ΕΝΙΣΧΥΤΙΚΗ ΜΑΘΗΣΗ ΡΟΜΠΟΤΙΚΟΥ ΕΛΕΓΧΟΥ ΜΕΣΩ ΠΙΘΑΝΟΤΙΚΟΥ ΣΥΜΠΕΡΑΣΜΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΝΙΣΧΥΤΙΚΗ ΜΑΘΗΣΗ ΡΟΜΠΟΤΙΚΟΥ ΕΛΕΓΧΟΥ ΜΕΣΩ ΠΙΘΑΝΟΤΙΚΟΥ ΣΥΜΠΕΡΑΣΜΟΥ"

Transcript

1 ΕΝΙΣΧΥΤΙΚΗ ΜΑΘΗΣΗ ΡΟΜΠΟΤΙΚΟΥ ΕΛΕΓΧΟΥ ΜΕΣΩ ΠΙΘΑΝΟΤΙΚΟΥ ΣΥΜΠΕΡΑΣΜΟΥ Νίκος Βλάσσης Γεώργιος Κόντες Σάββας Πιπερίδης Εργαστήριο Ευφυών Συστημάτων και Ρομποτικής Τμήμα Μηχανικών Παραγωγής και Διοίκησης Πολυτεχνείο Κρήτης, Χανιά ΠΕΡΙΛΗΨΗ Παρουσιάζουμε μία νέα προσέγγιση στο πρόβλημα της αυτόματης μάθησης ρομποτικού ελέγχου με Ενισχυτική Μάθηση (Reinforcement Learning, RL). Πρόσφατες εργασίες στη βιβλιογραφία έχουν δείξει ότι ένα πρόβλημα Βέλτιστου Ελέγχου Διακριτού Χρόνου (Discrete Time Optimal Control) μπορεί να αναχθεί σε ένα πρόβλημα Πιθανοτικού Συμπερασμού (Probabilistic Inference) και να λυθεί με αντίστοιχες τεχνικές. Στην παρούσα εργασία δείχνουμε ότι μια τέτοια αναγωγή είναι επίσης δυνατή στην περίπτωση που το δυναμικό μοντέλου του συστήματος είναι άγνωστο, οπότε η μάθηση του ρομποτικού ελέγχου θα πρέπει να γίνει με μεθοδολογίες δοκιμήςκαι-σφάλματος (trial-and-error). Η ανάλυση που προτείνουμε οδηγεί σε ένα Monte-Carlo αλγόριθμο Προσδοκίας-Μεγιστοποίησης (Expectation-Maximization, EM) σε ένα μοντέλο μικτής κατανομής πιθανότητας (probabilistic mixture model). Παραθέτουμε αποτελέσματα από την ε- φαρμογή του προτεινόμενου αλγορίθμου σε ένα πρόβλημα ισορροπίας κινούμενου ρομπότ. Λέξεις κλειδιά: Μάθηση ρομποτικού ελέγχου, Ενισχυτική μάθηση, Πιθανοτικός συμπερασμός, Ισορροπούμενο ρομπότ. 1 ΕΙΣΑΓΩΓΗ Η Ενισχυτική Μάθηση (Reinforcement Learning, RL) αποτελεί αξιοσημείωτο παράδειγμα στην έρευνα για αυτόματη μάθηση ρομποτικού ελέγχου, με πολλά πρόσφατα αποτελέσματα (Tedrake et al., 2005; Abbeel et al., 2007; Kober and Peters, 2009). Οι περισσότερες εφαρμογές RL στη ρομποτική βασίζονται σε αλγορίθμους πολιτικής κλίσης (policy gradients) (Ng and Jordan, 2000; Peters and Schaal, 2006). Ένας αλγόριθμος πολιτικής κλίσης υπολογίζει και ακολουθεί σε κάθε βήμα το στοχαστικό διάνυσμα κλίσης (gradient) της απόδοσης της πολιτικής, μέχρι να συγκλίνει σε κάποιο (τοπικό) μέγιστο. Αλγόριθμοι τέτοιου είδους έχουν αναλυθεί εκτενώς και έχουν αποδειχτεί ιδιαίτερα επιτυχημένοι στην πράξη, ωστόσο πάσχουν επίσης και από αρκετά μειονεκτήματα, όπως είναι η εξάρτησή τους από το ρυθμό μάθησης (learning rate), η αργή τους σύγκλιση, και η ευαισθησία τους σε τοπικά βέλτιστα. Οι Dayan and Hinton (1997) έδειξαν πως ένα RL πρόβλημα μπορεί να αντιμετωπιστεί με τον αλγόριθμο Expectation-Maximization (EM) (Dempster et al., 1977). Η βασική ιδέα είναι η

