r i Projekcije vektora položaja r i su odgovarajuće koordinate tačke xi

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "r i Projekcije vektora položaja r i su odgovarajuće koordinate tačke xi"

Transcript

1 Središte sistema materijalnih tačaka. Neka je proivoljni sistem sačinjen od konačnog broja materijalnih tačaka čija međusobna rastojanja mogu biti i promenljiva. Svaka materijalna tačka sistema ima svoju masu i u svakom trenutku svoj vektor položaja u odnosu na nepokretni pravougli Dekartov koordinatni sistem. Neka je a i-tu tačku sistema masa onačena sa m, a vektor položaja sa. i r i Projekcije vektora položaja r i su odgovarajuće koordinate tačke xi, yi i i, pa r r r r imamo i = xii + yi j + ik. Važna tačka ovako definisanog sistema je njegovo središte (centar) r r koja rje takođe, u svakom trenutku, određena svojim vektorom položaja r = xi + y j + k, čije su projekcije istovremeno i koordinate tačke. Masa sistema M je bir masa svih njegovih tačaka: M = mi = m + m + m Vektor položaja sistema r određuje formula: r m r r r r i i m + m + m = =. M M Projektovanjem ove vektorske jednakosti na koordinatne ose dobiće se formule koje određuju koordinate središta : mi xi mx + mx + m3x mi yi mi i x = =, y =, =. M M M M

2 Za homogeno kruto telo: masa m i, i dobijenih formula, amenjuje se sa masom elementarnog delića tela dm, koordinate i-te tačke xi, yi i i, amenjuju se koordinatama x, y i elementarnog delića, a suma prelai u određeni integral po čitavoj masi krutog tela m, tako da te formule dobijaju oblik: xdm ydm dm x =, y =, =. m m m Na isti način, masu krutog tela m određuje formula Sada se pitamo, na kom rastojanju od ose (onačimo ga sa i ) bi trebala da se nalai tačka mase m (jednake masi tela) da bi ta tačka imala isti moment inercije a osu kao što ga ima telo. Moment inercije tela a osu. Poluprečnik inercije. Da bi se definisao moment inercije tela mase m a neku osu, mora se nati da je moment inercije a istu osu elementarnog delića tela mase dm, jednak proivodu njegove mase dm i kvadrata njegovog najkraćeg rastojanja r od te ose. d = r dm-moment inercije elementarnog delića tela = r dm -moment inercije tela mase m a osu m = dm.

3 = m i i = - poluprečnik inercije tela a osu m Poluprečnik inercije tela a neku osu, jednak je kvadratnom korenu i količnika momenta inercije tela a tu osu i njegove mase. Moment inercije doboša sa dva nivoa a osu simetrije određivaćemo na osnovu adate mase doboša m i odgovarajućeg poluprečnika inercije i. Moment inercije homogenog štapa. Za elementarnu masu štapa dm iabraćemo onaj delić mase koji je na rastojanju y od x ose i čija je dužina dy.uvođenjem linijske gustine homogenog štapa ρ L, tako da proivod linijske gustine i dužine daje masu, imaćemo jednakosti: m = ρ l, dm = ρ dy. x l L = y dm = y ρ = ρ Ldy L y 0 l 0 dy = ρ L L y 3 3 l 0 x ρl = ( l 0 ) = ρl l l 3 x = ( ml ) 3.

4 Moment inercije homogenog kružnog diska. Neka je masa homogenog kružnog diska onačena sa m, a poluprečnik sa R. Ivedimo, prema definiciji, ira a moment inercije homogenog kružnog diska a osu koja prolai kro centar diska O, a upravna je na ravan diska. Za elementarnu masu diska dm iabraćemo kružno - prstenasti deo poluprečnika r, debljine dr, površine d. Površina d je praktično ista kao i površina idužernog pravougaonika dužine rπ (kao što je obim kruga poluprečnika r) a širine dr, dakle d = rπ dr. Ukupna površina kruga, poluprečnika R, koji definiše disk je = R π. Uvedimo površinsku gustinu homogenog diska ρ, tako da proivod površinske gustine i površine daje masu. Za elementarnu masu diska i masu celog diska važe jednakosti: dm = ρ d = ρ rπ dr, m = ρ = ρ R π. Da bi čitava masa diska bila obuhvaćena r koordinata ide u granicama od 0 do R. = r dm = R 0 r ρ rπdr = ρ π R 0 r 3 dr = ρ R 0 4 r π = ρ π R 4 4

5 = ρ R π R = mr. Vea imeđu momenata inercije a paralelne ose (Štajnerova teorema). Ovde je cilj da se pokaže kako iračunati momemt inercije tela a osu koja je paralelna težišnoj, kada se na masa tela, njegov moment inercije a težišnu osu i rastojanje tih osa. Za telo prikaano na slici: težišna osa je osa (pošto prolai kro težište ), njoj paralelna osa je osa, masa je m a rastojanje imeđu osa, onačeno je sa b. Na slici ovo telo je prikaano u dve projekcije, gde je u pogledu, u pravcu ose, prikaana proivoljna elementarna čestica tela, mase dm. U istoj projekciji vidi se u pravoj veličini rastojanje imeđu osa b, kao i rastojanja r i r, što su rastojanja imeđu te čestice i osa i, respektivno. Svaka čestica ima svoje rastojanje r, kao i svoj ugao α, koji to r gradi sa pravcem ose x (Sl.). Primetimo da x koordinatu proivoljne čestice određuje formula x = r cosα.

