ΜΕΘΟΔΟΣ ΑΝΑΚΤΗΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΚΥΚΛΩΜΑΤΟΣ ΣΧΕΔΙΑΣΗ ΓΕΝΝΗΤΡΙΑΣ ΠΑΡΑΓΩΓΗΣ ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ ΕΚΦΟΡΤΙΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΘΟΔΟΣ ΑΝΑΚΤΗΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΚΥΚΛΩΜΑΤΟΣ ΣΧΕΔΙΑΣΗ ΓΕΝΝΗΤΡΙΑΣ ΠΑΡΑΓΩΓΗΣ ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ ΕΚΦΟΡΤΙΣΗΣ"

Transcript

1 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 ΜΕΘΟΔΟΣ ΑΝΑΚΤΗΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΚΥΚΛΩΜΑΤΟΣ ΣΧΕΔΙΑΣΗ ΓΕΝΝΗΤΡΙΑΣ ΠΑΡΑΓΩΓΗΣ ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ ΕΚΦΟΡΤΙΣΗΣ ΠΟΥΛΙΑΣΗΣ ΧΡΥΣΑΝΘΟΣ Επιβλέπονες Ιωάννης Αθ Σταθόπουλος, Καθηγητής ΕΜΠ Παύλος Σ Κατσιβέλης, ηλεκτρολόγος μηχανικός 1 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗ ΕΚΦΟΡΤΙΣΗ 11 Περί ηλεκτρομαγνητικής συμβατότητας H ηλεκτρομαγνητική συμβατότητα (Electromagetic Compatibility, EMC) αποτελεί ένα πεδίο μελέτης του πώς εφαρμόζεται η βασική φυσική σε σύνθετα ηλεκτρικά και ηλεκτρονικά κυκλώματα, με σκοπό την εξέταση της δυνατότητας αυτών να συνυπάρχουν αρμονικά Εάν επιτυγχάνεται αυτό, τότε τα συστήματα θεωρείται ότι εκτελούν τις λειτουργίες τους με ικανοποιητικό τρόπο Το φαινόμενο της ηλεκτρομαγνητικής παρεμβολής ενός συστήματος σε ένα τμήμα του ή κάποιο άλλο σύστημα, είναι γνωστό από τότε που άρχισε η ανάπτυξη των ηλεκτρικών συστημάτων πριν περίπου έναν αιώνα Το πρόβλημα έγινε γενικότερου ενδιαφέροντος μετά το δεύτερο παγκόσμιο πόλεμο και όλες οι προοπτικές δείχνουν ότι τα επόμενα χρόνια θα αποτελεί μια μεγάλη περιβαλλοντική ανησυχία, καθώς η χρήση ηλεκτρονικών συσκευών διευρύνεται συνεχώς σε κάθε τομέα της ζωής μας Η ιδέα της ηλεκτρομαγνητικής συμβατότητας αναπτύχθηκε με σκοπό να βρεθούν τρόποι αντιμετώπισης και χειρισμού των σύνθετων συστημάτων και να βοηθηθεί η ανάπτυξή τους

2 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 2 Σύμφωνα με το IEEE [1]: Ηλεκτρομαγνητική συμβατότητα (EMC) είναι η ικανότητα μιας διάταξης μιας συσκευής ή ενός συστήματος να λειτουργεί ικανοποιητικά στο ηλεκτρομαγνητικό της/του περιβάλλον χωρίς να εισάγει μη αντιμετωπίσιμες ηλεκτρομαγνητικές διαταραχές σε οτιδήποτε την/το περιβάλλει Είναι χρήσιμο να δοθούν στο σημείο αυτό οι ορισμοί των όρων που συναντώνται στην ηλεκτρομαγνητική συμβατότητα: Ατρωσία (Immuity level) σε μια διαταραχή είναι η ικανότητα μιας διάταξης συσκευής ή ενός συστήματος να λειτουργεί χωρίς αλλοίωση της ποιότητάς της/του με την παρουσία μίας ηλεκτρικής διαταραχής Ηλεκτρομαγνητική επιδεκτικότητα (Electromagetic susceptibility) είναι η αδυναμία μίας διάταξης ή ενός συστήματος να λειτουργεί χωρίς αλλοίωση της ποιότητάς της/του κάτω από την παρουσία μιας ηλεκτρομαγνητικής διαταραχής Δηλαδή επιδεκτικότητα είναι η έλλειψη ατρωσίας Ηλεκτρομαγνητική Στάθμη Συμβατότητας (Εlectromagetic Compatibility Level) είναι η καθορισμένη μέγιστη στάθμη ηλεκτρομαγνητικής διαταραχής που αναμένεται να εφαρμοστεί σε μία διάταξη, συσκευή ή σύστημα που λειτουργεί σε συγκεκριμένες συνθήκες Στάθμη Ατρωσίας (Immuity level) είναι η μέγιστη στάθμη μίας δεδομένης ηλεκτρομαγνητικής διαταραχής που συμβαίνει σε μία συγκεκριμένη διάταξη, συσκευή ή σύστημα για την οποία αυτό παραμένει ικανό να λειτουργήσει στον απαιτούμενο βαθμό απόδοσης Όριο Ατρωσίας (Immuity Limit) είναι η καθορισμένη στάθμη ατρωσίας Περιθώριο Ατρωσίας (Ιmmuity Margi) είναι η διαφορά μεταξύ του ορίου ατρωσίας μίας διάταξης συσκευής ή συστήματος και της στάθμης ηλεκτρομαγνητικής συμβατότητας Περιθώριο Ηλεκτρομαγνητικής Συμβατότητας (Elctromagetic Compatibility Margi) είναι ο λόγος της στάθμης ατρωσίας μίας διάταξης συσκευής ή συστήματος ως προς μία στάθμη διαταραχής αναφοράς Ηλεκτρομαγνητική διαταραχή (Εlectromagetic Iterferece) είναι κάθε ηλε-

3 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 3 κτρομαγνητικό φαινόμενο που μπορεί να προκαλέσει πτώση της απόδοσης μίας διάταξης, συσκευής ή συστήματος ή να επιδράσει δυσμενώς σε αδρανή ή ζωική ύλη Μια ηλεκτρομαγνητική διαταραχή μπορεί να είναι θόρυβος ηλεκτρομαγνητικής προέλευσης, ένα ανεπιθύμητο σήμα ή μία μεταβολή του ίδιου του μέσου διάδοσης Πολλά ηλεκτρομαγνητικά φαινόμενα μεταβάλλονται με τη συχνότητα, αλλά οι προσεγγίσεις που χρησιμοποιούνται στους υπολογισμούς για σχεδιαστικούς σκοπούς εξαρτώνται από τις φυσικές διαστάσεις του συστήματος σε σχέση με τα μήκη κύματος των βασικών πεδίων που υπάρχουν Αυτό σημαίνει ότι, όταν αντιμετωπίσει κανείς ένα πρόβλημα ηλεκτρομαγνητικής συμβατότητας, υπάρχει πιθανόν μία περιοχή συχνοτήτων για την οποία τα προβλήματα θα είναι πιο σοβαρά και σε αυτή την περίπτωση, θα υπάρχει επίσης μία αντίστοιχη κλίμακα αποστάσεων μέσα στην οποία θα γίνονται διαφορετικές προσεγγίσεις για την εκτέλεση των υπολογισμών Συνεπώς, η συχνότητα και το μέγεθος παίζουν σημαντικούς ρόλους 12 Η ηλεκτροστατική φόρτιση (Electrostatic Charge) Η ηλεκτροστατική φόρτιση δημιουργείται με δύο μηχανισμούς Ο πρώτος συμβαίνει όταν κατά την κίνηση ενός υλικού σε σχέση με κάποιο άλλο, με το οποίο βρίσκεται σε επαφή (πχ ένα αέριο που κινείται ως προς ένα στερεό ή ένα στερεό σε επαφή με ένα άλλο στερεό), συμβαίνει ανταλλαγή ηλεκτρονίων με αποτέλεσμα τη φόρτιση των δύο υλικών με αντίθετα φορτία [1], [2] Ο δεύτερος μηχανισμός είναι η φόρτιση εξ επαγωγής 121 Τριβοηλεκτρικό φαινόμενο Γενικά, όταν δύο υλικά έρθουν σε επαφή και στη συνέχεια αποχωριστούν, θα υπάρξει μία ροή ηλεκτρονίων από το ένα υλικό στο άλλο Το υλικό που δίνει ηλεκτρόνια φορτίζεται θετικά, ενώ το υλικό που δέχεται ηλεκτρόνια φορτίζεται αρνητικά Ο όρος τριβοηλεκτρισμός αναφέρεται στη φόρτιση που εμφανίζεται σαν αποτέλεσμα επαφής και τριβής των υλικών Τέτοιες φορτίσεις μπορούν να οδηγήσουν στη δημιουργία μεγάλων δυναμι-

4 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 4 κών στην περιοχή των 10-25kV, με αποθηκευόμενες ενέργειες μερικών mj Η εκφόρτιση αυτής της ενέργειας παράγει ρεύμα, η κυματομορφή του οποίου παρουσιάζει απότομες διακυμάνσεις και μπορεί να προκαλέσει ηλεκτροπληξία στους ανθρώπους και να βλάψει ηλεκτρικές συσκευές Στο Σχήμα 11 φαίνεται η διαδικασία φόρτισης ενός ανθρώπου κατά την κίνησή του πάνω σε συνθετικό τάπητα Σχήμα 11: Διαδικασία φόρτισης ενός ανθρώπου εξαιτίας της τριβής με το δάπεδο Το αν ένα υλικό θα φορτιστεί θετικά ή αρνητικά εξαρτάται από τη φύση του υλικού Αυτή η ιδιότητα συνοψίζεται στην τριβοηλεκτρική σειρά του Πίνακα 11 που ακολουθεί όπου τα υλικά κατατάσσονται ανάλογα με το τι φόρτιση αποκτούν (θετική ή αρνητική) Πίνακας 11: Τριβοηλεκτρική σειρά ΠΟΛΙΚΟΤΗΤΑ ΦΟΡΤΙΣΗΣ ΛΟΓΩ ΤΡΙΒΟΗΛΕΚΤΡΙΚΟΥ ΦΑΙΝΟΜΕΝΟΥ ΣΕ ΔΙΑΦΟΡΑ ΥΛΙΚΑ ΥΛΙΚΑ ΠΟΥ ΦΟΡΤΙΖΟΝΤΑΙ ΘΕΤΙΚΑ Αέρας Ανθρώπινο δέρμα Γυαλί Ανθρώπινα μαλλιά Νάιλον Μαλλί Γούνα Μόλυβδος Μετάξι Αλουμίνιο Χαρτί Πολυουρεθάνη Βαμβάκι Ξύλο Ατσάλι ΥΛΙΚΑ ΠΟΥ ΦΟΡΤΙΖΟΝΤΑΙ ΑΡΝΗΤΙΚΑ Κερί γυαλίσματος Σκληρό λάστιχο Κόλλα συγκόλλησης Νικέλιο, Χαλκός, Ασήμι Ανοξείδωτο ατσάλι Συνθετικό λάστιχο Ακρυλικό Αφρός πολυουρεθάνης Πολυεστέρας Πολυαιθυλένιο PVC TEFLON Λάστιχο σιλικόνης