2 μοντελοποίηση των άμεσων ανταμοιβών (rewards) του RL ως πιθανότητες κάποιων εικονικών γεγονότων, οπότε μπορούμε να χρησιμοποιήσουμε τεχνικές πιθανοτικού συμπερασμού για βελτιστοποίηση, όπως ο αλγόριθμος EM. Πρόσφατα, οι Kober and Peters (2009) ανέπτυξαν έναν αλγόριθμο βασισμένο στον EM, ο οποίος ονομάζεται PoWER, για τη μάθηση παραμετροποιημένων πολιτικών ρομποτικού ελέγχου σε ένα επεισοδιακό RL σενάριο. Ο PoWER κληρονομεί πολλά από τα πλεονεκτήματα του αλγορίθμου EM, όπως η απλότητα υλοποίησης, η μη ανάγκη ύπαρξης και υπολογισμού ρυθμού μάθησης, η ταχύτερη σύγκλιση από αλγορίθμους πολιτικής κλίσης, και η καλύτερη συμπεριφορά σε τοπικά βέλτιστα. Σε πολλά ρομποτικά προβλήματα ο PoWER επέδειξε καλύτερη απόδοση από αρκετούς state-of-the-art αλγορίθμους πολιτικής κλίσης. Στην παρούσα εργασία προτείνουμε μια νέα προσέγγιση στη μοντελοποίηση και επίλυση RL προβλημάτων στη ρομποτική. Η προσέγγισή μας βασίζεται στην εργασία των Toussaint and Storkey (2006) οι οποίοι έδειξαν έναν τρόπο αναγωγής ενός προβλήματος Βέλτιστου Ελέγχου Διακριτού Χρόνου (Discrete Time Optimal Control) σε ένα πρόβλημα συμπερασμού σε ένα πιθανοτικό μοντέλο (Probabilistic Inference). Οι Toussaint and Storkey (2006) αντιμετώπισαν την περίπτωση στην οποία γνωρίζουμε το δυναμικό μοντέλο του φυσικού συστήματος. Στην παρούσα εργασία προτείνουμε μια προσέγγιση που επιτρέπει να αντιμετωπίσουμε και την περίπτωση που δεν διαθέτουμε (ή είναι δύσκολο να εκτιμήσουμε) το δυναμικό μοντέλο του συστήματος, μια ρεαλιστική υπόθεση για πολύπλοκα ρομποτικά συστήματα. Το παραγόμενο πιθανοτικό μοντέλο είναι μία μικτή κατανομή πιθανότητας (probabilistic mixture model). Η μάθηση του μοντέλου αυτού αντιστοιχεί στην επίλυση του αρχικού RL προβλήματος και μπορεί να γίνει με τη βοήθεια ενός Monte-Carlo EM αλγορίθμου (Wei and Tanner, 1990). Μάλιστα μια εκδοχή του Monte- Carlo EM ανάγεται ακριβώς στον αλγόριθμο PoWER των Kober and Peters (2009). 2 ΕΝΙΣΧΥΤΙΚΗ ΜΑΘΗΣΗ ΩΣ ΠΙΘΑΝΟΤΙΚΟΣ ΣΥΜΠΕ- ΡΑΣΜΟΣ Μοντελοποιούμε τo ρομποτικό πρόβλημα ως μια διακριτού χρόνου και πεπερασμένου ορίζοντα Μαρκοβιανή Διαδικασία Απόφασης (Markov Decision Process, MDP) με συνεχείς καταστάσεις x R n και ενέργειες u R. Το ρομπότ εκκινεί από μια κατάσταση x 0 (ή μια κατανομή γύρω από αυτήν την κατάσταση) και ακολουθεί στοχαστική πολιτική π θ (u t x t ) παραμετροποιημένη με παραμέτρους θ. Θεωρούμε ότι σε κάθε χρονικό βήμα t το ρομπότ συλλέγει άμεση ανταμοιβή r t, η οποία είναι μια συνάρτηση της κατάστασης x t και της ενέργειας u t. Υποθέτουμε πως δεν έχουμε πρόσβαση στο μοντέλο μετάβασης του MDP, αλλά μπορούμε να λάβουμε δείγματα από τροχιές ξεκινώντας από την κατάσταση x 0 και ακολουθώντας κάποια πολιτική. Xρησιμοποιώντας μόνο δειγματική εμπειρία από το MDP, θέλουμε να εκτιμήσουμε εκείνο το θ που μεγιστοποιεί την αναμενόμενη ανταμοιβή (expected cumulative reward, value of policy) [ H ] J(θ) = E r t ; θ, (1) t=0

