewat, diharuskan melaksanakan jamak taqdim bagi solat Maghrib dan Isyak. Tempoh siang dan malam yang panjang berkait rapat juga dengan pelaksanaan puasa Ramadhan. Bagi mereka yang mempunyai masalah kesihatan atas nasihat pakar perubatan yang amanah dan yakin bahawa berpuasa panjang boleh memudharatkan kesihatan, mereka dibolehkan berbuka puasa tetapi perlulah mengqadakkan puasa tersebut pada bulan-bulan lain.

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi

Διαβάστε περισσότερα

BAB EMPAT: PEROLEHAN DAN ANALISIS. Pengambilan data cerapan pula adalah untuk waktu solat Isyak dan Subuh bagi

BAB EMPAT: PEROLEHAN DAN ANALISIS. Pengambilan data cerapan pula adalah untuk waktu solat Isyak dan Subuh bagi BAB EMPAT: PEROLEHAN DAN ANALISIS 4.1 PENDAHULUAN Dalam bab ini, pengkaji menghuraikan kaedah yang diperolehi untuk menentukan waktu solat dalam kapal terbang dari sudut fiqh dan astronomi. Pengambilan

Διαβάστε περισσότερα

2 m. Air. 5 m. Rajah S1

2 m. Air. 5 m. Rajah S1 FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam

Διαβάστε περισσότερα

KONSEP ASAS & PENGUJIAN HIPOTESIS

KONSEP ASAS & PENGUJIAN HIPOTESIS KONSEP ASAS & PENGUJIAN HIPOTESIS HIPOTESIS Hipotesis = Tekaan atau jangkaan terhadap penyelesaian atau jawapan kepada masalah kajian Contoh: Mengapakah suhu bilik kuliah panas? Tekaan atau Hipotesis???

Διαβάστε περισσότερα

CADASTRE SURVEY (SGHU 2313)

CADASTRE SURVEY (SGHU 2313) CADASTRE SURVEY (SGHU 2313) WEEK 8-ADJUSTMENT OF OBSERVED DATA SR DR. TAN LIAT CHOON 07-5530844 016-4975551 1 OUTLINE Accuracy of field observations Misclosure in cadastre survey Bearing ('m' and 'c' correction

Διαβάστε περισσότερα

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu.

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu. BAB 3 : ISI RUMAH SEBAGAI PENGGUNA SPM2004/A/S3 (a) Rajah tersebut menunjukkan keluk permintaan yang mencerun ke bawah dari kiri ke kanan. Ia menunjukkan hubungan negatif antara harga dengan kuantiti diminta.

Διαβάστε περισσότερα

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 ) (1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1

Διαβάστε περισσότερα

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar untuk Fakultas Pertanian Uhaisnaini.com Contents 1 Sistem Koordinat dan Fungsi Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

ANALISIS LITAR ELEKTRIK OBJEKTIF AM

ANALISIS LITAR ELEKTRIK OBJEKTIF AM ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat: SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju

Διαβάστε περισσότερα

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:

Διαβάστε περισσότερα

BAB DUA: PENENTUAN WAKTU SOLAT DAN RUKHSAHNYA TERHADAP MUSAFIR

BAB DUA: PENENTUAN WAKTU SOLAT DAN RUKHSAHNYA TERHADAP MUSAFIR BAB DUA: PENENTUAN WAKTU SOLAT DAN RUKHSAHNYA TERHADAP MUSAFIR 2.1 PENDAHULUAN Ibadah solat merupakan ibadah fardu dan mempunyai kedudukan yang tinggi dalam Islam. Nabi Muhammad menekankan solat setelah

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Fungsi Dua Peubah atau Lebih dan Statistika FMIPA Universitas Islam Indonesia 2015 dengan Dua Peubah Real dengan Dua Peubah Real Pada fungsi satu peubah f : D R R D adalah daerah asal (domain) suatu fungsi

Διαβάστε περισσότερα

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia SEE 3533 PRINSIP PERHUBUNGAN Bab III Universiti Teknologi Malaysia 1 Pengenalan Selain daripada teknik pemodulatan amplitud, terdapat juga teknik lain yang menggunakan isyarat memodulat untuk mengubah