6 Za dobijanje tražene vee kreće se od momenta inercije a osu : = r dm. Na osnovu kosinusne teoreme a trougao sa slike, veličina, iražena preko veličina b, α i r, inosi r r = r + b br cosα r = r + b bx ( r + b bx) = dm = r dm + b Zato što je težište tela na osi, imamo da je dm b x, pa je = 0 Integral od dm, po čitavoj masi m, jednak je masi tela, dakle xdm. xdm = x dm = m = 0. Konačno je = + b m - Štajnerova teorema U tehničkoj terminologiji moment inercije a težišnu osu, kao što je ovde, naiva se sopstvenim momentom inercije. Dalje, proivod mase i kvadrata rastojanja imeđu osa, kao što je ovde b m, naiva se položajnim momentom inercije. Dakle, Štajnerova teorema kaže da je moment inercije a osu paralelnu težišnoj, jednak biru sopstvenog i položajnog momenta inercije. Česta je primena ove teoreme i u obrnutom smeru = b m. m.

7 Primer 5. Na osnovu ivedene formule = ml 3 i Štajnerove teoreme odrediti sopstveni moment inercije homogenog štapa mase m, dužine l? Za traženi sopstveni moment inercije koristićemo onaku, s obirom da težišna osa prolai kro tačku. I istog raloga umesto, koristićemo onaku O. l Položajni moment inercije ovde je m b = m. 4 Pošto je sopstveni moment inercije ralika imeđu momenta inercije a osu paralelnu težišnoj i položajnog momenta inercije, imamo = O m b = ml ml = ml. 3 4 Dakle, moment inercije homogenog štapa, a osu upravnu na štap koja prolai kro njegov centar, jednak je jednoj dvanaestini proivoda mase štapa i kvadrata njegove dužine. Primer 5. Na osnovu formule = mr i Štajnerove teoreme, odrediti moment inercije homogenog kružnog diska, mase m, poluprečnika R, a osu paralelnu osi simetrije diska koja prolai kro tačku O.

8 I ovde ćemo, umesto onake, koristiti onaku, a umesto, onaku. O Položajni moment inercije ovde je m b = m R. Pošto je moment inercije a osu paralelnu težišnoj jednak biru sopstvenog i položajnog momenta inercije, imamo 3 O = + m b = mr + mr = mr. Kinetička energija a slučaj njegovog translatornog kretanja, obrtanja oko ose i ravnog kretanja. TRNSLTORNO KRETNE Kod translatornog kretanja tela brina svake njegove tačke je ista. Neka u trenutku traženja kinetičke energije ona inosi V. ko je telo mase m, elementarna čestica tela ima masu dm, a kinetička energija elementarne čestice je de k = dmv. Nakon integracije ovog iraa po čitavoj masi, s obirom da V, kao konstantno a svaku česticu, ide ispred integrala, kinetičku energiju čitavog tela, koje vrši translatorno kretanje, određuje formula E k = mv.

9 OBRTNE OKO NEPOMIČNE OSE Kod obrtanja krutog tela oko nepomične ose brina elementarne čestice tela jednaka je proivodu ugaone brine tela i rasojanju r imeđu te čestice i ose obrtanja. Kinetička energija elementarne čestice mase dm je ω de k = dmv = dm( r ω) = r dm. ω Integracija prethodnog iraa daje Ek =, r dm gde je ω, kao globalna karakteristika, stavljena ispred integrala. ( m ) Integral koji figuriše u ovom irau predstavlja moment inercije tela a osu obrtanja (onačićemo ga sa O ). Konačno, kinetičku energiju tela koje vrši obrtanje oko nepomične ose određuje formula E =. ω k O RVNO KRETNE Kod ravnog kretanja krutog tela brina elementarne čestice tela jednaka je proivodu ugaone brine tela i rasojanju r imeđu te čestice i trenutnog pola brine P. Pretpostavimo da su ponati masa tela m, ugaona brina ω, brina centra (težišta) V i moment inercije tela a osu, upravnu na ravan kretanja, koja prolai kro centar.