3 όπου H είναι ο ορίζοντας, και ο τελεστής προσδοκίας E[ ] αφορά όλες τις πιθανές τροχιές που μπορούν να προκύψουν ξεκινώντας από την κατάσταση x 0 και ακολουθώντας πολιτική π θ. Στην παρούσα εργασία ενδιαφερόμαστε για αλγορίθμους RL που δεν χρησιμοποιούν ούτε προσπαθούν να εκτιμήσουν το δυναμικό μοντέλο του συστήματος, ούτε βασίζονται σε κάποια συνάρτηση αξίας (στη βιβλιογραφία τέτοιου τύπου αλγόριθμοι αναφέρονται ως model-free RL). Όταν ένα μοντέλο του MDP είναι διαθέσιμο, και οι ανταμοιβές r t είναι μη αρνητικές ποσότητες (π.χ. μετά από κανονικοποίηση ισχύει r t [0, 1]), οι Toussaint and Storkey (2006) έδειξαν ότι είναι εφικτό να αναγάγουμε τη βελτιστοποίηση της J(θ) σε ένα πρόβλημα πιθανοτικού συμπερασμού πάνω σε ένα μείγμα από MDPs πεπερασμένου ή άπειρου ορίζοντα. Σε αυτή την προσέγγιση ο ορίζοντας του MDP λαμβάνεται ως διακριτή τυχαία μεταβλητή T, η οποία στην περίπτωση πεπερασμένου ορίζοντα θεωρούμε ότι έχει ομοιόμορφη εκ των προτέρων κατανομή p(t ) = 1/(H + 1), για T = 0, 1,..., H. Η κεντρική ιδέα, η οποία ανάγεται στους Dayan and Hinton (1997), είναι η αντιμετώπιση των άμεσων ανταμοιβών ως πιθανότητες κάποιων εικονικών γεγονότων. Στην παρούσα εργασία θεωρούμε ότι δεν γνωρίζουμε το μοντέλο του MDP αλλά το ρομπότ μπορεί να αλληλεπιδρά με το περιβάλλον του και να συλλέγει δεδομένα. Υιοθετούμε την προσέγγιση των Toussaint and Storkey (2006) όπου η ανταμοιβή r T που συλλέγεται σε κάποιο βήμα T εκλαμβάνεται ως η πιθανότητα το εικονικό γεγονός R να συμβεί στο τελικό βήμα μιας τροχιάς μήκους T. Έστω ξ T μια τέτοια τροχιά και p(ξ T T ; θ) η πιθανοφάνεια (παραμετροποιημένη ως προς θ) να παρατηρήσουμε την ξ T υπό πολιτική π θ. Έστω επίσης p(r ξ T ) η πιθανότητα να συμβεί το γεγονός R στο τελικό βήμα της τροχιάς ξ T, και r ξt p(r ξ T ). Τότε είναι εύκολο να δειχθεί ότι η αναμενόμενη ανταμοιβή J(θ) είναι ανάλογη της συνάρτησης πιθανοφάνειας κάποιας μικτής κατανομής: J(θ) H T =0 p(t ) p(ξ T T ; θ) p(r ξ T ) dξ T = E p(ξt,t ;θ) p(r ξ T ). ξ T (2) Το μοντέλο αυτό επιτρέπει την αναγωγή ενός RL προβλήματος σε ένα πρόβλημα πιθανοτικού συμπερασμού: υποθέτουμε ότι το εικονικό γεγονός R παρατηρήθηκε, και θέλουμε να συμπεράνουμε τις παραμέτρους θ του μοντέλου ώστε να μεγιστοποιήσουμε την πιθανοφάνεια αυτής της παρατήρησης. Η συνάρτηση J(θ) στην (2) είναι ένα μείγμα πιθανοφανειών, οπότε μπορούμε να χρησιμοποιήσουμε τον αλγόριθμο ΕΜ για βελτιστοποίηση, όπως εξηγούμε παρακάτω. 3 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΔΟΚΙΑΣ-ΜΕΓΙΣΤΟΠΟΙΗΣΗΣ Θέλουμε να μεγιστοποιήσουμε ως προς θ τη συνάρτηση J(θ) από την (2). Ισοδύναμα μπορούμε να μεγιστοποιήσουμε το λογάριθμο της συνάρτησης πιθανοφάνειας L(θ) = log J(θ). Ο αλγόριθμος προσδοκίας-μεγιστοποίησης (ΕΜ) μεγιστοποιεί επαναληπτικά μια συνάρτηση ενέργειας F (θ, q) = L(θ) D KL [ q(ξt, T ) p(ξ T, T R; θ) ] η οποία αποτελεί κάτω φράγμα της L(θ) (Neal and Hinton, 1998). Η ενέργεια F είναι μία συνάρτηση των αγνώστων παραμέτρων θ και μιας αυθαίρετης κατανομής q q(ξ T, T ) πάνω στις λανθάνουσες μεταβλητές ξ T, T.