Διαβάστε περισσότερα

Hendra Gunawan. 16 April 2014

Hendra Gunawan. 16 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi

Διαβάστε περισσότερα

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5

Διαβάστε περισσότερα

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA KEPUTUSAN MESYUARAT KALI KE 63 JAWATANKUASA FARMASI DAN TERAPEUTIK HOSPITAL USM PADA 24 SEPTEMBER 2007 (BAHAGIAN 1) DAN 30 OKTOBER 2007 (BAHAGIAN 2) A. Ubat

Διαβάστε περισσότερα

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk

Διαβάστε περισσότερα

Keterusan dan Keabadian Jisim

Keterusan dan Keabadian Jisim Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep

Διαβάστε περισσότερα

Transformasi Koordinat 2 Dimensi

Transformasi Koordinat 2 Dimensi Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan

Διαβάστε περισσότερα

Matematika

Matematika Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah

Διαβάστε περισσότερα

EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005

EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005 EMT361 Keboleharapan & Analisis Kegagalan Dr Zuraidah Mohd Zain zuraidah@kukum.edu.my Julai, 2005 Overview untuk minggu 1-3 Minggu 1 Overview terma, takrifan kadar kegagalan, MTBF, bathtub curve; taburan

Διαβάστε περισσότερα

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa

Διαβάστε περισσότερα

KEKUATAN KELULI KARBON SEDERHANA

KEKUATAN KELULI KARBON SEDERHANA Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari

Διαβάστε περισσότερα

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil., hlm. 143 156 c Jabatan Matematik, UTM. Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan

Διαβάστε περισσότερα

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti

Διαβάστε περισσότερα

HMT 504 Morfologi dan Sintaksis Lanjutan

HMT 504 Morfologi dan Sintaksis Lanjutan UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2002/2003 Februari/Mac 2003 HMT 504 Morfologi dan Sintaksis Lanjutan Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

Transformasi Koordinat 3 Dimensi

Transformasi Koordinat 3 Dimensi Transformasi Koordinat 3 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat Tiga Dimensi (3D) Digunakan untuk mendeskripsikan

Διαβάστε περισσότερα

BAB 4 ANALISIS DAN PENEMUAN KAJIAN. borang soal selidik yang telah diedarkan kepada responden dan hasil temu bual responden

BAB 4 ANALISIS DAN PENEMUAN KAJIAN. borang soal selidik yang telah diedarkan kepada responden dan hasil temu bual responden BAB 4 ANALISIS DAN PENEMUAN KAJIAN Bab ini akan menerangkan hasil keputusan kajian yang diperolehi oleh pengkaji melalui borang soal selidik yang telah diedarkan kepada responden dan hasil temu bual responden

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah

Διαβάστε περισσότερα

BAB 2 PEMODULATAN AMPLITUD

BAB 2 PEMODULATAN AMPLITUD BAB MODULATAN LITUD enghantaran iyarat yang engandungi akluat elalui atu aluran perhubungan eerlukan anjakan frekueni iyarat akluat kepada julat frekueni yang euai untuk penghantaran - roe ini diapai elalui

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

TOPIK 1 : KUANTITI DAN UNIT ASAS

TOPIK 1 : KUANTITI DAN UNIT ASAS 1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu

Διαβάστε περισσότερα

EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet

EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet UNIVERSITI SAINS MALAYSIA PUSAT PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet 1. Satu litar magnet mempunyai keengganan S = 4 x

Διαβάστε περισσότερα

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan: MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)

Διαβάστε περισσότερα

Bilangan Euler(e) Rukmono Budi Utomo Pengampu: Prof. Taufiq Hidayat. March 5, 2016

Bilangan Euler(e) Rukmono Budi Utomo Pengampu: Prof. Taufiq Hidayat. March 5, 2016 Bilangan Euler(e) Rukmono Budi Utomo 30115301 Pengampu: Prof. Taufiq Hidayat March 5, 2016 Asal Usul Bilangan Euler e 1 1. Bilangan Euler 2 3 4 Asal Usul Bilangan Euler e Bilangan Euler atau e = 2, 7182818284...