5 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 5 Η σχετική θέση του υλικού στην τριβοηλεκτρική σειρά είναι μόνο ένας παράγοντας στη διαδικασία δημιουργίας της φόρτισης Δύο υλικά τα οποία είναι σε πολύ κοντινή απόσταση μπορούν να δημιουργήσουν μία ευρεία στατική φόρτιση Η φόρτιση εξ επαφής είναι ο πιο κοινός τρόπος εμφάνισης στατικού φορτίου Άλλοι τρόποι, όπως μία δέσμη φορτισμένων ιόντων, spray chargig, φωτοηλεκτρική φόρτιση και φόρτιση coroa είναι επίσης δυναμικές πηγές στατικών φορτίσεων Αυτές οι φορτίσεις παραμένουν στάσιμες (στατικές) σε ένα αντικείμενο για πολύ μεγάλο χρονικό διάστημα Η απότομη μεταφορά αυτού του φορτίου από το ένα σώμα στο άλλο όταν πρόκειται για αντίθετα φορτισμένα σώματα και όταν αυτά βρεθούν σε πολύ κοντινή απόσταση λέγεται ηλεκτροστατική εκφόρτιση Παράγοντες που επηρεάζουν τη φόρτιση και την εκφόρτιση των υλικών φαίνονται στον Πίνακα 12 Πίνακας 12: Παράγοντες που επηρεάζουν την ένταση μιας φόρτισης Συντελεστές παραγωγής της φόρτισης Σχετική θέση στην τριβοηλεκτρική σειρά Επιφάνεια επαφής Συντελεστής τριβής μεταξύ των υλικών Βαθμός διαχωρισμού Συντελεστές εκφόρτισης Αγωγιμότητα των υλικών Σχετική υγρασία Υγρασία στις επιφάνειες των υλικών Βαθμός αναδιάταξης στη δομή του υλικού Η ηλεκτροστατική εκφόρτιση εξαρτάται από τις συνθήκες περιβάλλοντος και κυρίως από την υγρασία Όσο μεγαλύτερο είναι το ποσοστό υγρασίας, τόσο πιο συχνές είναι οι ηλεκτροστατικές εκφορτίσεις, αλλά πιο ήπιας μορφής Αντίθετα, όταν υπάρχει αυξημένη ξηρασία, η συχνότητα των εκφορτίσεων είναι μικρότερη, αλλά οι εκφορτίσεις είναι πιο έντονες (μεγάλο ρεύμα εκφόρτισης μεγάλος χρόνος ανόδου) Επιβλαβείς τάσεις μπορεί ακόμα να δημιουργηθούν ακόμα και 55% σχετικής υγρασίας ή και περισσότερο Μερικά σοβαρά προβλήματα που έχουν προκληθεί τα τελευταία χρόνια από ηλεκτροστατική εκφόρτιση είναι: Εκρήξεις σε υπέρ-δεξαμενόπλοια κατά τη διάρκεια καθαρισμού των δεξαμενών τους Ζημιές και καταστροφές μικροκυκλωμάτων κατά τη διάρκεια της διακίνησής τους Εκρήξεις κατά τη διάρκεια τροφοδοσίας με καύσιμα των αεροσκαφών

6 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 6 Βλάβες στα ηλεκτρονικά συστήματα αυτοκινήτων Ενδεικτικές ηλεκτροστατικές τάσεις που αναπτύσσονται κατά τη διάρκεια διαφόρων ανθρωπίνων ενεργειών φαίνονται στον Πίνακα 13 Γενικά, είναι καλύτερο να συγκρίνουμε τους μηχανισμούς φόρτισης από το επίπεδο της τάσης που δημιουργούν Πίνακας 13: Τυπικές ηλεκτροστατικές τάσεις (kv) ΕΝΕΡΓΕΙΑ ΣΧΕΤΙΚΗ ΥΓΡΑΣΙΑ 10% 40% 55% Περπατώντας πάνω σε χαλί ,5 Περπατώντας πάνω σε δάπεδο βινυλίου Κινήσεις ενός εργαζομένου στο γραφείο 6 0,8 0,4 Πολλές προδιαγραφές ηλεκτρομαγνητικής συμβατότητας [3], [4] περιλαμβάνουν δοκιμές σε ηλεκτροστατική εκφόρτιση Το μέγεθος ενός παλμού ηλεκτροστατικής εκφόρτισης είναι στατικό μέγεθος από τη φύση του και έτσι, συνήθως, καθορίζονται τυπικοί παλμοί και ρεύματα για τις δοκιμές Η ηλεκτροστατική φόρτιση είναι ένας πολύ γνωστός κίνδυνος για τις ηλεκτρονικές διατάξεις, η οποία μπορεί να διαταράξει ή και να καταστρέψει ακόμη ηλεκτρονικά εξαρτήματα και συστήματα τα οποία βρίσκονται κοντά σε αυτή Αυτό μπορεί να συμβεί είτε από άμεσες εκφορτίσεις πάνω στον ηλεκτρονικό εξοπλισμό, είτε από τα παροδικά ηλεκτρομαγνητικά πεδία που δημιουργούνται κατά τη διάρκεια ενός τέτοιου γεγονότος 122 Ηλεκτροστατική φόρτιση εξ επαγωγής Μερικές φορές η φόρτιση ενός αντικειμένου μπορεί να μη γίνει με το τριβοηλεκτρικό φαινόμενο [5], αλλά μπορεί να γίνει εξ επαγωγής Συγκεκριμένα, όταν ένα αντικείμενο εκτίθεται σε ένα ηλεκτρικό πεδίο (όπως για παράδειγμα όταν βρίσκεται δίπλα σε ένα φορτισμένο σώμα), τα αντίθετα φορτία μέσα στο υλικό θα τείνουν να χωριστούν, κατευθυνόμενα είτε προς αυτό, είτε από αυτό Οποιοδήποτε πλεονάζον φορτίο και της ίδιας πολικότητας με το γειτνιάζον φορτισμένο σώμα θα διαρρεύσει ανάλογα με την αγωγιμότητα

7 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 7 του υλικού και της αγώγιμης σύνδεσης Έτσι, το αντικείμενο θα αποκτήσει μια περίσσεια φορτίου αντίθετης πολικότητας από αυτή που έχει το γειτνιάζον φορτισμένο σώμα Για να γίνει αυτό πιο κατανοητό ακολουθεί το Σχήμα 12 στο οποίο φαίνεται ένας άνθρωπος (πολύ καλός αγωγός) δίπλα σε μια μεγάλη δεξαμενή, η οποία περιέχει ένα μεγάλο φορτίο αρνητικής πολικότητας Τα αρνητικά με τα θετικά φορτία διαχωρίζονται στο ανθρώπινο σώμα μέσω των υποδημάτων και του δαπέδου Τελικά, το ανθρώπινο σώμα φορτίζεται θετικά αντίθετα από το γειτνιάζον αντικείμενο Επομένως, όταν ο άνθρωπος πλησιάσει με το θετικό φορτίο που έχει αποκτήσει την πόρτα και ακουμπήσει το μεταλλικό πόμολο, θα δημιουργηθεί μια ηλεκτροστατική εκφόρτιση, όπως φαίνεται στο Σχήμα 12β Σχήμα 12: Εποπτική παρουσίαση της φόρτισης εξ επαγωγής 13 Ηλεκτροστατική εκφόρτιση σε ηλεκτροτεχνικό εξοπλισμό και μέτρα προστασίας 131 Οι επιπτώσεις σε ηλεκτροτεχνικό εξοπλισμό Όπως έχει προαναφερθεί, η ηλεκτροστατική εκφόρτιση παρατηρείται όταν η ένταση του ηλεκτρικού πεδίου παρουσιάσει υψηλή τιμή, η οποία μπορεί να προκαλέσει καταπόνηση στη διηλεκτρική αντοχή των ηλεκτρονικών στοιχείων συσκευών με τελικό αποτέλεσμα την καταστροφή τους [2] Κατά τη διάρκεια της εκφόρτισης, τα ακόλουθα φαινόμενα μπορεί να λάβουν χώρα:

8 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 8 Δευτερεύον ηλεκτρικό τόξο εντός του εξοπλισμού, το οποίο μπορεί να προκαλέσει με τη σειρά του την εμφάνιση νέων φαινόμενων Διάχυση υψηλών ηλεκτρικών ρευμάτων εντός των κυκλωμάτων Η ροή ενός υψηλού ρεύματος μπορεί να διαταράξει τις συνθήκες λειτουργίας των κυκλωμάτων, οδηγώντας σε αλλαγές: στο κέρδος (gai) του κυκλώματος, στο εύρος ζώνης (badwidth), αλλοιώσεις στα δημιουργούμενα σήματα και στη λογική των ψηφιακών κυκλωμάτων Τα αποτελέσματα μπορεί να διαφέρουν από προσωρινή παρεμβολή έως καταστροφή των εξαρτημάτων Ηλεκτρική επαγωγή εξαιτίας της χωρητικής σύζευξης σε μέρη του εξοπλισμού, τα οποία αναπτύσσουν υψηλές τάσεις εξ επαγωγής Τα αποτελέσματά τους είναι μια προσωρινή κακή λειτουργία των κυκλωμάτων Μαγνητική επαγωγή εξαιτίας της επαγωγικής σύζευξης από τις διαδρομές που ακολουθεί το εκχυόμενο ηλεκτρικό ρεύμα 132 Μέτρα προστασίας του ηλεκτροτεχνικού εξοπλισμού Η προστασία από ενδεχόμενες ηλεκτροστατικές εκφορτίσεις μπορεί να γίνει τόσο με προληπτικά μέτρα, όσο και με μέσα που θα ελαχιστοποιήσουν τα δυσμενή αποτελέσματά τους όταν οι εκφορτίσεις αυτές εμφανιστούν [2] Τα προληπτικά μέτρα περιλαμβάνουν: Προστασία από την εμφάνιση του τριβοηλεκτρικού φαινόμενου Το φαινόμενο αυτό λαμβάνει χώρα από την τριβή δύο μονωτικών υλικών ή από την τριβή ενός μονωτικού και ενός αγωγού Άρα, για να αποτραπεί η εμφάνιση του ηλεκτροστατικού φορτίου, είναι επιβεβλημένη η θωράκιση μίας ή και των δύο επιφανειών που έρχονται σε επαφή με ένα αγώγιμο στρώμα Αποτροπή της ανάπτυξης της τάσης φόρτισης Αυτό σημαίνει ότι το αναπτυσσόμενο φορτίο στην επιφάνεια του υλικού θα πρέπει να οδηγηθεί στο έδαφος Σε αυτό μπορούν να βοηθήσουν αντιστατικά υλικά [6] με ιδιαίτερα γνωστές τις αντιστατικές πλαστικές σακούλες Εδώ πρέπει να σημειωθεί ότι οι Fowler, Klei και Fromm [7] ανέπτυξαν κάποιες προτάσεις σχετικά με τη σχεδίαση των δαπέδων, προκειμένου να αποφεύγεται εξαιτίας τους η δημιουργία ηλεκτροστατικού φορτίου Τα συμπεράσματά

9 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ τους συνοψίζονται στο ότι τα δάπεδα θα πρέπει να έχουν αντίσταση ως προς γη μικρότερη των 107Ω και πως θα πρέπει να έχουν αρκετά καλές μονωτικές ιδιότητες Η προστασία των συσκευών από τις ηλεκτροστατικές φορτίσεις όταν αυτές έχουν πλέον συμβεί μπορεί να γίνει με τη λήψη των ακόλουθων μέτρων: Πλήρης ή μερική μόνωση του εξοπλισμού, της οποίας σκοπός είναι η αποτροπή δευτερευόντων εκφορτίσεων Θωράκιση ή γείωση των συσκευών, οι οποίες θα εξασφαλίζουν μια εναλλακτική διαδρομή της ροής του ηλεκτρικού ρεύματος Θωράκιση κυκλωμάτων εναντίον των πεδίων εξ επαγωγής Εγκατάσταση των συσκευών προστασίας στον εξοπλισμό Όταν τα ηλεκτρικά κυκλώματα τοποθετούνται σε μονωμένο πλαίσιο (case), τότε μπορεί να αποτραπούν ενδεχόμενες δευτερεύουσες φορτίσεις Για αυτό προκειμένου να είναι αποτελεσματικές πρέπει τα πλαίσια να μην έχουν οπές, αρμούς ή άλλα ανοίγματα μέσω των οποίων οι κύριες εκφορτίσεις μπορεί να λάβουν χώρα, είτε άμεσα στα εσωτερικά κυκλώματα ή έμμεσα σε μια προεξοχή, διακόπτη ή μπουτόν, τα οποία διαπερνούν το πλαίσιο Το μέγιστο δυναμικό το οποίο μπορεί να αναπτύξει ένα ανθρώπινο σώμα είναι 25kV Εάν ένα άτομο πλησιάσει κάποιο μέρος του σώματός του, το οποίο συνηθέστερα είναι το δάκτυλό του, πλησιέστερα από 1cm, μακριά από το κύκλωμα, τότε δεν θα συμβεί η ηλεκτροστατική εκφόρτιση εφόσον η διάσπαση του αέρα γίνεται στα 30kV Ο πιο αποτελεσματικός τρόπος προστασίας κυκλωμάτων από ηλεκτροστατική εκφόρτιση είναι η τοποθέτησή τους σε ένα αγώγιμο πλαίσιο, το οποίο δεν έχει οπές, αρμούς ή άλλα ανοίγματα στα τοιχώματά του 14 Μοντέλα για την ηλεκτροστατική εκφόρτιση 141 Γενικά Προκειμένου να προσομοιωθούν οι ηλεκτροστατικές εκφορτίσεις έχουν προταθεί διάφορα μοντέλα, ώστε μέσω αυτών να μπορέσουν να εκτιμήσουν την επίδραση που μπορεί να έχουν οι εκφορτίσεις στην πραγματικότητα Με αυτά έχουν ασχοληθεί εκτενέστατα