4 Ο αλγόριθμος ΕΜ εναλλάσσεται μεταξύ δύο βημάτων. Στο βήμα Ε κρατάμε σταθερές τις παραμέτρους θ και μεγιστοποιούμε την F ως προς την κατανομή q. Στο βήμα M κρατάμε σταθερή την κατανομή q και μεγιστοποιούμε την F ως προς τις παραμέτρους θ. Αυτή η επαναληπτική διαδικασία συγκλίνει σε ένα τοπικό μέγιστο της F (το οποίο συχνά είναι και τοπικό μέγιστο της L). Στην περίπτωσή μας, στο βήμα Ε η βέλτιστη κατανομή q που μεγιστοποιεί την F είναι η εκ των υστέρων κατανομή Bayes υπολογισμένη για τις παραμέτρους θ old από το προηγούμενο βήμα M: q (ξ T, T ) = p(ξ T, T R; θ old ) p(t ) p(ξ T T ; θ old ) p(r ξ T ) = p(t ) p(ξ T T ; θ old ) r ξt. (3) Για q = q η ενέργεια δίνεται από τη σχέση F (θ, q ) = E T p(t ) E ξt p(ξ T T ;θ old )[ rξt log p(ξ T T ; θ) ]. (4) Καθώς δεν διαθέτουμε δυναμικό μοντέλο του MDP δεν μπορούμε να μεγιστοποιήσουμε την F ακριβώς. Μπορούμε όμως να την προσεγγίσουμε με δειγματοληψία τροχιών από το MDP. Συγκεκριμένα, εκτελούμε την πολιτική π θold για H βήματα, ξεκινώντας από το x 0 και για τις παραμέτρους θ old που είχαμε υπολογίσει στο προηγούμενο βήμα Μ, και συλλέγουμε δειγματικές τροχιές ξ μήκους H. Στη συνέχεια χρησιμοποιούμε όλες τις υπο-τροχιές ξ T, T = 0,..., H, κάθε δειγματικής τροχιάς ξ, για τον υπολογισμό μιας εκτιμήτριας της F : H F (θ, q ) r ξt log p(ξ T T ; θ), (5) T =0 όπου ξ δηλώνει δειγματικό μέσο ως προς το πλήθος των τροχιών. Η χρήση των υπο-τροχιών ως δείγματα από την κατανομή q (ξ T, T ) p(t )p(ξ T T ; θ old ) δικαιολογείται από το γεγονός ότι η κατανομή μηκών τροχιών p(t ) είναι ομοιόμορφη, οπότε οι υπο-τροχιές μιας τροχιάς αποτελούν μη ανεξάρτητα αλλά ομοίως κατανεμημένα δείγματα της q. Αλγόριθμοι τέτοιας μορφής, όπου στο βήμα Μ υπολογίζεται ένας δειγματικός μέσος της ενέργειας, συναντώνται στη βιβλιογραφία με το όνομα Monte-Carlo EM (Wei and Tanner, 1990). Στην παρούσα μελέτη παραμετροποιούμε την πολιτική όπως στην εργασία των Kober and Peters (2009), με τη μορφή u t = (θ + ε t )φ(x t ), όπου φ( ) είναι σταθερές συναρτήσεις βάσης και ε t είναι τυχαίος θόρυβος με κανονική κατανομή ε t N (ε t ; 0, σ 2 ). Στην περίπτωση αυτή η μεγιστοποίηση της F επιδέχεται αναλυτική λύση: ξ θ = θ old + H t=0 Q ξtε ξt ξ H t=0 Q ξt ξ, όπου Q ξt = H r ξt. (6) T =t Η συγκεκριμένη εκδοχή του αλγορίθμου Monte-Carlo EM που παρουσιάσαμε ανάγεται ακριβώς στον αλγόριθμο PoWER των Kober and Peters (2009) ο οποίος έχει προκύψει με διαφορετική μαθηματική προσέγγιση.