Διαβάστε περισσότερα

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)

Διαβάστε περισσότερα

STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER

STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER Winda Tri Wahyuningtyas Gati Annisa Hayu Plate Girder Plate girder adalah balok besar yang dibuat dari susunan yang disatukan

Διαβάστε περισσότερα

PRAKATA 1 SENARAI JADUAL 3 SENARAI RAJAH Tafsiran Sejarah Bentuk Bumi 21

PRAKATA 1 SENARAI JADUAL 3 SENARAI RAJAH Tafsiran Sejarah Bentuk Bumi 21 TAJUK MONOGRAF : GEODESI GEOMETRIK KANDUNGAN PRAKATA 1 SENARAI JADUAL 3 SENARAI RAJAH 7 BAB 1 PENGENALAN 1.1 Tafsiran 10 1.2 Sejarah 12 1.3 Bentuk Bumi 21 BAB 2 CIRI-CIRI ELIPSOID 2.1 Sifat Khas Elip dan

Διαβάστε περισσότερα

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2006/2007 April 2007 HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

BAB 1 PENGENALAN. 1.1 Pendahuluan

BAB 1 PENGENALAN. 1.1 Pendahuluan BAB 1 PENGENALAN 1.1 Pendahuluan Menurut Webster s New Collegiate Dictionary (1981): " Oseanografi merupakan suatu ilmu yang berhubungan dengan maritim yang merangkumi pelbagai aspek seperti luas, kedalaman,

Διαβάστε περισσότερα

BAB 2 PEMACU ELEKTRIK

BAB 2 PEMACU ELEKTRIK BAB 2 PEMACU ELEKTRIK PENGENALAN Kebanyakan perindustrian moden dan komersial menggunakan pemacu elektrik berbanding dengan pemacu mekanikal kerana terdapat banyak kelebihan. Di antaranya ialah : a) binaannya

Διαβάστε περισσότερα

SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA

SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA Prof. Madya Dr. Mohd Zainudin Saleh mzsaleh@ukm.my www.ukm.my/zainudin 29/01/2004 Kuliah 12 1 MAKROEKONOMI

Διαβάστε περισσότερα

BAB I PENGENALAN. 1.1 Latar Belakang Kajian

BAB I PENGENALAN. 1.1 Latar Belakang Kajian BAB I PENGENALAN 1.1 Latar Belakang Kajian Masalah kegagalan cerun sememangnya sesuatu yang tidak dapat dielakkan sejak dari dulu hingga sekarang. Masalah ini biasanya akan menjadi lebih kerap apabila

Διαβάστε περισσότερα

Laman Web Rasmi Lembaga Hasil Dalam Negeri Malaysia Agensi Di Bawah Kementerian Kewangan Bersama Membangun Negara

Laman Web Rasmi Lembaga Hasil Dalam Negeri Malaysia Agensi Di Bawah Kementerian Kewangan Bersama Membangun Negara Ahad. 25 Sept, 2011 Cari Help A++ A+ A English Laman Web Rasmi Lembaga Hasil Dalam Negeri Malaysia Agensi Di Bawah Kementerian Kewangan Bersama Membangun Negara Laman Utama Profil Korporat Borang Perkhidmatan

Διαβάστε περισσότερα

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-

Διαβάστε περισσότερα

SEMINAR KEBANGSAAN PENDIDIKAN SAINS DAN MATEMATIK OKT 2008

SEMINAR KEBANGSAAN PENDIDIKAN SAINS DAN MATEMATIK OKT 2008 TAHAP KEFAHAMAN KEMAHIRAN KOMUNIKASI DAN MENGEKSPERIMEN DALAM KALANGAN PELAJAR TAHUN DUA PENDIDIKAN FIZIK MERENTAS PROGRAM PENGAJIAN HANIZAH BINTI MISBAH Fakulti Pendidikan Universiti Teknologi Malaysia

Διαβάστε περισσότερα

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987). II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan

Διαβάστε περισσότερα

Kuliah 4 Rekabentuk untuk kekuatan statik

Kuliah 4 Rekabentuk untuk kekuatan statik 4-1 Kuliah 4 Rekabentuk untuk kekuatan statik 4.1 KEKUATAN STATIK Beban statik merupakan beban pegun atau momen pegun yang bertindak ke atas sesuatu objek. Sesuatu beban itu dikatakan beban statik sekiranya

Διαβάστε περισσότερα

Tegangan Permukaan. Kerja

Tegangan Permukaan. Kerja Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil.