10 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 10 πολλοί ερευνητές [2], [6], [8] Τα τρία επικρατέστερα μοντέλα είναι: το μοντέλο του ανθρωπίνου σώματος (Huma Body Model HBM), το μοντέλο της μηχανής (Machie Model ΜM) και το μοντέλο της φορτισμένης συσκευής (Charged Device Model CDM) Στο Σχήμα 13 φαίνονται απλές κυκλωματικές αναπαραστάσεις των κυκλωμάτων αυτών Σχήμα 13: Παραδείγματα εκφορτίσεων σύμφωνα με τα τρία μοντέλα (ΗΒΜ, ΜΜ, CDM) και η κυκλωματική τους αναπαράσταση με κυκλώματα RLC [6] Και τα τρία μοντέλα μπορούν να περιγραφούν από της δεύτερης τάξης διαφορικές εξισώσεις οι οποίες ισχύουν στα RLC κυκλώματα Θεωρώντας R ESD τη συνολική ωμική αντίσταση σε κάθε κύκλωμα, δηλαδή το άθροισμα της ωμικής αντίστασης σε κάθε κύκλωμα και της ωμικής αντίστασης R L της υπό εξέτασης συσκευής (Device Uder Test- DUT), C ESD τη χωρητικότητα η οποία αρχικά είναι φορτισμένη σε τάση V ESD και L S την αυτεπαγωγή στη διαδρομή εκφόρτισης, η διαφορική εξίσωση 2 ης τάξης που ισχύει είναι: L S 2 d i di 1 RESD i 0 (11) 2 dt dt C ESD της οποίας η αναλυτική λύση είναι: iesd (12) 2 0 t 2 2 ( t) VESDCESD e sih( 0 t), iesd (13) 2 0 t 2 2 ( t) VESDCESD e sih( 0 t), όπου R 2L ESD ο συντελεστής απόσβεσης S

11 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 11 και 1 0 L η συχνότητα ταλάντωσης S C ESD Παραδείγματα για τις τυπικές παραμέτρους και των τριών μοντέλων φαίνονται στον Πίνακα 14 Πίνακας 14: Τυπικές τιμές παραμέτρων για τα μοντέλα ηλεκτροστατικής εκφόρτισης [6] µ CDM HBM V 4000V 200V 500V ESD R / R / R 1,5k 5 10 MM CDM C 100pF 200pF 10pF ESD L 500H 750H 750H S RL 10 I 2,6 2,8 10,4A ESD trise (10% / 0%) 7s 11s 0,3s 8 1 A 1,5 10 s 8 1 0,5 10 s 8 0,1 10 s 8 0,8 10 s s s Αξιολόγηση του Huma Body Model Από πολλές μετρήσεις που έγιναν σε διαφορετικούς ανθρώπους [] είναι ξεκάθαρο ότι δημιουργήθηκαν πολλές διαφορετικές αποδεκτές κυματομορφές Ο χρόνος ανόδου αυτών των κυματομορφών κυμαίνεται μεταξύ 100ps εως 30s Οι άνθρωποι νιώθουν μια εκφόρτιση, μόνον όταν η τάση είναι περίπου 3kV ή μεγαλύτερη Σχήμα 14: Διάταξη μετρήσεων για εκφορτίσεις ανθρωπίνου σώματος

12 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 12 Μια ανάλυση των αποτελεσμάτων από μετρήσεις που έχουν παρθεί από διάταξη όπως αυτή του Σχήματος 14 δίνουν κάποιες τιμές για τη διαστασιολόγηση των μερών του κυκλώματος Η αντίσταση της επιδερμίδας R είναι περίπου 150Ω έως 1000Ω (χωρίς ο άνθρωπος να κρατά κάποιο μεταλλικό αντικείμενο όπως κλειδιά, μαχαίρι, βίδα, κτλ), η ανθρώπινη χωρητικότητα βρίσκεται περίπου από 50pF έως 250pF, ενώ βρέθηκαν τάσεις πάνω από 15kV υπολογισμένες με το καθιερωμένο μέγεθος και τη χωρητικότητα του ανθρώπου Η κυματομορφή της εκφόρτισης βρέθηκε να είναι πολύ διαφορετική από άνθρωπο σε άνθρωπο και επίσης από μέτρηση σε μέτρηση Σχήμα 15: Διάφορες κυματομορφές εκφορτίσεων (s) 15 Το πρότυπο IEC Το Πρότυπο IEC αποτελεί το δεύτερο τμήμα (Sectio 2) του τετάρτου μέρους (Part 4) του Προτύπου IEC 1000:15, το οποίο πραγματεύεται την ηλεκτρομαγνητική συμβατότητα Το διεθνές αυτό Πρότυπο σχετίζεται με την ατρωσία των ηλεκτρικών και ηλεκτρονικών συσκευών σε ηλεκτροστατικές εκφορτίσεις και περιγράφει τη μέθοδο και τις διαδικασίες που πρέπει να ακολουθηθούν για τη διενέργεια της δοκιμής ηλεκτροστατικών εκκενώσεων στα ηλεκτρικά και ηλεκτρονικά προϊόντα με έμφαση στον οικιακό εξοπλισμό και τα όργανα μέτρησης [10] Σε αυτό καθορίζονται: Η τυπική κυματομορφή του ρεύματος Τα διάφορα επίπεδα τάσεων δοκιμής Ο απαιτούμενος για τις δοκιμές εξοπλισμός Η διαδικασία των δοκιμών

13 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 13 Το Πρότυπο βρίσκεται υπό αναθεώρηση τη χρονική περίοδο που συντάσσεται η παρούσα διπλωματική και για αυτό το λόγο οι αναφορές θα γίνονται μόνο στο ήδη δημοσιευμένο Πρότυπο 16 Παράμετροι ρεύματος ηλεκτροστατικής εκφόρτισης Το διεθνές Πρότυπο IEC [3] ορίζει τις τυπικές κυματομορφές του εκφορτιζόμενου ρεύματος, τα επίπεδα δοκιμών, τον εξοπλισμό δοκιμών και τη διαδικασία με την οποία η δοκιμή του Προτύπου αυτού θα πρέπει να γίνεται κάθε φορά Η γεννήτρια ηλεκτροστατικών εκφορτίσεων, που περιγράφεται στο Πρότυπο, βασίζεται στο μοντέλο του ανθρωπίνου σώματος (Huma Body Model) [6] Στο Σχήμα 15 παρουσιάζεται ένα απλοποιημένο διάγραμμα της γεννήτριας ηλεκτροστατικών εκφορτίσεων Σύμφωνα με το Πρότυπο, αποτελείται από μια αντίσταση φόρτισης R C (50-100ΜΩ), έναν πυκνωτή ενταμίευσης ενέργειας C S (150pF ± 10%) και μία αντίσταση εκφόρτισης R d που αντιπροσωπεύει την αντίσταση του δέρματος (330Ω ± 10%) Θα πρέπει να αναφερθεί ότι το μοντέλο αναφοράς της κυματομορφής του ρεύματος ηλεκτροστατικής εκφόρτισης είναι η εκφόρτιση ανθρώπου-μετάλλου Γι αυτό το λόγο, όταν ένας άνθρωπος κρατάει ένα κομμάτι μετάλλου, το δέρμα επηρεάζει σημαντικά το ρεύμα εκφόρτισης Συνεπώς, όταν λάβει χώρα μία εκφόρτιση, το τόξο θα προσπέσει στο μέταλλο και όχι στο δέρμα Προφανώς R d είναι η συνολική αντίσταση της επιδερμίδας και όχι μόνο της περιοχής κοντά στο σημείο της εκφόρτισης Η τιμή της χωρητικότητας C S είναι αντιπροσωπευτική της ηλεκτροστατικής χωρητικότητας του ανθρωπίνου σώματος, ενώ επιλέχθηκε η τιμή των 330Ω για την R d Σχήμα 15: Κυκλωματικό διάγραμμα της γεννήτριας ηλεκτροστατικών εκφορτίσεων που ορίζει το Πρότυπο IEC

14 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 14 Σχήμα 16: Κυματομορφή του ρεύματος ηλεκτροστατικής εκφόρτισης που ορίζει το πρότυπο IEC Το ρεύμα εκφόρτισης, σύμφωνα με την κυματομορφή του Σχήματος 16, μπορεί να χωρισθεί σε δύο μέρη: το πρώτο μέγιστο (peak) του ρεύματος, το οποίο ονομάζεται και «αρχική κορυφή» (iitial peak) και προσομοιώνει την εκφόρτιση του χεριού, και το δεύτερο, που προσομοιώνει την εκφόρτιση του ανθρωπίνου σώματος Κατά την επαλήθευση των γεννητριών σύμφωνα με το υπάρχον Πρότυπο [3] πρέπει να ελέγχονται τα όρια τεσσάρων βασικών παραμέτρων της κυματομορφής του ρεύματος Αυτές είναι: Μέγιστο ρεύμα (I max ): Η μέγιστη τιμή του ρεύματος εκφόρτισης (αρχική κορυφή) Χρόνος ανόδου (t r ): Ο χρόνος που απαιτείται, ώστε το ρεύμα εκφόρτισης να αυξηθεί από την τιμή του 10% της μέγιστης τιμής του στο 0% της μέγιστης τιμής Ο χρόνος ανόδου της αρχικής κορυφής είναι μεταξύ 0,7s και 1s Ρεύμα στα 30s (I 30 ): Η τιμή του ρεύματος 30s μετά τη χρονική στιγμή, που παρουσιάζεται για πρώτη φορά κατά τη φάση ανόδου το 10% της μέγιστης τιμής του ρεύματος εκφόρτισης Ρεύμα στα 60 s (I 60 ): Η τιμή του ρεύματος 60s μετά τη χρονική στιγμή, που παρουσιάζεται για πρώτη φορά κατά τη φάση ανόδου το 10% της μέγιστης τιμής του ρεύματος εκφόρτισης Ο απαιτούμενος εξοπλισμός για την επαλήθευση των ηλεκτροστατικών γεννητριών,

15 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 15 η οποία γίνεται μόνο για εκφορτίσεις επαφής, όπως αυτός ορίζεται από το υπάρχον Πρότυπο είναι: Ανηχωικός θάλαμος Παλμογράφος με εύρος τουλάχιστον 1GHz Ομοαξονικός προσαρμοστής μέτρησης (Pellegrii target) Ομοαξονικό καλώδιο για υψίσυχνα σήματα Εξασθενητής Μεταλλική επιφάνεια διαστάσεων τουλάχιστον 1,5m x1,5m Οι αναμενόμενες τιμές, καθώς και τα περιθώρια απόκλισης των τεσσάρων παραμέτρων για το ρεύμα εκφόρτισης δίνονται στον παρακάτω Πίνακα 15 Πίνακας 15: Τυπικές τιμές παραμέτρων ρεύματος εκφόρτισης μέσω επαφής [3] Επίπεδο Ενδεικνυόμενη τάση (kv) Κορυφή ρεύματος ±10% (A) Χρόνος ανόδου (s) Ρεύμα (±30%) στα 30s (A) Ρεύμα (±30%) στα 60s (A) 1 2 7,5 0,7 έως ,7 έως ,5 0,7 έως ,7 έως Επερχόμενη αναθεώρηση του Προτύπου για τις δοκιμές έναντι ηλεκτροστατικών εκφορτίσεων Στο πλαίσιο της επερχόμενης αναθεώρησης του υπάρχοντος Προτύπου [3] πιθανόν να ελέγχονται πέρα των τεσσάρων παραμέτρων όπως αυτές παρουσιάστηκαν στην παράγραφο 15 και το αν η κυματομορφή του ρεύματος είναι εντός του i(t)±35%, για χρόνο από 2 έως 60s, όπου το i(t) δίνεται από την εξίσωση (14) i(t) i k t 1 t 1 1 t i exp 2 k t 3 t 1 3 exp 1 2 t (14)