5 Σχήμα 1: Αριστερά: Το ισορροπούμενο ρομπότ Robba. Δεξιά: Τα αποτελέσματα της μάθησης. 4 ΠΕΙΡΑΜΑΤΑ Παραθέτουμε αποτελέσματα του αλγορίθμου σε ένα πρόβλημα ισορροπίας δίτροχου ρομπότ. Έχουμε φτιάξει το δικό μας δίτροχο ισορροπούμενο ρομπότ, το οποίο λέγεται Robba και φαίνεται στο Σχήμα 1. Το Robba χρησιμοποιεί διαφορική οδήγηση και έχει σχεδιαστεί με σκοπό να αποτελέσει ένα μικρού μεγέθους, χαμηλού κόστους ισορροπούμενο ρομπότ. Το όχημα περιλαμβάνει ένα πλαίσιο αλουμινίου με τα ακόλουθα εξαρτήματα: Δύο 12 Vdc, 152 RpM κινητήρες, έναν oopic μικροελεγκτή, έναν dual PWM οδηγό κινητήρα, δύο οδόμετρα 64 παλμών ανά περιστροφή, ένα γυροσκόπιο ενός άξονα (CRS-10 από την Silicon Sensing), και δύο μπαταρίες (μια 12V 2700mAh επαναφορτιζόμενη για τους κινητήρες και μια 6V 2700mAh επαναφορτιζόμενη για όλα τα ηλεκτρονικά συστήματα του ρομπότ). Ένα από τα κύρια θέματα που καθόρισαν τη σχεδίαση του ρομπότ ήταν οι μικρές διαστάσεις και η ανθεκτική κατασκευή, ώστε να ανταπεξέλθει τις καταπονήσεις κατά την περίοδο μάθησης. Το Robba έχει δύο τροχούς διαμέτρου 12εκ., έχει μήκος 12εκ., πλάτος 24εκ., ύψος 21εκ., και ζυγίζει 2 κιλά. Στο πείραμά μας ξεκινάμε το ρομπότ από γωνία 0 (κάθετη θέση) και στιγμιαία δίνουμε μεγάλη ροπή και στους δύο κινητήρες. Αυτό έχει σαν αποτέλεσμα την κλίση του ρομπότ προς τα πίσω. Στόχος μας είναι να επιστρέψει το ρομπότ στην αρχική του θέση όσο πιο γρήγορα γίνεται και να ισορροπήσει. Σε κάθε βήμα τιμωρούμε κάθε γωνία διαφορετική από τις 0 μοίρες και κάθε περιστροφή των τροχών χρησιμοποιώντας εκθετικές ανταμοιβές (και κανονικοποιώντας τις ανταμοιβές στο διάστημα [0, 1]). Ο χώρος καταστάσεων είναι διδιάστατος και περιλαμβάνει τη γωνία του ρομπότ x 1 και τη γωνιακή του ταχύτητα x 2. Ο έλεγχος του ρομπότ επιτυγχάνεται με απευθείας ανάθεση της (κοινής) ροπής u των κινητήρων με πολιτική ελέγχου u = θ 1 x 1 +θ 2 x 2. Σε κάθε επεισόδιο χρησιμοποιούμε μόνο δύο δειγματικές τροχιές, που είναι αποδεκτό μέγεθος για το δείγμα μας αν οι παράμετροι θορύβου ε t είναι συμμετρικές μεταξύ τους, έτσι ώστε η μέση τιμή τους να είναι μηδέν (αυτό αποδείχτηκε ένα αποδοτικό τέχνασμα που μας βοήθησε να μειώσουμε την πολυπλοκότητα της δειγματοληψίας στο πραγματικό πείραμα). Η καμπύλη μάθησης του προτεινόμενου αλγορίθμου φαίνεται στο Σχήμα 1. Κάθε πολιτική αξιολογήθηκε δοκιμάζοντάς την 10 φορές στο πραγματικό ρομπότ. Μετά τη μάθηση το ρομπότ ήταν ικανό να επανέρχεται γρήγορα από την αρχική διαταραχή και να σταθεροποιεί τη θέση του σε γωνία 0 μοιρών.

6 5 ΣΥΜΠΕΡΑΣΜΑΤΑ Περιγράψαμε μια νέα προσέγγιση στο πρόβλημα της μάθησης ρομποτικού ελέγχου με ενισχυτική μάθηση (RL). Η προσέγγισή μας βασίζεται στην τεχνική πιθανοτικού συμπερασμού των Toussaint and Storkey (2006) για μάθηση βέλτιστου ελέγχου με γνώση του δυναμικού μοντέλου του συστήματος, την οποία επεκτείναμε για τις περιπτώσεις που το μοντέλο του συστήματος είναι άγνωστο. Δείξαμε ότι ο αλγόριθμος PoWER των Kober and Peters (2009) μπορεί να προκύψει ως μία εκδοχή ενός Monte-Carlo EM αλγορίθμου για συμπερασμό σε ένα πιθανοτικό μοντέλο μικτής κατανομής, και δοκιμάσαμε τον αλγόριθμο σε ένα πραγματικό πρόβλημα ισορροπίας ρομπότ με ενθαρρυντικά αποτελέσματα. Η τρέχουσα έρευνα επικεντρώνεται στην επέκταση του αλγορίθμου και σε άλλα RL προβλήματα. ΑΝΑΦΟΡΕΣ Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. (2007). An application of reinforcement learning to aerobatic helicopter flight. In Proc. Neural Information Processing Systems. Dayan, P. and Hinton, G. E. (1997). Using expectation-maximization for reinforcement learning. Neural Computation, 9(2): Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. B, 39:1 38. Kober, J. and Peters, J. (2009). Policy search for motor primitives in robotics. In Proc. Neural Information Processing Systems. Neal, R. M. and Hinton, G. E. (1998). A view of the EM algorithm that justifies incremental, sparse, and other variants. In Jordan, M. I., editor, Learning in graphical models, pages Kluwer Academic Publishers. Ng, A. Y. and Jordan, M. I. (2000). PEGASUS: A policy search method for large MDPs and POMDPs. In Proc. Uncertainty in Artificial Intelligence. Peters, J. and Schaal, S. (2006). Policy gradient methods for robotics. In Proc. Int. Conf. on Intelligent Robots and Systems. Tedrake, R., Zhang, T. W., and Seung, H. S. (2005). Learning to walk in 20 minutes. In Proc. 14th Yale Workshop on Adaptive and Learning Systems. Toussaint, M. and Storkey, A. (2006). Probabilistic inference for solving discrete and continuous state markov decision processes. In Proc. Int. Conf. on Machine Learning. Wei, G. and Tanner, M. (1990). A Monte Carlo implementation of the EM algorithm and the poor man s data augmentation algorithm. J. Amer. Statist. Assoc., 85:

Μελέτη και Υλοποίηση Ελεγκτών Ρομποτικών Συστημάτων με χρήση Αλγορίθμων Ενισχυτικής Μάθησης

Μελέτη και Υλοποίηση Ελεγκτών Ρομποτικών Συστημάτων με χρήση Αλγορίθμων Ενισχυτικής Μάθησης .. Μελέτη και Υλοποίηση Ελεγκτών Ρομποτικών Συστημάτων με χρήση Αλγορίθμων Ενισχυτικής Μάθησης Πολυτεχνείο Κρήτης 22 Ιουλίου, 2009 Διάρθρωση Εισαγωγή Μαρκοβιανές Διεργασίες Απόφασης (ΜΔΑ) Ενισχυτική Μάθηση

Διαβάστε περισσότερα

Μελέτη και Υλοποίηση Ελεγκτών Ρομποτικών Συστημάτων με χρήση Αλγορίθμων Ενισχυτικής Μάθησης

Μελέτη και Υλοποίηση Ελεγκτών Ρομποτικών Συστημάτων με χρήση Αλγορίθμων Ενισχυτικής Μάθησης Μελέτη και Υλοποίηση Ελεγκτών Ρομποτικών Συστημάτων με χρήση Αλγορίθμων Ενισχυτικής Μάθησης Κόντες Γεώργιος Μελέτη και Υλοποίηση Ελεγκτών Ρομποτικών Συστημάτων με χρήση Αλγορίθμων Ενισχυτικής Μάθησης

Διαβάστε περισσότερα

καθ. Βασίλης Μάγκλαρης

καθ. Βασίλης Μάγκλαρης ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ενισχυτική Μάθηση - Δυναμικός Προγραμματισμός: 1. Markov Decision Processes 2. Bellman s Optimality Criterion 3. Αλγόριθμος

Διαβάστε περισσότερα

Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά.

Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά. Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά Xerox Research Centre Europe LIP6 - Université Pierre et Marie Curie

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Δυναμικός Προγραμματισμός με Μεθόδους Monte Carlo: 1. Μάθηση Χρονικών Διαφορών (Temporal-Difference Learning) 2. Στοχαστικός

Διαβάστε περισσότερα

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack Χλης Νικόλαος-Κοσμάς Περιγραφή παιχνιδιού Βlackjack: Σκοπός του παιχνιδιού είναι ο παίκτης

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Διδάζκων Δημήηριος Καηζαρός Διάλεξη 18η: 17/05/2017 1 Η μέθοδος BrowseRank 2 Εισαγωγή Η page importance, που αναπαριστά την αξία μιας σελίδας του Web, είναι παράγων-κλειδί για την

Διαβάστε περισσότερα

ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας

ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας Ομάδα εργασίας: LAB51315282 Φοιτητής: Μάινας Νίκος ΑΦΜ: 2007030088 ΠΕΡΙΓΡΑΦΗ ΙΔΕΑΣ Η ιδέα της εργασίας βασίζεται στην εύρεση της καλύτερης πολιτικής για ένα

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs

Διαβάστε περισσότερα

2). V (s) = R(s) + γ max T (s, a, s )V (s ) (3)

2). V (s) = R(s) + γ max T (s, a, s )V (s ) (3) ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Παράδοση: 5 Απριλίου 2012 Μιχελιουδάκης Ευάγγελος 2007030014 ΠΛΗ513: Αυτόνομοι Πράκτορες ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Εισαγωγή Η εργασία με

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Διαχωριστικές συναρτήσεις Ταξινόμηση κανονικών

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2 HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ Q-LEARNING ΣΕ GRID WORLD ΚΑΙ ΕΞΥΠΝΟΣ ΧΕΙΡΙΣΜΟΣ ΤΟΥ LEARNING RATE ΛΑΘΙΩΤΑΚΗΣ ΑΡΗΣ ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ 2011-12

ΕΦΑΡΜΟΓΗ Q-LEARNING ΣΕ GRID WORLD ΚΑΙ ΕΞΥΠΝΟΣ ΧΕΙΡΙΣΜΟΣ ΤΟΥ LEARNING RATE ΛΑΘΙΩΤΑΚΗΣ ΑΡΗΣ ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ 2011-12 ΕΦΑΡΜΟΓΗ Q-LEARNING ΣΕ GRID WORLD ΚΑΙ ΕΞΥΠΝΟΣ ΧΕΙΡΙΣΜΟΣ ΤΟΥ LEARNING RATE ΛΑΘΙΩΤΑΚΗΣ ΑΡΗΣ ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ 2011-12 ΣΚΟΠΟΣ ΕΡΓΑΣΙΑΣ Στα πλαίσια του μαθήματος Αυτόνομοι Πράκτορες μας ζητήθηκε να αναπτύξουμε