Διαβάστε περισσότερα

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND Kompetensi menguraikan ciri-ciri suatu kurva normal menentukan luas daerah dibawah kurva normal menerapkan sebaran normal dalam

Διαβάστε περισσότερα

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali LITAR ELEKTRIK 1 EET101/4 Pn. Samila Mat Zali STRUKTUR KURSUS Peperiksaan Akhir : 50% Ujian teori : 10% Mini projek : 10% Amali/praktikal : 30% 100% OBJEKTIF KURSUS Mempelajari komponen-komponen utama

Διαβάστε περισσότερα

BAB 2 KEAPUNGAN DAN HIDROSTATIK

BAB 2 KEAPUNGAN DAN HIDROSTATIK BAB 2 KEAPUNGAN DAN HIDROSTATIK 2.1 Hukum Keapungan Archimedes Sebuah badan yang terendam di air ditindak oleh beberapa daya. Pertama ialah berat atau jisim badan itu sendiri yang dianggap bertindak ke

Διαβάστε περισσότερα

Konvergen dalam Peluang dan Distribusi

Konvergen dalam Peluang dan Distribusi limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi

Διαβάστε περισσότερα

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi BAB 4 HASIL KAJIAN 4.1 Pengenalan Bahagian ini menghuraikan tentang keputusan analisis kajian yang berkaitan dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi pendidikan pelajar

Διαβάστε περισσότερα

KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK

KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK KEMENTERIAN PELAJARAN MALAYSIA KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK TAHUN TIGA DOKUMEN STANDARD KURIKULUM STANDARD SEKOLAH RENDAH (KSSR) MODUL TERAS TEMA DUNIA MUZIK TAHUN TIGA BAHAGIAN PEMBANGUNAN

Διαβάστε περισσότερα

Institut Pendidikan Guru, Kampus Tuanku Bainun, Bukit Mertajam, Pulau Pinang. Diterima untuk diterbitkan pada: 1 April 2012

Institut Pendidikan Guru, Kampus Tuanku Bainun, Bukit Mertajam, Pulau Pinang. Diterima untuk diterbitkan pada: 1 April 2012 41 PERBANDINGAN KAEDAH MENGGUNAKAN KAD PERMAINAN DAN BUKU BESAR BAGI MENINGKATKAN PENCAPAIAN MURID TAHUN 4 DALAM TOPIK PENYESUAIAN TUMBUHAN TERHADAP CUACA MELAMPAU 1 Lim Carol Amir Hamzah Sharaai 1 Institut

Διαβάστε περισσότερα

BAB 8 PENENTUAN KEDALAMAN

BAB 8 PENENTUAN KEDALAMAN Pengenalan BAB 8 PENENTUAN KEDALAMAN Proses penentuan kedalaman/penentudalaman perlulah dijalankan dengan seberapa tepat yang boleh kerana jika berlaku kesilapan, ianya akan memberikan gambaran yang salah

Διαβάστε περισσότερα

TOPIK 2 : MENGGAMBARKAN OBJEK

TOPIK 2 : MENGGAMBARKAN OBJEK 2.1 SIMETRI Definisi paksi simetri : Satu garis lipatan pada suatu bentuk geometri supaya bentuk itu dapat bertindih tepat apabila dilipat. Sesuatu bentuk geometri mungkin mempunyai lebih daripada satu

Διαβάστε περισσότερα

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK 2 SKEMA MODUL PECUTAN AKHIR 20 No Jawapan Pembahagian (a) 00000 0000 0000 Jumlah 000 TIM00 #0300 TIM00 000 000 0M END Simbol dan data betul : 8 X 0.5M = 4M