16 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 16 όπου: k 1 exp / (15) k 2 exp / (16) και: τ 1 =1,3 (17) τ 2 =2 (18) τ 3 =12 (1) τ 4 =37,8 (110) i 1 =17,5 (111) i 2 = (112) =1,8 (113) Επίσης, βασική διαφορά του αναθεωρημένου Προτύπου με το υπάρχον είναι ότι στην επαλήθευση των γεννητριών η γειωμένη μεταλλική επιφάνεια, στης οποίας το κέντρο βρίσκεται τοποθετημένος ο ομοαξονικός προσαρμοστής μέτρησης δεν θα είναι σε οριζόντια διάταξη, αλλά σε κατακόρυφη και αυτό γιατί με τον τρόπο αυτό εξασφαλίζεται η καλύτερη επαναληψιμότητα των μετρήσεων Η απαιτούμενη κυματομορφή που ενδεχομένως να ορίζει το νέο αναθεωρημένο Πρότυπο για την έξοδο της γεννήτριας ηλεκτροστατικής εκφόρτισης είναι όπως παρουσιάζεται στο Σχήμα 17 Στο επερχόμενο αναθεωρημένο Πρότυπο θα υπάρχει και η απαίτηση τα πειραματικά δεδομένα να κυμαίνονται ανάμεσα στις συναρτήσεις i(t)*135% και i(t)*65%, για χρόνο από 2 έως 60s Στο Σχήμα 17 φαίνονται επίσης και οι συναρτήσεις i(t)*135% και i(t)*65%

17 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 17 Σχήμα 17: Καμπύλη ηλεκτροστατικής εκφόρτισης για τάση φόρτισης +4 kv 18 Το πρόβλημα Στην εργασία αυτή θα παρουσιαστεί η μεθοδολογία βάσει της οποίας γίνεται σχεδιασμός του κυκλώματος, το οποίο θα παράγει κυματομορφή ρεύματος, όπως αυτή περιγράφεται στην εξίσωση (14), για βελτιωμένες τιμές των παραμέτρων που έως τώρα ορίζονται όπως στις εξισώσεις (17) έως (113) Η απαιτούμενη κυματομορφή ρεύματος που ορίζει το Πρότυπο [3] για την έξοδο της γεννήτριας ηλεκτροστατικής εκφόρτισης είναι όπως παρουσιάζεται στο παρακάτω Σχήμα 16 Σύμφωνα με τη θεωρητική εξίσωση (14), η οποία παράγει την αντίστοιχη κυματομορφή, γίνεται και ο έλεγχος της κυματομορφής που λαμβάνεται από τις πειραματικές μετρήσεις Το πρόβλημα που υπάρχει είναι το εξής: Παρόλο που η κυματομορφή του Σχήματος 16 είναι η απαιτούμενη έξοδος, το κύκλωμα της γεννήτριας που περιγράφεται στο υπάρχον Πρότυπο [3], αν προσομοιωθεί στο PSpice, δίνει ως έξοδο την κυματομορφή του Σχήματος 18

18 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 18 Σχήμα 18: Έξοδος Γεννήτριας ηλεκτροστατικών εκφορτίσεων όπως αυτή περιγράφεται από το υπάρχον Πρότυπο [3] για διάφορα δοκίμια Η ανάγκη, συνεπώς, που παρουσιάζεται εδώ είναι η εύρεση και κατασκευή του κυκλώματος, το οποίο παράγει την επιθυμητή έξοδο που είναι η βέλτιστη εξίσωση (εξίσωση (14)) και αντιστοιχεί στο γράφημα του Σχήματος 1 H μέθοδος που υιοθετήθηκε, η οποία από την εξίσωση της εξόδου ανακτά τη συνάρτηση μεταφοράς και ακολούθως οδηγεί στην εύρεση του ζητούμενου κυκλώματος, είναι η μέθοδος Proy, η οποία θα αναλυθεί στο κεφάλαιο 2 2 ΜΕΘΟΔΟΙ ΣΧΕΔΙΑΣΗΣ ΚΥΚΛΩΜΑΤΟΣ ΠΟΥ ΠΑΡΑΓΕΙ ΤΟ ΡΕΥΜΑ ΤΗΣ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ ΕΚΦΟΡΤΙΣΗΣ 21 Μέθοδοι ανάκτησης κρουστικής απόκρισης γραμμικού κυκλώματος 211 Εισαγωγή Η εξίσωση που έχουμε να αντιμετωπίσουμε στην παρούσα διπλωματική εργασία δεν είναι γραμμική Έτσι, για την εύρεση συνάρτησης μεταφοράς κυκλώματος που θα την

19 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 παράγει, δεν μπορεί να χρησιμοποιηθεί κάποια από τις γνωστές μεθόδους, όπως ο αντίστροφος μετασχηματισμός Laplace Προέκυψε, λοιπόν, η ανάγκη εύρεσης μιας μεθόδου προσέγγισης κρουστικής απόκρισης Για αυτό χρησιμοποιήσαμε τη μέθοδο Proy [11-14], την οποία και τροποποιήσαμε για τις ανάγκες της εργασίας αυτής Σε αυτό το κεφάλαιο περιγράφεται η μέθοδος Proy και οι τροποποιήσεις που έγιναν σε αυτήν, ώστε, στη συνέχεια, η εφαρμογή της στη βέλτιστη εξίσωση, της οποίας η γραφική παράσταση είναι αυτή που δίνεται στο Σχήμα 17, να δώσει ικανοποιητικά αποτελέσματα 212 Η μέθοδος Proy Έστω g d (t) κρουστική απόκριση του επιθυμητού δικτύου και g(t) η απόκριση του γραμμικού σταθερού δικτύου, που προσεγγίζει την g d (t) Θα είναι: g (t) A i exp(s i t) (21) i1 Η συνάρτηση g(t) καλείται παρεμβολή τάξεως στο σύνολο των ισαπεχόντων σημείων t k = kt εάν: g d (kt) =g(kt) (22) για k=0,1,,2-1 Για τον προσδιορισμό των A i, s i, τίθεται: z i =exp(s i T) (23) και σχηματίζεται το πολυώνυμο i1 m ( z) ( z z ) b z (24) i m0 m με b o =1 (25) Από τις σχέσεις (23) έως (25) προκύπτει: m0 m1 g[(m k)t]b m b ma iz i A i b m0 i1 i1 m0 m z m1 i 0 (26) για k=0,1,,-1 Η σχέση (26) σε μητρική μορφή γράφεται λαμβάνοντας υπόψη τις σχέσεις (24) και (25):

20 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 20 ) T g(2t T) g(t g(t) b b b 2T) g(2t g(t) T) g(t g(t) g(2t) g(t) T) g(t g(t) g(0) (27) όπου ο πίνακας 2T) g(2t g(t) T) g(t g(t) g(2t) g(t) T) g(t g(t) g(0) είναι ο πίνακας που στο εξής θα αναφέρεται σαν P στην παρούσα εργασία Από τη σχέση (27) προκύπτουν οι συντελεστές b i και από την εύρεση των ριζών του πολυωνύμου ψ(z) οι ρίζες z i Οι συντελεστές A i προκύπτουν από τη μητρική εξίσωση: T) g(t g(t) g(0) A A A z z z z z z (28) Εφ όσον είναι γνωστά τα z i, τα s i προκύπτουν από τη σχέση (2) ως εξής: T ) L(z s i i (326) Και άρα, τώρα η προσέγγιση της κρουστικής απόκρισης δίνεται από την εξίσωση (21) Δίδεται και το διάγραμμα ροής της κλασσικής μεθόδου Proy

21 (21) ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ µµ 2007 ΤΕΧΝΙΚΑ µ ΧΡΟΝΙΚΑ Proy 21 1 µ µ 2 µ x2 µ g d (t) t=0 t=2(-1) 3 (1,1) (,), µ 21- =+1 4 µ equivalet zero 5 (-1) x (-1) µ 27 6 µ µ µ µ µ P µ 7 µ b i 8 µ µ 10 µ µ µ µ µ µ µ i 12 G Σχήμα 21: Διάγραμμα ροής του αλγορίθμου της μεθόδου Proy µ 21: µµ µ µ Proy 213 µ Proy 213 Τροποποιήσεις της μεθόδου Proy Ο βασικός λόγος που οδήγησε στην ανάγκη τροποποίησης της μεθόδου είναι το μικρό ποσό πληροφορίας που λαμβάνουμε υπ όψιν με αποτέλεσμα την αστοχία της μεθόδου Οι μεθοδολογίες δίνονται με τη μορφή των διαγραμμάτων ροής Καίριο διαχωριστικό

22 µ 21: µµ µ µ Proy 213 µ Proy ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ µ µ 22 µµ µ µ σημείο µ των μεθοδολογιών µ που παρουσιάζονται µ µ είναι ο τρόπος µµ επιλογής του πίνακα P που περιέχει δείγματα µ από την εξίσωση µ Στιγμιότυπα, της διαδικασίας επιλογής δίνονται στο Σχήμα 22 P µ µ µ 22 µ 22: P 1, µ Σχήμα 22: Διαδικασία επιλογής υποπινάκων P µ 1 του πίνακα Η, σε κάθε μία από μεθόδους εύρεσης προσέγγισης κρουστικής απόκρισης 2131 Πρώτη τροποποιημένη μέθοδος με βάση τη μέθοδο Proy Στην πράξη αποδείχτηκε ότι η μέθοδος Proy διαθέτει μία σειρά μειονεκτημάτων με πιο χαρακτηριστικό το σημαντικό σφάλμα που εμφανίζεται σε ορισμένα τμήματα του γραφήματος του ρεύματος Γι αυτό το λόγο αναπτύξαμε μια τροποποίηση της παραπάνω μεθόδου, η οποία από ότι θα δούμε παρακάτω απέφερε πολύ καλύτερα αποτελέσματα Η τροποποίηση αυτή στηρίχθηκε στην παρατήρηση ότι τα προβλήματα της μεθόδου οφείλονται κυρίως στη μεγάλη απώλεια πληροφορίας

23 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 23 1 µ µ 2 µ 3 1 k µ µ µ µ µ 21- k=k+1 4 sigular values µ equivalet zero 5 P (k-1) x (N-1) µ 27 6 i P µ µ µ 27 7 µ b i, µ µ miimum right iverse 8 µ µ 10 µ µ µ µ 0 µ µ µ 11 µ i, µ µ µ 7 12 G Σχήμα 23: Διάγραμμα ροής του αλγορίθμου της πρώτης τροποποιημένης μεθόδου 2132 Δεύτερη τροποποιημένη μέθοδος με βάση τη μέθοδο Proy Παρά το γεγονός ότι η τροποποιημένη μέθοδος έδωσε ικανοποιητικά αποτελέσματα, προχωρήσαμε στη μελέτη και εφαρμογή μίας ακόμα τροποποίησης με στόχο να περιορίσουμε ακόμα περισσότερο το σφάλμα και να προσεγγίσουμε όσο γίνεται πιο πολύ το γράφημα που προκύπτει από τον τύπο (14)

24 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 24 1 µ µ 2 µ 3 1 I µµ (j-i) µ 21- i=i+1 j=j-1 4 sigular values µ equivalet zero 5 P (j-i-1, i-1) µ 27 6 (j-i) i- P µ µ µ 27 7 µ b i, µ µ miimum right iverse 8 µ µ 10 µ µ µ µ 0 µ µ µ 11 µ i, µ µ µ 7 12 G Σχήμα 24: Διάγραμμα ροής του αλγορίθμου της δεύτερης τροποποιημένης μεθόδου 22 Εφαρμογές των τριών μεθόδων ανεύρεσης κρουστικής απόκρισης κυκλώματος Στην παρούσα παράγραφο θα δούμε την εφαρμογή των προαναφερθέντων μεθόδων στην ανεύρεση της κρουστικής απόκρισης που προσεγγίζει την εξίσωση του Heidler (σχέση (14)) με παραμέτρους, όπως βρέθηκε από σχετική εργασία που έγινε στο Εργαστήριο

25 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 25 Υψηλών Τάσεων του ΕΜΠ [15]: τ 1 =075 (21) τ 2 =082 (22) τ 3 =343 (23) τ 4 =6870 (24) i 1 =1746 (25) i 2 =781 (26) =3 (27) 221 Εφαρμογή της μεθόδου Proy PRONY METHOD Heidler's Equatio Output of Proy Method 12 Curret (A) time (sec) x 10-7 Σχήμα 25: Η καμπύλη (προσέγγιση κρουστικής απόκρισης) που προκύπτει από την εφαρμογή της μεθόδου Proy σε κοινό διάγραμμα με την καμπύλη που προκύπτει από την εξίσωση του Heidler