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7-8 Μπεϋζιανή εκτίμηση - συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Δυαδικές τ.μ. κατανομή Bernoulli : Εκτίμηση ML: Εκτίμηση Bayes για εκ των προτέρων

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Λήψη Α οφάσεων υ ό Αβεβαιότητα Decision Making under Uncertainty Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Εντο

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7 8 Μπεϋζιανή εκτίμηση συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Εκτίμηση ML για την κανονική κατανομή Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ανάπτυξη μιας προσαρμοστικής πολιτικής αντικατάστασης αρχείων, με χρήση

Διαβάστε περισσότερα

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας

Διαβάστε περισσότερα

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ 3.1 Εισαγωγή ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ Στο κεφ. 2 είδαμε πώς θα μπορούσαμε να σχεδιάσουμε έναν βέλτιστο ταξινομητή εάν ξέραμε τις προγενέστερες(prior) πιθανότητες ( ) και τις κλάση-υπό όρους πυκνότητες

Διαβάστε περισσότερα

Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς

Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Ηλίας Κ. Ξυδιάς, Φίλιππος Ν. Αζαριάδης Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου,

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

Βελτιστοποίηση Ελεγκτών MDP µε τη χρήση τροχιών Μέγιστης Πιθανότητας

Βελτιστοποίηση Ελεγκτών MDP µε τη χρήση τροχιών Μέγιστης Πιθανότητας Βελτιστοποίηση Ελεγκτών MDP µε τη χρήση τροχιών Μέγιστης Πιθανότητας Παύλος Ανδρεάδης Βελτιστοποίηση Ελεγκτών MDP µε τη χρήση τροχιών Μέγιστης Πιθανότητας ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΑΤΡΙΒΗ Παύλος Ανδρεάδης Α.Μ: 2008019031,

Διαβάστε περισσότερα

Στατιστική. Εκτιμητική

Στατιστική. Εκτιμητική Στατιστική Εκτιμητική Χατζόπουλος Σταύρος 28/2/2018 και 01 /03/2018 Εισαγωγή Το αντικείμενο της Στατιστικής είναι η εξαγωγή συμπερασμάτων που αφορούν τον πληθυσμό ή το φαινόμενο που μελετάμε, με τη βοήθεια

Διαβάστε περισσότερα

X = = 81 9 = 9

X = = 81 9 = 9 Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη

Διαβάστε περισσότερα

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εστω τ.δ. X={x, x,, x } με κατανομή με σ.π.π. f(x;θ). Η από-κοινού σ.π.π. των δειγμάτων είναι η συνάρτηση L f x, x,, x; f x i ; και

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

Στατιστική και Θεωρητική Πληροφορική σε πολλές Διαστάσεις

Στατιστική και Θεωρητική Πληροφορική σε πολλές Διαστάσεις Στατιστική και Θεωρητική Πληροφορική σε πολλές Διαστάσεις ΜΑΝΩΛΗΣ ΖΑΜΠΕΤΑΚΗΣ ΔΙΔΑΚΤΟΡΙΚΟΣ ΦΟΙΤΗΤΗΣ ΜΙΤ Ημερίδα «Νέες Εξελίξεις στην Πληροφορική», 2018 Ροή Ομιλίας Παράδειγμα Σύνθετου Στατιστικού Προβλήματος.

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Προσομοίωση Βιομηχανικής Παραγωγής & Επιχειρήσεων

Προσομοίωση Βιομηχανικής Παραγωγής & Επιχειρήσεων Προσομοίωση Βιομηχανικής Παραγωγής & Επιχειρήσεων Ζ Εξάμηνο 2Θ+2Ε jdim@staff.teicrete.gr ΠΡΟΣΟΜΟΙΩΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ: ΟΡΙΣΜΟΣ Wikipedia: Simulation is the imitation of the operation of a real-world process

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης ίκτυα Bayes σηµασιολογία Πλεονεκτήµατα συµπαγής αναπαράσταση

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σκ της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα Χ=(Χ, Χ,, Χ ) από πληθυσμό το

Διαβάστε περισσότερα

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη 6 ο Πανελλήνιο Συνέδριο «Διδακτική της Πληροφορικής» Φλώρινα, 20-22 Απριλίου 2012 Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη Σάββας Νικολαΐδης 1 ο

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ. Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο.