Διαβάστε περισσότερα

MENGENALI FOTON DAN PENGQUANTUMAN TENAGA

MENGENALI FOTON DAN PENGQUANTUMAN TENAGA MENGENALI FOTON DAN PENGQUANTUMAN TENAGA Oleh Mohd Hafizudin Kamal Sebelum wujudnya teori gelombang membujur oleh Huygens pada tahun 1678, cahaya dianggap sebagai satu aliran zarah-zarah atau disebut juga

Διαβάστε περισσότερα

LITAR ARUS ULANG ALIK (AU)

LITAR ARUS ULANG ALIK (AU) TA AUS UANG AK (AU) TA AUS UANG AK (AU) OBJEKTF AM Memahami litar asas arus Ulang alik dan litar sesiri yang mengandungi, dan. Unit OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menjelaskan bahawa dalam

Διαβάστε περισσότερα

BAB KEEMPAT ANALISIS DAN DAPATAN KAJIAN. terperinci. Dapatan kajian ini dibincangkan menurut susunan objektif kajian, iaitu;

BAB KEEMPAT ANALISIS DAN DAPATAN KAJIAN. terperinci. Dapatan kajian ini dibincangkan menurut susunan objektif kajian, iaitu; BAB KEEMPAT ANALISIS DAN DAPATAN KAJIAN 4.1 Pengenalan Dalam bab keempat ini, pengkaji mengemukakan dapatan dan analisis kajian secara terperinci. Dapatan kajian ini dibincangkan menurut susunan objektif

Διαβάστε περισσότερα

BAB 4 DAPATAN KAJIAN. yang telah diedarkan kepada responden dengan menggunakan perisian Statistical Packages

BAB 4 DAPATAN KAJIAN. yang telah diedarkan kepada responden dengan menggunakan perisian Statistical Packages BAB 4 DAPATAN KAJIAN 4.1. PENDAHULUAN Bab ini menjelaskan analisis data-data yang diperolehi daripada borang kaji selidik yang telah diedarkan kepada responden dengan menggunakan perisian Statistical Packages

Διαβάστε περισσότερα

Katakunci : masalah pembelajaran pelajar, Sains, Fotosintesis

Katakunci : masalah pembelajaran pelajar, Sains, Fotosintesis Masalah Pembelajaran Pelajar Sekolah Menengah Dalam Mata Pelajaran Sains Tingkatan 2 Tajuk : Fotosintesis Md Nor B. Bakar & Syed Muammar Billah Bin Syed Mohamad Fakulti Pendidikan, Universiti Teknologi

Διαβάστε περισσότερα

UJIKAJI 1 : PENYEDIAAN SPESIMEN DAN KAJIAN METALOGRAFI KELULI KARBON

UJIKAJI 1 : PENYEDIAAN SPESIMEN DAN KAJIAN METALOGRAFI KELULI KARBON Makmal Sains Bahan UJIKAJI 1 : PENYEDIAAN SPESIMEN DAN KAJIAN METALOGRAFI KELULI KARBON (1) Tujuan (a) (b) Mempelajari teknik penyediaan spesimen Mempelajari metalografi keluli karbon yang telah mengalami

Διαβάστε περισσότερα

BAB III METODOLOGI. memberi gambaran profil pelajar, instrumen yang digunakan, kaedah pungutan data,

BAB III METODOLOGI. memberi gambaran profil pelajar, instrumen yang digunakan, kaedah pungutan data, BAB III METODOLOGI 3.0 Pengenalan Bahagian ini akan menerangkan secara mendalam tentang reka bentuk kajian, memberi gambaran profil pelajar, instrumen yang digunakan, kaedah pungutan data, teknik statistik

Διαβάστε περισσότερα

Pelajaran 1 BENDALIR : PENGENALAN OBJEKTIF PELAJARAN. 1 Mentakrif tabiat bendalir.