26 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ Εφαρμογή της πρώτης τροποποιημένης μεθόδου με βάση τη μέθοδο Proy δ Σχήμα 26: Η καμπύλη (προσέγγιση κρουστικής απόκρισης) που προκύπτει από την εφαρμογή της πρώτης τροποποιημένης μεθόδου σε κοινό διάγραμμα με την καμπύλη που προκύπτει από την εξίσωση του Heidler 223 Εφαρμογή της δεύτερης τροποποιημένης μεθόδου με βάση τη μέθοδο Proy d MODIFIED METHOD Heidler's Equatio Output of 2d Modified Method curret (A) time (sec) x 10-7 Σχήμα 27: Η καμπύλη (προσέγγιση κρουστικής απόκρισης) που προκύπτει από την εφαρμογή της δεύτερης τροποποιημένης μεθόδου σε κοινό διάγραμμα με την καμπύλη που προκύπτει από την εξίσωση του Heidler

27 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ Σύγκριση-Συμπεράσματα Στις δύο τροποποιημένες μεθόδους καταρχάς εμφανίζονται συστήματα, όπου οι άγνωστοι είναι λιγότεροι από τον αριθμό των εξισώσεων, κάτι το οποίο δεν ισχύει στην περίπτωση της μεθόδου Proy Αυτό το γεγονός καθιστά την επίλυση του συστήματος πιο δύσκολη και γι αυτό το λόγο χρησιμοποιήθηκε μια ειδική μέθοδος επίλυσης (miimum orm left iverse) Πιο σημαντικό βέβαια είναι το γεγονός ότι τα αποτελέσματα της πρώτης τροποποιημένης μεθόδου, αλλά και κυρίως της δεύτερης προσεγγίζουν σε πολύ μεγάλο βαθμό την καμπύλη που προκύπτει από το θεωρητικό τύπο Αυτό οφείλεται στο γεγονός της εκμετάλλευσης μεγαλύτερης πληροφορίας Στην τετραγωνική μήτρα, η αλλαγή του τρόπου να διατρέχουμε τον πίνακα δίνει καλύτερη εικόνα της εξόδου στη μέθοδο, αφού από το πρώτο διάνυσμα ήδη φθάνουμε μέχρι την τιμή g((ν-1)τ) στην πρώτη τροποποιημένη μέθοδο και g(2nt-2t) στη δεύτερη Επίσης, αντίθετα με την πρώτη εφαρμογή της μεθόδου Proy, στις δυο τροποποιημένες παίρνουμε όλες τις δυνάμεις κάθε ρίζας, δηλαδή τόσες όσες το πλήθος των σημείων παρεμβολής, και όχι μόνο τόσες δυνάμεις όσοι είναι οι συντελεστές του χαρακτηριστικού πολυωνύμου Υπό αυτήν την έννοια, και με την απαίτηση τα Α i να ικανοποιούν όλες τις εξισώσεις, λαμβάνουμε το διάνυσμα της λύσης των Α i Ένα χαρακτηριστικό σημείο που χρίζει προσοχής είναι η τιμή τόσο του μέσου, όσο και του μέγιστου σχετικού σφάλματος Στη μέθοδο Proy το πρώτο είχε τιμή 2485%, ενώ το δεύτερο 476% Αντίθετα, στις άλλες δύο μεθόδους οι τιμές αυτές μειώθηκαν χαρακτηριστικά Ειδικότερα, η πρώτη τροποποιημένη μέθοδος ανεύρεσης της κρουστικής απόκρισης έδωσε μέσο σφάλμα κάτω από 1% και μέγιστο σφάλμα 43% περίπου Η δεύτερη μέθοδος είχε παρόμοιο σχετικό σφάλμα καθώς και αυτό κυμάνθηκε κάτω από το 1%, ενώ το μέγιστο σχετικό σφάλμα απέκτησε τιμή κοντά στο 14%, δηλαδή λίγο παραπάνω από 4 φορές μικρότερο σε σχέση με το αντίστοιχο της πρώτης τροποποιημένης μεθόδου Παρά το γεγονός του μικρότερου σχετικού σφάλματος της πρώτης τροποποίησης σε

28 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 28 σχέση με τη δεύτερη, η δεύτερη εξακολουθεί να υπερέχει αφού το σφάλμα που παρουσιάζουν και οι δύο μέθοδοι είναι της ίδιας τάξης αλλά οι κρίσιμες παράμετροι, που είναι και αυτές που ενδιαφέρουν κυρίως, έχουν τιμές πιο κοντά στο ιδανικό στην περίπτωση της δεύτερης τροποποίησης Σημειώνεται δε το γεγονός ότι η τιμή του μέγιστου ποσοστιαίου σφάλματος εμφανίζεται στην αρχή του φαινόμενου, εκεί που οι τιμές του ρεύματος είναι απειροελάχιστες και σύμφωνα με το πρότυπο EN [16] αγνοούνται για την αποφυγή λάθους μέτρησης οφειλόμενου σε παρασιτικά ρεύματα Συμπερασματικά, τα αποτελέσματα δικαιώνουν την επιλογή της δεύτερης τροποποιημένης μεθόδου έναντι των άλλων δύο, με μόνο μειονέκτημα την υπολογιστική ισχύ που απαιτείται για την επίλυση του συστήματος, κάτι όμως που στις μέρες μας δεν αποτελεί πρόβλημα, καθώς η ανάπτυξη της τεχνολογίας έχει προσφέρει ηλεκτρονικούς υπολογιστές ικανούς να αντέξουν τέτοιο υπολογιστικό φορτίο Τα λιγότερα ικανοποιητικά αποτελέσματα τα έδωσε η κλασική μέθοδος, ενώ η πρώτη τροποποίηση έδωσε ικανοποιητική προσέγγιση αλλά όχι τόσο καλή όσο αυτή της δεύτερης τροποποιημένης μεθόδου ειδικά σε ό,τι αφορά στο μέγιστο σφάλμα 3 ΣΧΕΔΙΑΣΗ ΚΥΚΛΩΜΑΤΟΣ ΠΟΥ ΠΑΡΑΓΕΙ ΤΟ ΡΕΥΜΑ ΤΩΝ ΗΛΕΚΤΡΟΣΤΑΤΙΚΩΝ ΕΚΦΟΡΤΙΣΕΩΝ 31 Εισαγωγή Στο παρόν κεφάλαιο θα παρουσιάσουμε τη διαδικασία μέσω της οποίας προχωράμε στην κατασκευή του κυκλώματος της γεννήτριας ξεκινώντας από τα εξαγόμενα αποτελέσματα της δεύτερης τροποποιημένης μεθόδου Proy Στα προηγούμενα κεφάλαια είδαμε τον τρόπο με τον οποίο η μέθοδος Proy, ξεκινώντας από τα πειραματικά δεδομένα, εξάγει τη συνάρτηση μεταφοράς του κυκλώματος Το επόμενο βήμα είναι να χρησιμοποιήσουμε αυτή τη συνάρτηση μεταφοράς κατασκευάζοντας το αντίστοιχο κύκλωμα και να συγκρίνουμε τα αποτελέσματα

29 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 2 32 Η συνάρτηση μεταφοράς Στο Κεφάλαιο 2 είδαμε πως η εφαρμογή της δεύτερης τροποποιημένης μεθόδου Proy οδήγησε στην εύρεση της Συνάρτησης Μεταφοράς του κυκλώματος στη μορφή αθροίσματος κλασμάτων της μορφής: G A i i (31) s si Στο κύκλωμα που θα κατασκευάσουμε θα εφαρμόσουμε βηματική είσοδο με πλάτος 1 και χρησιμοποιώντας την ιδιότητα: Y(s) 1 G(s) L{u(t)} Y(s) G(s) (32) s της βηματικής απόκρισης, όπου για Y(s) θα ληφθεί η εξίσωση που εντοπίστηκε με την τροποποιημένη μέθοδο Proy αμέσως προηγούμενα, αφού αυτή δίνει την καλύτερη προσέγγιση, θα διαπιστώσουμε αν πράγματι το κύκλωμά μας είναι το επιθυμητό Οι τιμές των A i, s i που προέκυψαν από τη δεύτερη τροποποιημένη μέθοδο είναι αυτές που εμφανίζονται παρακάτω Στις πρώτες δύο στήλες του πίνακα φαίνονται οι τιμές των A i, s i για = 1 = 243 σημεία και στις επόμενες δύο οι τιμές που αντιστοιχούν στα = 2 =64 σημεία Πίνακας 31: Τα αποτελέσματα της δεύτερης τροποποιημένης μεθόδου ανεύρεσης κρουστικής απόκρισης A i s i A i s i i ( i) i ( i) i ( ) i ( ) 10 Από τον παραπάνω πίνακα προκύπτει ότι το κύκλωμά μας έχει συνάρτηση μεταφοράς την: G(s)=G 1 (s)+g 2 (s) (33) με

30 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ i G1(s) s s s ( i) 10 (34) i s ( i) 10 και G 2 (s) s s s (35) i i s ( i) 10 s ( i) 10 Εμείς όμως, όπως προαναφέρθηκε, εφαρμόζουμε βηματική είσοδο οπότε θα έχουμε: G(s) =G 1 (s) +G 2 (s) (36) με i G (s) 1 s s s ( i) 10 (37) i s ( i) 10 s και G (s) (38) s s s i s ( i) i s ( i) 10 s Στη συνέχεια, κάνοντας χρήση του μαθηματικού πακέτου Mathematica, παραγοντοποιήσαμε την G(s) καταλήγοντας: s s s G(s) s s s (3) s s s s s s s s ( s s ) s s Δηλαδή, η ολική συνάρτηση μεταφοράς αποτελείται από ένα γινόμενο επιμέρους συναρτήσεων G i (s), i=1 6 με:

31 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ s (s) (310) s G s (s) (311) s G 2 s (s) s (312) G 3 G s s (s) (313) s s s s G 5 (s) (314) s s ( s s ) G 6 (s) (315) s s 33 Το κύκλωμα Για την κατασκευή του κυκλώματος χρησιμοποιούμε απλές αναστρέφουσες συνδεσμολογίες με τελεστικούς ενισχυτές που αντιστοιχούν στις εξισώσεις (310) - (312) και κυκλώματα Tow - Thomas, που αντιστοιχούν στις σχέσεις (313) - (315) Σχήμα 31: Το σχηματικό διάγραμμα του κυκλώματος που παράγει το ρεύμα ηλεκτροστατικής εκφόρτισης

32 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 32 Η έξοδος του κυκλώματος φαίνεται στο σχήμα 32 Σχήμα 32: Η έξοδος της θεωρητικής κατασκευής του κυκλώματος που παράγει το ρεύμα της ηλεκτροστατικής εκφόρτισης, όπως αυτό προσομοιώθηκε στο PSpice σε κοινό διάγραμμα με την εξίσωση του Heidler, όπως αυτή ορίζεται στην [15] 35 Προοπτικές υλοποίησης με πραγματικά στοιχεία Το κύκλωμα που σχεδιάσαμε προηγούμενα αποτελείται από δίθυρα που συνδέονται αλυσωτά μεταξύ τους Τα δίθυρα βασίζονται σε συνδεσμολογίες με τελεστικούς ενισχυτές Το φαινόμενο της εργασίας μας όμως είναι πάρα πολύ γρήγορο για να το παρακολουθήσει ένας τελεστικός ενισχυτής, χωρίς να εισάγει αισθητά μεγάλη παραμόρφωση Για να περιορίσουμε τις αποκλίσεις αυτές θα έπρεπε να διαλέξουμε όσο το δυνατόν πιο γρήγορα στοιχεία Τέτοια στοιχεία όμως δεν είναι ακόμα διαθέσιμα Ένα μέτρο της ταχύτητας ενός τελεστικού ενισχυτή είναι το Gai Badwidth Product (GBWP) Το GBWP μιας συσκευής είναι η παράμετρος που υποδηλώνει το μέγιστο πιθανό γινόμενο κέρδους και εύρους ζώνης [15] και αυτό θα χρησιμοποιήσουμε σαν κριτήριο για την επιλογή των τελεστικών ενισχυτών που θα χρησιμοποιήσουμε στο κύκλωμα Τα τελευταία χρόνια, η τεχνολογία ημιαγωγών μας έχει προσφέρει πολύ γρήγορα τρανζίστορ Αυτό το γεγονός οδήγησε στην κατασκευή πολύ γρήγορων συστοιχιών από τρανζίστορ