ΠΡΟΣΟΜΟΙΩΣΗ. Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο. ΠΡΟΣΟΜΟΙΩΣΗ Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο. δημιουργία μοντέλου προσομοίωσης ( - χρήση μαθηματικών, λογικών και

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη Σημειακή εκτίμηση και εκτίμηση με διάστημα 11 η Διάλεξη Εκτιμήτρια Κάθε στατιστική συνάρτηση που χρησιμοποιείται για την εκτίμηση μιας παραμέτρου ενός πληθυσμού (π.χ. ο δειγματικός μέσος) Σημειακή εκτίμηση

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Μερική Παρατηρησιµότητα Θεωρία Παιγνίων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Reinforcement Learning (RL)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Versio A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η περίπτωση του ταξινομητή Bayes Εκτίμηση μέγιστης εκ των υστέρων πιθανότητας Maimum Aoseriori

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Μέθοδοι Μηχανικής Μάθησης & Βελτιστοποίησης μέσω Εννοιών Στατιστικής Φυσικής 1. Αλγόριθμοι Simulated Annealing 2. Gibbs Sampling

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών

ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών Γιώργος Μαυρωτάς, Αν.Καθηγητής ΕΜΠ mavrotas@chemeng.ntua.gr ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΑΝΑΛΥΣΗ ΡΙΣΚΟΥ Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ανάλυση ευαισθησίας Ανάλυση ρίσκου

Ανάλυση ευαισθησίας Ανάλυση ρίσκου Τεχνολογία, Καινοτομία & Επιχειρηματικότητα, 9 ο εξάμηνο Σχολή Χ-Μ Ανάλυση ευαισθησίας Ανάλυση ρίσκου Γιώργος Μαυρωτάς Αν. καθηγητής ΕΜΠ Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας Τομέας ΙΙ, Σχολή

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Προσομοίωση Monte Carlo Αλυσίδων Markov: Αλγόριθμοι Metropolis & Metropolis-Hastings Προσομοιωμένη Ανόπτηση Simulated Annealing

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων Κατανομή Poisson & Εκθετική Κατανομή Διαδικασία Markov Γεννήσεων Θανάτων (Birth Death Markov Processes) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Τομέας Μαθηματικών, Τηλέφωνο: (210) 772-1702, Φαξ: (210) 772-1775.

Διαβάστε περισσότερα

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III 0 TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III Νοέμβριος Eστω,,, τυχαίο δείγμα από κατανομή f( x; ), όπου συμβολίζει άγνωστη παράμετρο (a) Να ορισθεί η έννοια του επαρκούς στατιστικού

Διαβάστε περισσότερα

Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις και σημειακή εκτίμηση παραμέτρων Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή συμπερασμάτων για το σ

Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις και σημειακή εκτίμηση παραμέτρων Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή συμπερασμάτων για το σ 10ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 10ο Μάθημα

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 15/3/2017 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0 ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό

Διαβάστε περισσότερα

Ανάλυση ευαισθησίας Ανάλυση ρίσκου. Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ

Ανάλυση ευαισθησίας Ανάλυση ρίσκου. Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ Ανάλυση ευαισθησίας Ανάλυση ρίσκου Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Πιθανοτικός Συμπερασμός: Πού βρίσκομαι στο πλέγμα; [ΠΛΗ 513] Αυτόνομοι πράκτορες - Project Εξαμήνου ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Πιθανοτικός Συμπερασμός: Πού βρίσκομαι στο πλέγμα; [ΠΛΗ 513] Αυτόνομοι πράκτορες - Project Εξαμήνου ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Πιθανοτικός Συμπερασμός: Πού βρίσκομαι στο πλέγμα; [ΠΛΗ 513] Αυτόνομοι πράκτορες - Project Εξαμήνου Γεωργαρά Αθηνά (A.M. 2011030065) ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Διαβάστε περισσότερα

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος

Διαβάστε περισσότερα

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων ο Σετ Ασκήσεων - Λύσεις Νοέμβριος - Δεκέμβριος 205 Ερώτημα (α). Η νοσοκόμα ακολουθεί μια Ομογενή Μαρκοβιανή Αλυσίδα Διακριτού Χρόνου με χώρο καταστάσεων το σύνολο

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 11 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 11 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος η διάλεξη Ψηφιακός Έλεγχος Άσκηση 3 Θεωρούμε το σύστημα διακριτού χρόνου της μορφής με A R, B R, C R nxn nx xn ( + ) + Cx( k) x k Ax k Bu k y k Υποθέτουμε ότι το διάνυσμα κατάστασης x(k)

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Εκτιμητική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)

Διαβάστε περισσότερα

Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής

Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής (Least squares collocation) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο

Διαβάστε περισσότερα

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους

Διαβάστε περισσότερα

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγή. Εαρινό Εξάμηνο, 2018

Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγή. Εαρινό Εξάμηνο, 2018 Βιομαθηματικά BIO-156 Εισαγωγή Ντίνα Λύκα Εαρινό Εξάμηνο, 2018 lika@uoc.gr Μαθηματικά Μοντέλα στη Βιολογία Ένα μαθηματικό μοντέλο είναι ένα σύνολο υποθέσεων για κάποιο βιολογικό σύστημα, εκφρασμένες με

Διαβάστε περισσότερα

Πιθανοτικοί Αλγόριθμοι

Πιθανοτικοί Αλγόριθμοι Πιθανοτικοί Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,

Διαβάστε περισσότερα