Pelajaran 1 BENDALIR : PENGENALAN OBJEKTIF PELAJARAN. 1 Mentakrif tabiat bendalir. Bendalir: Pengenalan 1 Pelajaran 1 BENDALIR : PENGENALAN OBJEKTIF PELAJARAN Setelah selesai mengikuti pelajaran ini anda seharusna dapat: 1 Mentakrif tabiat bendalir. 2 Mengenalpasti bila konsep mekanik

Διαβάστε περισσότερα

BAB 9 PENENTUAN KEDUDUKAN

BAB 9 PENENTUAN KEDUDUKAN Pengenalan BAB 9 PENENTUAN KEDUDUKAN Penentuan Kedudukan Tujuan Penentuan Kedudukan Titik persilangan antara 2 garis Mendapatkan kedudukan bot atau titik di mana kedalaman akan diambil Stn 3 Stn 1 Stn

Διαβάστε περισσότερα

Amalan Pengajaran Guru Pelatih UTM Dalam Pendidikan Sains Aziz Nordin & Md.Norakmal Bin Abdul Latip Fakulti Pendidikan Universiti Teknologi Malaysia

Amalan Pengajaran Guru Pelatih UTM Dalam Pendidikan Sains Aziz Nordin & Md.Norakmal Bin Abdul Latip Fakulti Pendidikan Universiti Teknologi Malaysia Amalan Pengajaran Guru Pelatih UTM Dalam Pendidikan Sains Aziz Nordin & Md.Norakmal Bin Abdul Latip Fakulti Pendidikan Universiti Teknologi Malaysia Abstrak : Kajian ini dijalankan untuk meninjau maklumat

Διαβάστε περισσότερα

Katakunci :kuliah subuh tafsir al-azhar, Masjid Al-Falah

Katakunci :kuliah subuh tafsir al-azhar, Masjid Al-Falah Faktor Yang Mendorong Jemaah Mengikuti Kuliah Subuh Tafsir Al-Azhar: Kajian Di Masjid Al-Falah, Taiping, Perak. Abdul Hafiz Hj.Abdullah & Siti Fairuz Ismail Fakulti Pendidikan, Universiti Teknologi Malaysia

Διαβάστε περισσότερα

Persepsi Pelajar Tentang Kejadian Jenayah Terhadap Wanita

Persepsi Pelajar Tentang Kejadian Jenayah Terhadap Wanita Persepsi Pelajar Tentang Kejadian Jenayah Terhadap Wanita Aminuddin Ruskam Al-Dawamy & Firdaus Binti Ismail Fakulti Pendidikan Universiti Teknologi Malaysia Abstrak: Kajian ini dilakukan bagi mengetahui

Διαβάστε περισσότερα

Persamaan Diferensial Parsial

Persamaan Diferensial Parsial Persamaan Diferensial Parsial Turunan Parsial f (, ) Jika berubah ubah sedangkan tetap, adalah fungsi dari dan turunanna terhadap adalah f (, ) f (, ) f (, ) lim 0 disebut turunan parsialpertama dari f

Διαβάστε περισσότερα

Katakunci : staf bank, bukan Islam, Pajak Gadai Islam (Ar-Rahnu)

Katakunci : staf bank, bukan Islam, Pajak Gadai Islam (Ar-Rahnu) Persepsi Staf Bank Terhadap Penglibatan Orang Bukan Islam Dalam Sistem Pajak Gadai Islam (Ar-Rahnu) Hussin Bin Salamon & Niswah Bini Abdul Aziz Fakulti Pendidikan Universiti Teknologi Malaysia Abstrak

Διαβάστε περισσότερα

EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi

EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi - Pengenalan - Skop Kajian Makroekonomi - Contoh Analisis Makroekonomi - Objektif Kajian Makroekonomi - Pembolehubah Makroekonomi - Dasar

Διαβάστε περισσότερα

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,

Διαβάστε περισσότερα

ACCEPTANCE SAMPLING BAB 5

ACCEPTANCE SAMPLING BAB 5 ACCEPTANCE SAMPLING BAB 5 PENGENALAN Merupakan salah satu daripada SQC (statistical quality control) dimana sampel diambil secara rawak daripada lot dan keputusan samada untuk menerima atau menolak lot

Διαβάστε περισσότερα

Katakunci : penasihatan akademi, tahap pencapaian akademik

Katakunci : penasihatan akademi, tahap pencapaian akademik Pengaruh Sistem Penasihatan Akademik Terhadap Tahap Pencapaian Akademik Pelajar Absullah Sulong & Wan Zainura Wan Yusof Fakulti Pendidikan, Universiti Teknologi Malaysia Abstrak : Kajian ini bertujuan