33 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 33 και κατά συνέπεια σε πολύ γρήγορους τελεστικούς ενισχυτές Μια παρατήρηση της (3) είναι αρκετή για να γίνει κατανοητό ότι χρειαζόμαστε τελεστικούς ενισχυτές της τάξης των εκατοντάδων GHz, για να ισχυριστούμε ότι θα έχουμε συμπεριφορά του κυκλώματος παρόμοια με αυτήν που προκύπτει από τη χρήση ιδανικών τελεστικών ενισχυτών Ταχέα είναι τα βήματα προς την κατασκευή τελεστικών ενισχυτών με πολύ μεγάλο GBWP [17] Αυτό μας δίνει πολύ μεγάλη ελπίδα ότι στο μέλλον θα υπάρξουν οι ΤΕ που θα καλύπτουν τις ανάγκες του προβλήματός μας Ένα άλλο πρόβλημα είναι το μέγιστο ρεύμα εξόδου των ΤΕ, το οποίο είναι της τάξεως το πολύ των 10-1 A, τιμή που απέχει πάρα πολύ από την επιθυμητή τιμή των 15Α που περίπου απαιτούνται από την εφαρμογή μας Αυτό το μειονέκτημα δεν αποτελεί τροχοπέδη στην επιλογή των στοιχείων, αφού το μικρό ρεύμα μπορεί να ενισχυθεί στις επιθυμητές τιμές με τη χρήση ενός τρανζίστορ ισχύος στην έξοδο του κυκλώματος το οποίο θα πολωθεί κατάλληλα ώστε να αποδίδει στην έξοδο το επιθυμητό ρεύμα ΒΙΒΛΙΟΓΡΑΦΙΑ [1] Paul A Chatterto Michael A Houlde, Ηλεκτρομαγνητική Συμβατότητα (EMC) - Η εφαρμογή της ηλεκτρομαγνητικής θεωρίας στον πρακτικό σχεδιασμό, Εκδόσεις Τζιόλα, Θεσσαλονίκη 12 [2] Theodore Dagelmayer, ESD Program Maagemet- A Realistic Approach to Cotiuous Measurable Improvemet i Static Cotrol, Va Noshad Rahold, New York, 10 [3] IEC : Electromagetic Compatibility (EMC), Part4: Testig ad measuremet techiques, Sectio 2: Electrostatic discharge immuity test Basic Emc Publicatio, 2001 [4] ΕΛΟΤ ΕΝ : Ηλεκτρομαγνητική Συμβατότητα (EMC): Μέρος 61: Γένια Πρότυπα Ατρωσία για κατοικήσιμα, εμπορικά και ελαφρής βιομηχανίας περιβάλλοντα,2001 [5] Paul Cartwright, Electrostatic Hazards i the aerosol idustry, διαθέσιμο στη διεύ-

34 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 34 θυνση [6] Kai Esmark, Harald Gosser, Wolfgag Stadler, Advaced Simulatio Methods for ESD Protectio Developmet, Elsevier, 2003 [7] Stephe L Fowler, William G Klei, Alrry Fromm, Procedure for the Desig Aalysis ad Auditig of Static Cotrol Floorig/Footwear Systems διαθέσιμο στη διεύθυνση: [8] Ariada Kapla, Bob McReyolds, Dielectric characteristics of materials-electrostatic Discharge, November 2002, διαθέσιμο στη διεύθυνση: faculty/selvaduray/page/papers/mate210/electrostaticpdf [] Marti Lutz, The determiatio of the immuity to electrostatic discharge ESD with trasiet 1000 geerator, EMC Parter, Semiar 1 [10] Istructio maual for the electrostatic discharge geerator NSG-433, Istrumets Schaffer, Publ 1303E [11] Li Qi, Lewei Qia, David Cartes, ad Stephe Woodruff, Iitial Results i Proy Aalysis for Harmoic Selective Active Filters, Power Egieerig Society Geeral Meetig, IEEE, 6 pp-, 2006 [12] M M Tawfik-M M Morcos, A Fault Locator for Trasmissio Lies Based o Proy Method, Power Egieerig Society Summer Meetig, 1 IEEE, pp vol2, 1 [13] Ritcey, JA, Proy approximatios for probability desity fuctios, Commuicatios, Computers, ad Sigal Processig, Proceedigs, IEEE, pp , 15 [14] Szi-We Che Clarkso, OH, Proy residual aalysis for the idetificatio of cardiacarrhythmias, Acoustics, Speech, ad Sigal Processig, 15 ICASSP-5, pp vol2, 15 [15] Fotis GP, Goos IF ad Stathopulos IA: Determiatio of discharge curret equatio parameters of ESD usig geetic algorithms IEE, Electroics Letters, Vol 42, Issue 14, pp 77-7, July 2006 [16] ΕΛΟΤ ΕΝ : Ηλεκτρομαγνητική Συμβατότητα Μέρος 4: Τεχνικές δοκιμών και μετρήσεων Τμήμα 5: Δοκιμή ατρωσίας από υπερτάσεις-υπερεντάσεις

35 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 35 [17] Voiigescu SP, Beerkes R, Dickso T O, ad Chalvatzis T, Desig Methodology ad Applicatios of SiGe BiCMOS Cascode Opamps with up to 37-GHz Uity Gai Badwidth IEEE Compoud Semicoductor Itegrated Circuits Symposium, Techical Digest, pp , Nov 2005

Ανάπτυξη μεθόδου υπολογισμού παραμέτρων εξισώσεων του ρεύματος ηλεκτροστατικής εκφόρτισης ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ανάπτυξη μεθόδου υπολογισμού παραμέτρων εξισώσεων του ρεύματος ηλεκτροστατικής εκφόρτισης ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Ανάπτυξη μεθόδου υπολογισμού παραμέτρων εξισώσεων του ρεύματος ηλεκτροστατικής

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τελεστικοί Ενισχυτές Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Ο ιδανικός τελεστικός ενισχυτής Είσοδος αντιστροφής Ισοδύναμα Είσοδος μη αντιστροφής A( ) A d 2 1 2 1

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΚΑΤΑΜΕΡΙΣΤΩΝ ΚΑΙ ΔΟΚΙΜΙΩΝ ΓΙΑ ΤΟ ΝΕΟ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΚΑΤΑΜΕΡΙΣΤΩΝ ΚΑΙ ΔΟΚΙΜΙΩΝ ΓΙΑ ΤΟ ΝΕΟ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΚΑΤΑΜΕΡΙΣΤΩΝ ΚΑΙ ΔΟΚΙΜΙΩΝ ΓΙΑ ΤΟ ΝΕΟ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ του Σπουδαστή Σταμούλια Π. Γεώργιου Α.Μ. 27731 Επιβλέπων: Δρ. Ψωμόπουλος Σ. Κωνσταντίνος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

Υπολογισμός αβεβαιότητας στις διακριβώσεις γεννητριών ηλεκτροστατικής εκφόρτισης. Π.Σ. Κατσιβέλης Χ.Α. Χριστοδούλου Ι.Φ. Γκόνος Ι.Α.

Υπολογισμός αβεβαιότητας στις διακριβώσεις γεννητριών ηλεκτροστατικής εκφόρτισης. Π.Σ. Κατσιβέλης Χ.Α. Χριστοδούλου Ι.Φ. Γκόνος Ι.Α. Υπολογισμός αβεβαιότητας στις διακριβώσεις γεννητριών ηλεκτροστατικής εκφόρτισης Π.Σ. Κατσιβέλης Χ.Α. Χριστοδούλου Ι.Φ. Γκόνος Ι.Α. Σταθόπουλος Εργαστήριο Υψηλών Τάσεων Ε.Μ.Π. Περίληψη Σκοπός της παρούσας

Διαβάστε περισσότερα

Συλλογή μεταφορά και έλεγχος Δεδομένων ΘΟΡΥΒΟΣ - ΓΕΙΩΣΕΙΣ

Συλλογή μεταφορά και έλεγχος Δεδομένων ΘΟΡΥΒΟΣ - ΓΕΙΩΣΕΙΣ Συλλογή μεταφορά και έλεγχος Δεδομένων ΘΟΡΥΒΟΣ - ΓΕΙΩΣΕΙΣ ΘΟΡΥΒΟΣ - ΓΕΙΩΣΕΙΣ Σε ένα ηλεκτρικό κύκλωμα δημιουργούνται ανεπιθύμητα ηλεκτρικά σήματα, που οφείλεται σε διάφορους παράγοντες, καθώς επίσης και

Διαβάστε περισσότερα

Επαλήθευση γεννητριών ηλεκτροστατικών εκφορτίσεων Μέθοδος σχεδίασης κυκλώµατος γεννήτριας ηλεκτροστατικών εκφορτίσεων ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επαλήθευση γεννητριών ηλεκτροστατικών εκφορτίσεων Μέθοδος σχεδίασης κυκλώµατος γεννήτριας ηλεκτροστατικών εκφορτίσεων ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Επαλήθευση γεννητριών ηλεκτροστατικών εκφορτίσεων Μέθοδος σχεδίασης

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Μέσα Προστασίας II. Τ.Ε.Ι. Κρήτης Σ.Τ.ΕΦ./ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Εργαστήριο Υψηλών Τάσεων. Ηλεκτρικές Εγκαταστάσεις Ι

Μέσα Προστασίας II. Τ.Ε.Ι. Κρήτης Σ.Τ.ΕΦ./ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Εργαστήριο Υψηλών Τάσεων. Ηλεκτρικές Εγκαταστάσεις Ι Τ.Ε.Ι. Κρήτης Σ.Τ.ΕΦ./ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Μέσα Προστασίας II Προστασία από την ηλεκτροπληξία Ηλεκτρικές Εγκαταστάσεις Ι Επίκουρος Καθηγητής Τηλ:2810379231 Email: ksiderakis@staff.teicrete.gr

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές

Τελεστικοί Ενισχυτές Τελεστικοί Ενισχυτές Ενισχυτές-Γενικά: Οι ενισχυτές είναι δίθυρα δίκτυα στα οποία η τάση ή το ρεύμα εξόδου είναι ευθέως ανάλογη της τάσεως ή του ρεύματος εισόδου. Υπάρχουν τέσσερα διαφορετικά είδη ενισχυτών:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ 1 ΠΥΚΝΩΤΗ :

ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ 1 ΠΥΚΝΩΤΗ : ΤΕΙ ΧΑΛΚΙΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Α/Α ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ : ΑΣΚΗΣΗ 5 η Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΧΩΡΗΤΙΚΟΤΗΤΑΣ ΜΕ ΑΜΕΣΕΣ ΚΑΙ ΕΜΜΕΣΕΣ ΜΕΘΟΔΟΥΣ Θεωρητική Ανάλυση Πυκνωτής

Διαβάστε περισσότερα

Μελέτη του παραγόµενου ρεύµατος από γεννήτριες ηλεκτροστατικών εκφορτίσεων ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μελέτη του παραγόµενου ρεύµατος από γεννήτριες ηλεκτροστατικών εκφορτίσεων ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Μελέτη του παραγόµενου ρεύµατος από γεννήτριες ηλεκτροστατικών εκφορτίσεων

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της αρχής λειτουργίας των μηχανών συνεχούς ρεύματος, β) η ανάλυση της κατασκευαστικών

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Ιδανικό κύκλωμα LC εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις. Να αποδείξετε ότι η στιγμιαία τιμή i της έντασης του ρεύματος στο κύκλωμα δίνεται σε συνάρτηση με το στιγμιαίο

Διαβάστε περισσότερα

Εναλλασσόµενη τάση Χωρίς φορτίο. Πίνακας Π3.1: Τεχνικά χαρακτηριστικά της λυόµενης κρουστικής γεννήτριας

Εναλλασσόµενη τάση Χωρίς φορτίο. Πίνακας Π3.1: Τεχνικά χαρακτηριστικά της λυόµενης κρουστικής γεννήτριας Παράρτηµα 3 ΠΕΙΡΑΜΑΤΑ ΣΕ ΠΡΑΓΜΑΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΓΕΙΩΣΗΣ Π3.1 Λυόµενη κρουστική γεννήτρια H λυόµενη κρουστική γεννήτρια της Messwandler-Bau GmbH Bamberg µπορεί να χρησιµοποιηθεί, µε κατάλληλη επιλογή των

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Μέτρηση της έντασης του µαγνητικού πεδίου, παραγόµενου από γεννήτριες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ

ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ 1 Σκοπός Στην άσκηση αυτή μελετάται η συμπεριφορά ενός κυκλώματος RLC σε σειρά κατά την εφαρμογή εναλλασσόμενου ρεύματος. Συγκεκριμένα μελετάται η μεταβολή