Διαβάστε περισσότερα

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM Memahami konsep-konsep asas litar elektrik, arus, voltan, rintangan, kuasa dan tenaga elektrik. Unit OBJEKTIF KHUSUS Di akhir unit ini anda dapat : Mentakrifkan

Διαβάστε περισσότερα

ANALISIS PERBANDINGAN DI ANTARA KAEDAH BACAAN AL-QURAN TEKNIK IQRA DAN AL-BAGHDADI

ANALISIS PERBANDINGAN DI ANTARA KAEDAH BACAAN AL-QURAN TEKNIK IQRA DAN AL-BAGHDADI ANALISIS PERBANDINGAN DI ANTARA KAEDAH BACAAN AL-QURAN TEKNIK IQRA DAN AL-BAGHDADI 4.1 Pengenalan Kajian ini secara khususnya ingin mengenalpasti kemampuan kanak-kanak membaca al- Quran dengan baik menerusi

Διαβάστε περισσότερα

Katakunci : metode pengajaran dan pembelajaran (P&P), kelas pengajian al-quran, saudara baru, kelolaan JAJ

Katakunci : metode pengajaran dan pembelajaran (P&P), kelas pengajian al-quran, saudara baru, kelolaan JAJ Metode Pengajaran Dan Pembelajaran (P&P) Kelas Pengajian Al-Qur an Di Kalangan Saudara Baru Di Bawah Kelolaan JAJ Abdul Hafiz Bin Haji Abdullah & Nor Hidayah Binti Hamsur Fakulti Pendidikan Universiti

Διαβάστε περισσότερα

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan TKS 6112 Keandalan Struktur TEORI PELUANG* * www.zacoeb.lecture.ub.ac.id Pendahuluan Sebuah bangunan dirancang melalui serangkaian perhitungan yang cermat terhadap beban-beban rencana dan bangunan tersebut

Διαβάστε περισσότερα

PATIENT INFORMATION LEAFLET MEDICINE TO TREAT: DIABETES UBAT UNTUK MERAWAT: DIABETES

PATIENT INFORMATION LEAFLET MEDICINE TO TREAT: DIABETES UBAT UNTUK MERAWAT: DIABETES PATIENT INFORMATION LEAFLET MEDICINE TO TREAT: DIABETES UBAT UNTUK MERAWAT: DIABETES 1. Apakah kegunaan ubat-ubat ini? Perencat α-glucosidase Biguanida Perencat DPP-IV Meglitinida Sulfonylurea Perencat

Διαβάστε περισσότερα

BAB 3 PERENCANAAN TANGGA

BAB 3 PERENCANAAN TANGGA BAB 3 PERENCANAAN TANGGA 3.1. Uraian Umum Semakin sedikit tersedianya luas lahan yang digunakan untuk membangun suatu bangunan menjadikan perencana lebih inovatif dalam perencanaan, maka pembangunan tidak

Διαβάστε περισσότερα

7 Unit UKUR TERABAS TIODOLIT UNIT 7 OBJEKTIF AM OBJEKTIF KHUSUS

7 Unit UKUR TERABAS TIODOLIT UNIT 7 OBJEKTIF AM OBJEKTIF KHUSUS UKUR TERABAS TIODOLIT C1005/UNIT 7/1 UNIT 7 UKUR TERABAS TIODOLIT OBJEKTIF AM Memahami dan mengetahui proses pengukuran terabas tiodolit, pengiraan koordinit dan keluasan serta pemelotannya. 7 Unit OBJEKTIF

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 3: Diskrit Statistika FMIPA Universitas Islam Indonesia Ilustrasi 1 Perilaku bunuh diri kini kian menjadi-jadi. Hesti (nama sebenarnya) adalah sebuah contoh. Dia pernah melakukan percobaan bunuh diri,

Διαβάστε περισσότερα

LOGIKA MATEMATIKA. MODUL 1 Himpunan. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 )

LOGIKA MATEMATIKA. MODUL 1 Himpunan. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 ) LOGIKA MATEMATIKA MODUL 1 Himpunan Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 ) Himpunan I. Definisi dan Notasi Himpunan adalah kumpulan sesuatu yang didefinisikan

Διαβάστε περισσότερα

BAB 4 ANALISIS DATA DAN PERBINCANGAN. Seramai 100 orang responden telah dipilih secara rawak dalam kajian ini.