Διαβάστε περισσότερα

Μέτρηση της έντασης του ηλεκτρικού πεδίου παραγόµενου από γεννήτριες ηλεκτροστατικών εκφορτίσεων ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μέτρηση της έντασης του ηλεκτρικού πεδίου παραγόµενου από γεννήτριες ηλεκτροστατικών εκφορτίσεων ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Μέτρηση της έντασης του ηλεκτρικού πεδίου παραγόµενου από γεννήτριες

Διαβάστε περισσότερα

Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις:

Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: Άσκηση Η17 Νόμος της επαγωγής Νόμος της επαγωγής ή Δεύτερη εξίσωση MAXWELL Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: d

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)

Διαβάστε περισσότερα

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή Εισαγωγικές ασκήσεις στις ηλεκτρικές ταλαντώσεις 1. Ιδανικό κύκλωμα L εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή δίνεται από τη σχέση q = 10 6 συν(10 ) (S.I.). Ο συντελεστής

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΙΣΑΓΩΓΗ: Ο τελεστικός ενισχυτής είναι ένα προκατασκευασμένο κύκλωμα μικρών διαστάσεων που συμπεριφέρεται ως ενισχυτής τάσης, και έχει πολύ μεγάλο κέρδος, πολλές φορές της τάξης του 10 4 και 10 6. Ο τελεστικός

Διαβάστε περισσότερα

Μέθοδοι ανάκτησης Συνάρτησης Μεταφοράς κυκλώµατος Σχεδίαση γεννήτριας παραγωγής ρεύµατος ESD ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μέθοδοι ανάκτησης Συνάρτησης Μεταφοράς κυκλώµατος Σχεδίαση γεννήτριας παραγωγής ρεύµατος ESD ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Μέθοδοι ανάκτησης Συνάρτησης Μεταφοράς κυκλώµατος Σχεδίαση γεννήτριας

Διαβάστε περισσότερα

Κεφάλαιο 11. Κυκλώματα Χρονισμού

Κεφάλαιο 11. Κυκλώματα Χρονισμού Κεφάλαιο 11. Κυκλώματα Χρονισμού Σύνοψη Στο κεφάλαιο αυτό αναλύεται η λειτουργία των κυκλωμάτων χρονισμού. Τα κυκλώματα αυτά παρουσιάζουν πολύ μεγάλο πρακτικό ενδιαφέρον και απαιτείται να λειτουργούν με

Διαβάστε περισσότερα

To νέο Πρότυπο : Επαλήθευση γεννητριών ηλεκτροστατικών εκφορτίσεων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

To νέο Πρότυπο : Επαλήθευση γεννητριών ηλεκτροστατικών εκφορτίσεων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ To νέο Πρότυπο 61-4-2:29 - Επαλήθευση γεννητριών ηλεκτροστατικών εκφορτίσεων

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΡΕΥΜΑΤΟΣ ΚΑΙ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕ ΙΟΥ ΚΑΤΑ ΤΗΝ ΕΠΑΛΗΘΕΥΣΗ ΓΕΝΝΗΤΡΙΩΝ ΗΛΕΚΤΡΟΣΤΑΤΙΚΩΝ ΕΚΦΟΡΤΙΣΕΩΝ

ΜΕΤΡΗΣΗ ΡΕΥΜΑΤΟΣ ΚΑΙ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕ ΙΟΥ ΚΑΤΑ ΤΗΝ ΕΠΑΛΗΘΕΥΣΗ ΓΕΝΝΗΤΡΙΩΝ ΗΛΕΚΤΡΟΣΤΑΤΙΚΩΝ ΕΚΦΟΡΤΙΣΕΩΝ ΜΕΤΡΗΣΗ ΡΕΥΜΑΤΟΣ ΚΑΙ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕ ΙΟΥ ΚΑΤΑ ΤΗΝ ΕΠΑΛΗΘΕΥΣΗ ΓΕΝΝΗΤΡΙΩΝ ΗΛΕΚΤΡΟΣΤΑΤΙΚΩΝ ΕΚΦΟΡΤΙΣΕΩΝ Γ.Π. Φώτης, Ι.Φ. Γκόνος, Ν.Χ. Ηλία, Ι.Α. Σταθόπουλος Εργαστήριο Υψηλών Τάσεων, Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας ΔΙΟΔΟΣ Οι περισσότερες ηλεκτρονικές συσκευές όπως οι τηλεοράσεις, τα στερεοφωνικά συγκροτήματα και οι υπολογιστές χρειάζονται τάση dc για να λειτουργήσουν σωστά.

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος...13

Περιεχόμενα. Πρόλογος...13 Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.

Διαβάστε περισσότερα

Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να

Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Α. Εξαναγκασμένες μηχανικές ταλαντώσεις Ελεύθερη - αμείωτη ταλάντωση και ποια η συχνότητα και η περίοδος της. Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12 ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα

Διαβάστε περισσότερα

Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ.1) με τα εξής χαρακτηριστικά: R 2.3 k,

Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ.1) με τα εξής χαρακτηριστικά: R 2.3 k, Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ) με τα εξής χαρακτηριστικά: 3 k, 50, k, S k και V 5 α) Nα υπολογιστούν οι τιμές των αντιστάσεων β) Να επιλεγούν οι χωρητικότητες C, CC έτσι ώστε ο ενισχυτής

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου 7. Απαραίτητα όργανα και υλικά. Τροφοδοτικό DC.. Πολύμετρα (αμπερόμετρο, βολτόμετρο).. Πλακέτα για την

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Πανεπιστημιακές παραδόσεις

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ Βασικά στοιχεία κυκλωμάτων Ένα ηλεκτρονικό κύκλωμα αποτελείται από: Πηγή ενέργειας (τάσης ή ρεύματος) Αγωγούς Μονωτές

Διαβάστε περισσότερα

Μαγνητικό Πεδίο. μαγνητικό πεδίο. πηνίο (αγωγός. περιστραμμένος σε σπείρες), επάγει τάση στα άκρα του πηνίου (Μετασχηματιστής) (Κινητήρας)

Μαγνητικό Πεδίο. μαγνητικό πεδίο. πηνίο (αγωγός. περιστραμμένος σε σπείρες), επάγει τάση στα άκρα του πηνίου (Μετασχηματιστής) (Κινητήρας) Ένας ρευματοφόρος αγωγός παράγει γύρω του μαγνητικό πεδίο Ένα χρονικά μεταβαλλόμενο μαγνητικό πεδίο, του οποίου οι δυναμικές γραμμές διέρχονται μέσα από ένα πηνίο (αγωγός περιστραμμένος σε σπείρες), επάγει

Διαβάστε περισσότερα

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση Ονοµατεπώνυµο: Αριθµός Μητρώου: Εξάµηνο: Υπογραφή Εργαστήριο Ηλεκτρικών Κυκλωµάτων και Συστηµάτων 1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος σε βηµατική και αρµονική διέγερση Μέρος Α : Απόκριση στο πεδίο

Διαβάστε περισσότερα

(α) Σχ. 5/30 Σύμβολα πυκνωτή (α) με πολικότητα, (β) χωρίς πολικότητα

(α) Σχ. 5/30 Σύμβολα πυκνωτή (α) με πολικότητα, (β) χωρίς πολικότητα 5. ΗΛΕΚΤΡΟΝΙΚΑ ΕΞΑΡΤΗΜΑΤΑ Ι ( ΠΥΚΝΩΤΕΣ) Πυκνωτές O πυκνωτής είναι ένα ηλεκτρικό εξάρτημα το οποίο έχει την ιδιότητα να απορροφά και να αποθηκεύει ηλεκτρική ενέργεια και να την απελευθερώνει, σε προκαθορισμένο

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος...13

Περιεχόμενα. Πρόλογος...13 Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

Βελτιστοποίηση των παραμέτρων της εξίσωσης του ρεύματος ηλεκτροστατικής εκφόρτισης με χρήση Γενετικών Αλγορίθμων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Βελτιστοποίηση των παραμέτρων της εξίσωσης του ρεύματος ηλεκτροστατικής εκφόρτισης με χρήση Γενετικών Αλγορίθμων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Βελτιστοποίηση των παραμέτρων της εξίσωσης του ρεύματος ηλεκτροστατικής

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Χωρητικότητα Εικόνα: Όλες οι παραπάνω συσκευές είναι πυκνωτές, οι οποίοι αποθηκεύουν ηλεκτρικό φορτίο και ενέργεια. Ο πυκνωτής είναι ένα είδος κυκλώματος που μπορούμε να συνδυάσουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΗΛΕΚΤΡΟΝΙΚΗ 5 ο ΕΞΑΜΗΝΟ ΗΜΜΥ ΑΣΚΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ 1 Ι. ΠΑΠΑΝΑΝΟΣ ΑΠΡΙΛΙΟΣ

Διαβάστε περισσότερα

Ανάλυση και υλοποίηση ταλαντωτή τύπου Colpitts

Ανάλυση και υλοποίηση ταλαντωτή τύπου Colpitts Εργασία στο μάθημα «Εργαστήριο Αναλογικών VLSI» Ανάλυση και υλοποίηση ταλαντωτή τύπου Colpitts Ομάδα Γεωργιάδης Κωνσταντίνος konsgeorg@inf.uth.gr Σκετόπουλος Νικόλαος sketopou@inf.uth.gr ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ

Διαβάστε περισσότερα

ηλεκτρικό ρεύμα ampere

ηλεκτρικό ρεύμα ampere Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΙΙΙ

Διαβάστε περισσότερα

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών «ΔιερΕΥνηση Και Aντιμετώπιση προβλημάτων ποιότητας ηλεκτρικής Ισχύος σε Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) πλοίων» (ΔΕΥ.Κ.Α.Λ.Ι.ΩΝ) πράξη ΘΑΛΗΣ-ΕΜΠ, πράξη ένταξης 11012/9.7.2012, MIS: 380164, Κωδ.ΕΔΕΙΛ/ΕΜΠ:

Διαβάστε περισσότερα

ΜΕΡΟΣ 6 ΕΛΕΓΧΟΣ ΤΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ

ΜΕΡΟΣ 6 ΕΛΕΓΧΟΣ ΤΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΕΛΟΤ HD 3S4 ΕΛΟΤ ΜΕΡΟΣ 6 ΕΛΕΓΧΟΣ ΤΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 61 Αρχικός έλεγχος 610 Γενικά 610.1 Κάθε ηλεκτρική εγκατάσταση πρέπει να ελέγχεται μετά την αποπεράτωση της και πριν να τεθεί σε λειτουργία από

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ρεύμα και Αντίσταση Εικόνα: Οι γραμμές ρεύματος μεταφέρουν ενέργεια από την ηλεκτρική εταιρία στα σπίτια και τις επιχειρήσεις μας. Η ενέργεια μεταφέρεται σε πολύ υψηλές τάσεις, πιθανότατα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την:

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: Σκοπός της Άσκησης: ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: α. Κατασκευή μετασχηματιστών. β. Αρχή λειτουργίας μετασχηματιστών.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: η (ΘΕΡΙΝ) ΗΜΕΡΟΜΗΝΙ: /0/ ΘΕΜ ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. 1. Η σχέση

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 Φαινόμενο Hall

ΑΣΚΗΣΗ 4 Φαινόμενο Hall ΑΣΚΗΣΗ 4 Φαινόμενο all Απαραίτητα όργανα και υλικά 4.1 Απαραίτητα όργανα και υλικά 1. Τροφοδοτικό ρυθμιζόμενης DC τάσης 0 έως 20V, 10Α. 2. Ενισχυτής ηλεκτρικής τάσης. 3. Ηλεκτρομαγνήτης ο οποίος αποτελείται:

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ

ΕΚΠΑΙΔΕΥΤΙΚΟ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΗΛΕΚΤΡΟΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΜΕΤΡΗΣΕΙΣ Χ. ΤΣΩΝΟΣ ΛΑΜΙΑ 2013 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ

ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ 1 Σκοπός Στην άσκηση αυτή μελετάται η συμπεριφορά ενός κυκλώματος RLC σε σειρά κατά την εφαρμογή εναλλασσόμενου ρεύματος. Συγκεκριμένα μελετάται η μεταβολή

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο : Α. Να σημειώσετε ποιες από τις ακόλουθες σχέσεις, που αναφέρονται

ΘΕΜΑ 1 ο : Α. Να σημειώσετε ποιες από τις ακόλουθες σχέσεις, που αναφέρονται ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο : Α. Να σημειώσετε ποιες από τις ακόλουθες σχέσεις, που αναφέρονται στο διπλανό κύκλωμα είναι σωστές, αν R 1 > R 2. i. Ι 1 = Ι 2 ii. V = V 1 + V 2 iii. I = I

Διαβάστε περισσότερα

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής 3 Ενισχυτές Μετρήσεων 3.1 Ο διαφορικός Ενισχυτής Πολλές φορές ένας ενισχυτής σχεδιάζεται ώστε να αποκρίνεται στη διαφορά µεταξύ δύο σηµάτων εισόδου. Ένας τέτοιος ενισχυτής ονοµάζεται ενισχυτής διαφοράς

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις

Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις Όπου χρειάζεται, θεωρείστε ότι g = 10m/s 2 1. Σε μία απλή αρμονική ταλάντωση η μέγιστη απομάκρυνση από την θέση ισορροπίας είναι Α = 30cm. Ο χρόνος που χρειάζεται

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΑΕ ΙΙ. Αισθητήρια θερμοκρασίας Εισαγωγή

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΑΕ ΙΙ. Αισθητήρια θερμοκρασίας Εισαγωγή ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΑΕ ΙΙ Εργαστηριακή Άσκηση 1 Αισθητήρια θερμοκρασίας Εισαγωγή Η μέτρηση της θερμοκρασίας είναι μια σημαντική ασχολία για τους μηχανικούς παραγωγής γιατί είναι, συνήθως,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 Τελεστικός ενισχυτής

ΚΕΦΑΛΑΙΟ 7 Τελεστικός ενισχυτής ΚΕΦΑΛΑΙΟ 7 Τελεστικός ενισχυτής Ο τελεστικός ενισχυτής, TE (operational ampliier, op-amp) είναι ένα από τα πιο χρήσιμα αναλογικά κυκλώματα. Κατασκευάζεται ως ολοκληρωμένο κύκλωμα (integrated circuit) και

Διαβάστε περισσότερα

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing).

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Κεφάλαιο 4 Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Οι ενδείξεις (τάσεις εξόδου) των θερμοζευγών τύπου Κ είναι δύσκολο να

Διαβάστε περισσότερα

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες)

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Q2-1 Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Εισαγωγή Τα δισταθή μη γραμμικά ημιαγώγιμα

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες)

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Q2-1 Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Εισαγωγή Τα δισταθή μη γραμμικά ημιαγώγιμα

Διαβάστε περισσότερα

Φυσική Γ' Θετικής και Τεχνολογικής Κατ/σης

Φυσική Γ' Θετικής και Τεχνολογικής Κατ/σης Ηλεκτρικές Ταλαντώσεις ο ΘΕΜΑ Α Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Ηλεκτρικό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά.. Το μέτρο της

Διαβάστε περισσότερα

ΥΛΟΠΟΙΗΣΗ ΗΛΕΚΤΡΟΝΙΚΟΥ ΒΟΛΤΟΜΕΤΡΟΥ

ΥΛΟΠΟΙΗΣΗ ΗΛΕΚΤΡΟΝΙΚΟΥ ΒΟΛΤΟΜΕΤΡΟΥ ΥΛΟΠΟΙΗΣΗ ΗΛΕΚΤΡΟΝΙΚΟΥ ΒΟΛΤΟΜΕΤΡΟΥ ΕΠΩΝΥΜΟ ΟΝΟΜΑ Α.Μ. ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΔΙΕΞΑΓΩΓΗΣ:.... /..../ 0.. ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:.... /..../ 0.. ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΑΝΤΙΚΕΙΜΕΝΟ

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης 4o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα

Διαβάστε περισσότερα

α) = β) Α 1 = γ) δ) Μονάδες 5

α) = β) Α 1 = γ) δ) Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19-10-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ-ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-ΚΥΡΙΑΚΑΚΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α 3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 014 Ταλαντώσεις - Πρόχειρες Λύσεις Θέµα Α Α.1. Ηλεκτρικό κύκλωµα LC, αµελητέας ωµικής αντίστασης, εκτελεί η- λεκτρική ταλάντωση µε περίοδο T. Αν

Διαβάστε περισσότερα

3 η Εργαστηριακή Άσκηση

3 η Εργαστηριακή Άσκηση 3 η Εργαστηριακή Άσκηση Βρόχος υστέρησης σιδηρομαγνητικών υλικών Τα περισσότερα δείγματα του σιδήρου ή οποιουδήποτε σιδηρομαγνητικού υλικού που δεν έχουν βρεθεί ποτέ μέσα σε μαγνητικά πεδία δεν παρουσιάζουν

Διαβάστε περισσότερα

ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ ΕΚΦΟΡΤΙΣΗΣ

ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ ΕΚΦΟΡΤΙΣΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ EΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ ΕΚΦΟΡΤΙΣΗΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Διαβάστε περισσότερα

Ειδικά Θέματα Ηλεκτρονικών 1

Ειδικά Θέματα Ηλεκτρονικών 1 Ειδικά Θέματα Ηλεκτρονικών 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3...2 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΝΙΣΧΥΤΩΝ...2 3.1 Απόκριση συχνότητας ενισχυτών...2 3.1.1 Παραμόρφωση στους ενισχυτές...5 3.1.2 Πιστότητα των ενισχυτών...6 3.1.3

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 4/11/2012

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 4/11/2012 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 4/11/01 ΘΕΜΑ 1 ο Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και

Διαβάστε περισσότερα

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Φθίνουσες μηχανικές ταλαντώσεις Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ταλαντώσεις. Η ελάττωση του πλάτους (απόσβεση)

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ. 3 η ενότητα ΡΥΘΜΙΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΤΕΧΝΙΚΕΣ ΠΑΘΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. ρ. Λάμπρος Μπισδούνης.

ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ. 3 η ενότητα ΡΥΘΜΙΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΤΕΧΝΙΚΕΣ ΠΑΘΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. ρ. Λάμπρος Μπισδούνης. ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ ρ. Λάμπρος Μπισδούνης Καθηγητής η ενότητα ΡΥΘΜΙΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΤΕΧΝΙΚΕΣ ΠΑΘΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ T... ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Περιεχόμενα ης ενότητας

Διαβάστε περισσότερα

ΕΝΙΣΧΥΤΗΣ ΚΟΙΝΟΥ ΕΚΠΟΜΠΟΥ ΠΕΙΡΑΜΑ 4

ΕΝΙΣΧΥΤΗΣ ΚΟΙΝΟΥ ΕΚΠΟΜΠΟΥ ΠΕΙΡΑΜΑ 4 Εφόσον το τρανζίστορ ενός ενισχυτή κοινού εκπομπού πολωθεί με το σημείο Q να βρίσκεται κοντά στο μέσο της DC γραμμής φορτίου, μπορεί να συνδεθεί ένα μικρό ac σήμα στη βάση. Με αυτόν τον τρόπο, παράγεται

Διαβάστε περισσότερα

στη θέση 1. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση 1 στη

στη θέση 1. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση 1 στη ΠΥΚΝΩΤΗΣ ΣΥΝΔΕΔΕΜΕΝΟΣ ΠΑΡΑΛΛΗΛΑ ΜΕ ΠΗΓΗ. Στο διπλανό κύκλωμα η πηγή έχει ΗΕΔ = V και ο διακόπτης είναι αρχικά στη θέση. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση στη θέση και αρχίζουν οι

Διαβάστε περισσότερα

1. Ρεύμα επιπρόσθετα

1. Ρεύμα επιπρόσθετα 1. Ρεύμα Ρεύμα είναι οποιαδήποτε κίνηση φορτίων μεταξύ δύο περιοχών. Για να διατηρηθεί σταθερή ροή φορτίου σε αγωγό πρέπει να ασκείται μια σταθερή δύναμη στα κινούμενα φορτία. r F r qe Η δύναμη αυτή δημιουργεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΗ ΦΥΚΙΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΗ ΦΥΚΙΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Σύστημα ιδανικού ελατηρίου σταθεράς Κ και

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 3-0-0 ΘΕΡΙΝ ΣΕΙΡ ΘΕΜ ο ΔΙΓΩΝΙΣΜ ΣΤΗ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6. Μελέτη συντονισμού σε κύκλωμα R,L,C, σειράς

ΑΣΚΗΣΗ 6. Μελέτη συντονισμού σε κύκλωμα R,L,C, σειράς ΑΣΚΗΣΗ 6 Μελέτη συντονισμού σε κύκλωμα R,L,C, σειράς Σκοπός : Να μελετήσουμε το φαινόμενο του συντονισμού σε ένα κύκλωμα που περιλαμβάνει αντιστάτη (R), πηνίο (L) και πυκνωτή (C) συνδεδεμένα σε σειρά (κύκλωμα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΠΡΟΒΛΗΜΑ Σώμα () μικρών διαστάσεων και μάζας m = 4kg, δρα ως ηχητική πηγή κυμάτων συχνότητας f s =330 Hz κινούμενο πάνω σε λείο οριζόντιο δάπεδο με

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2001 ΘΕΜΑΤΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 29 ΜΑΪΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΘΕΜΑ 1 ο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 Διαφορικός ενισχυτής

ΚΕΦΑΛΑΙΟ 6 Διαφορικός ενισχυτής ΚΕΦΑΛΑΙΟ 6 Διαφορικός ενισχυτής Ο διαφορικός ενισχυτής (differential amplifier) είναι από τα πλέον διαδεδομένα και χρήσιμα κυκλώματα στις ενισχυτικές διατάξεις. Είναι βασικό δομικό στοιχείο του τελεστικού

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑ: ΧΡΟΝΟΣ: ΦΥΣΙΚΗ 3 ΩΡΕΣ ΗΜΕΡΟΜΗΝΙΑ: 25 Μαΐου 2015 ΩΡΑ ΕΝΑΡΞΗΣ:

Διαβάστε περισσότερα

Ε Ρ Ω Τ Η Σ Ε Ι Σ Σ Τ Ι Σ Φ Θ Ι Ν Ο Υ Σ Ε Σ Τ Α Λ Α Ν Τ Ω Σ Ε Ι Σ

Ε Ρ Ω Τ Η Σ Ε Ι Σ Σ Τ Ι Σ Φ Θ Ι Ν Ο Υ Σ Ε Σ Τ Α Λ Α Ν Τ Ω Σ Ε Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Σ Τ Ι Σ Φ Θ Ι Ν Ο Υ Σ Ε Σ Τ Α Λ Α Ν Τ Ω Σ Ε Ι Σ 1. Η σταθερά απόσβεσης σε μια μηχανική ταλάντωση που γίνεται μέσα σε κάποιο μέσο είναι: α) ανεξάρτητη των ιδιοτήτων του μέσου β) ανεξάρτητη

Διαβάστε περισσότερα

Ηλεκτρικά Εξαρτήματα. Αγωγοί. Μονωτές. Χαρακτηριστικό των αγωγών: Ονομάζονται όσα υλικά επιτρέπουν τη διέλευση ηλεκτρικού ρεύματος.

Ηλεκτρικά Εξαρτήματα. Αγωγοί. Μονωτές. Χαρακτηριστικό των αγωγών: Ονομάζονται όσα υλικά επιτρέπουν τη διέλευση ηλεκτρικού ρεύματος. Ηλεκτρικά Εξαρτήματα Αγωγοί Ονομάζονται όσα υλικά επιτρέπουν τη διέλευση ηλεκτρικού ρεύματος. Μονωτές Ονομάζονται όσα υλικά δεν επιτρέπουν τη διέλευση ηλεκτρικού ρεύματος. Χαρακτηριστικό των αγωγών: Ειδική

Διαβάστε περισσότερα

Άσκηση 5. Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης

Άσκηση 5. Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΝΙΚΑ Ι (ΕΡ) Άσκηση 5 Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης Στόχος Ο στόχος της εργαστηριακής άσκησης είναι η μελέτη των

Διαβάστε περισσότερα

Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από

Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από την μία κατεύθυνση, ανάλογα με την πόλωσή της. Κατασκευάζεται

Διαβάστε περισσότερα

Εργαστήριο Ηλεκτρικών Μηχανών

Εργαστήριο Ηλεκτρικών Μηχανών Εργαστήριο Ηλεκτρικών Μηχανών Σημειώσεις του διδάσκοντα : Παλάντζα Παναγιώτη Email επικοινωνίας: palantzaspan@gmail.com 1 Μετασχηματιστές Οι μετασχηματιστές είναι ηλεκτρομαγνητικές συσκευές ( μηχανές )

Διαβάστε περισσότερα