BAB 4 ANALISIS DATA DAN PERBINCANGAN. Seramai 100 orang responden telah dipilih secara rawak dalam kajian ini. BAB 4 ANALISIS DATA DAN PERBINCANGAN 4.1 Maklumat Demografi Responden Seramai 100 orang responden telah dipilih secara rawak dalam kajian ini. Antaranya terdiri daripada 50 orang lelaki dan 50 orang perempuan

Διαβάστε περισσότερα

Katakunci : kesediaan pelajar, mata pelajaran pengajian keruteraan awam

Katakunci : kesediaan pelajar, mata pelajaran pengajian keruteraan awam Kesediaan Pelajar Mempelajari Mata Pelajaran Pengajian Kejuruteraan Awam Di Sekolah Menengah Teknik Kuantan Abdul Rahim Bin Hamdan & Nurul Aidayanti Binti Mohd Said Fakulti Pendidikan Universiti Teknologi

Διαβάστε περισσότερα

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR 1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada

Διαβάστε περισσότερα

Katakunci : faktor, minat, matematik

Katakunci : faktor, minat, matematik Faktor-Faktor Yang Mempengaruhi Minat Terhadap Matematik Di Kalangan Pelajar Sekolah Menengah Johari Bin Hassan & Norsuriani Binti Ab Aziz Fakulti Pendidikan Universiti Teknologi Malaysia Abstrak : Matematik

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 3: Diskrit Statistika FMIPA Universitas Islam Indonesia Ilustrasi 1 Matriks Peluang Transisi Matriks Stokastik Chapman-Komogorov Equations Peluang Transisi Tak Bersyarat Perilaku bunuh diri kini kian

Διαβάστε περισσότερα

PENILAIAN PETANDA ARAS KUALITI KURSUS KPLI DAN KDPM: KEBERKESANAN KURSUS DAN KEPUASAN PELATIH oleh Toh Wah Seng ABSTRAK

PENILAIAN PETANDA ARAS KUALITI KURSUS KPLI DAN KDPM: KEBERKESANAN KURSUS DAN KEPUASAN PELATIH oleh Toh Wah Seng ABSTRAK PENILAIAN PETANDA ARAS KUALITI KURSUS KPLI DAN KDPM: KEBERKESANAN KURSUS DAN KEPUASAN PELATIH oleh Toh Wah Seng ABSTRAK Kajian ini menilai beberapa petanda aras kualiti yang terkandung dalam dokumen kualiti

Διαβάστε περισσότερα

BAB 4 DAPATAN KAJIAN. 7. Pada bahagian pertama huraian adalah berdasarkan statistik dekriptif yang

BAB 4 DAPATAN KAJIAN. 7. Pada bahagian pertama huraian adalah berdasarkan statistik dekriptif yang BAB 4 DAPATAN KAJIAN 4.0 Pendahuluan Bab ini membincangkan dapatan kajian berdasarkan analisis data yang telah ditetapkan. Data yang diperolehi telah dianalisis dengan menggunakan tiga perisian, iaitu

Διαβάστε περισσότερα

PENGEMBANGAN INSTRUMEN

PENGEMBANGAN INSTRUMEN PENGEMBANGAN INSTRUMEN OLEH : IRFAN (A1CI 08 007) PEND. MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALUOLEO KENDARI 2012 A. Definisi Konseptual Keterampilan sosial merupakan kemampuan

Διαβάστε περισσότερα

BAB 1 PENGENALAN. 1.0 Pendahuluan

BAB 1 PENGENALAN. 1.0 Pendahuluan BAB 1 PENGENALAN 1.0 Pendahuluan Al-Quran adalah kalam Allah SWT yang merupakan mukjizat terbesar yang dianugerahkan oleh ilahi kepada kekasih-nya Nabi Muhammad SAW. Ia juga merupakan mukjizat abadi yang

Διαβάστε περισσότερα