10 Kinetička energija elementarne čestice mase dm je ω de k = dmv = dm r ω = r dm Integracija prethodnog iraa, daje E k ω = r dm ( ). E = P ω k Pošto je ova formula u mnogim problemima manje pogodna a određivanje kinetičke energije, iraimo P po Štajnerovoj teoremi: P = + m P. ( ) E = + m P ω k ( ) k = m P ω + ω, P ω = V Ek = m V + ω - Kenigova teorema Pošto ravno kretanje predstavlja istovremeno odvijanje translacije i rotacije, prvi sabirak u Kenigovoj teoremi se tumači kao kinetička energija usled translatornog dela kretanja, dok se drugi sabirak tumači kao kinetička energija usled rotacije oko centra. E ( ).

11 Primer 5.3 Korišćenjem Kenigove teoreme odrediti kinetičku energiju homogenog kružnog diska mase m poluprečnika R koji se kotrlja be klianja po horiontalnoj podloi? Koordinata koja određuje položaj diska je koordinata s. Može se osim adate koordinate s uvesti i pomoćna koordinata (ugao rotacije diska) ϕ (Sl.). Neophodno je nati da ivod koordinate s po vremenu (dakle s& ) predstavlja brinu tačke, kao i da ivod koordinate ϕ po vremenu (dakle ϕ& ) predstavlja ugaonu brinu diska ω. Takođe je neophodno nati, da količnik, brine tačke i rastojanja P = R, predstavlja ugaonu brinu diska, pisanu kao ω, ili ϕ&. Dakle s& V = s&, ω = ϕ& =. R Sada, prema Kenigovoj teoremi i ponatim formulama imamo: s& Ek = m s& + ϕ& E k = m s + mr R & E k = m s& 3 4

12 Rad i snaga sprega. Kao što ima smisla govoriti o radu sile, kada se njena napadna tačka pomera, tako ima smisla govoriti o radu sprega, kada se telo na koje spreg dejstvuje obrće. Ogradimo se na definisanje rada sprega kod ravanskih problema, gde i spreg i rotacija tela na koje spreg dejstvuje leže u ravni crteža. Elementarni rad sprega M, na elementarnoj rotaciji a ugao dϕ, tela na koje spreg dejstvuje, jednak je proivodu M i dϕ (Sl.), dakle d( M ) = M dϕ. ko bi spreg M, bio ponata funkcija koordinate ϕ, mogao bi se odrediti konačan rad sprega M, integraljenjem prethodnog iraa, u odgovarajućim granicama a ϕ ϕ (na primer, od ϕ do ϕ ): M = M ϕ dϕ ( ) ( ). ϕ U problemima koji će se rešavati u ovom kursu tražiće se uvek radovi konstantnih spregova a koje važi formula ( M ) = ± M ϕ, gde ugao ϕ predstavlja ugao obrtanja tela na koje dejstvuje spreg. Prednak će biti + ako su smer sprega M i smer rotacije tela isti, dok će biti - ako su ovi smerovi suprotni. Na slici su prikaani konstantni spregovi M i M čiji radovi na rotaciji tela a ugao ϕ inose

13 ( M ) = + M, ( M ) = M. ϕ ϕ Slično kao i kod snage sile, snagu sprega M, u ovakvim problemima, određuje formula d ( ) ( M ) Mdϕ P M = = P( M ) = ± Mω. dt dt U dobijenoj formuli, prednak će biti + ako su smer sprega M i smer ugaone brine tela isti, dok će biti - ako su ovi smerovi suprotni. Grubo rečeno, snaga sile se dobija množenjem sile i brine, dok se snaga sprega dobija množenjem sprega i ugaone brine. Teorema o promeni kinetičke energije sistema. Teorema o promeni kinetičke energije sistema u ovom kursu najčešće ćemo koristiti u obliku Ek Ek 0 =, gde je: E k - kinetička energija sistema u proivoljnom položaju; E k 0 - kinetička energija sistema u početnom položaju; - sumu radova svih sila i spregova, koji vrše rad pri premeštanju sistema i njegovog početnog u proivoljni položaj. U tipskim problemima, koji će u najvećoj meri biti rešavani, sistemi će imati jedan stepen slobode kretanja i biće postavkom adatka definisana jedna koordinata. Podraumevaće se da je u početnom položaju vrednost te kordinate jednaka nuli.

14 Skiciran položaj sistema, u kojem ta koordinata ima proivoljnu vrednost, je njegov proivoljan položaj. Osim te definisane koordinate, obično će se u adatim sistemima, pri rešavanju adataka, uvoditi i pomoćne koordinate (gotovo uvek, pravolinijske i ugaone). Podraumevaće se, da su pomoćne koordinate na takav način iabrane, da svaka od njih, u početnom položaju ima vrednost nula. Prvi ivodi svih tih koordinata (kako adatih, tako i pomoćnih) po vremenu, najčešćeće predstavljati brine nekih tačaka (tela) sistema ili ugaone brine pojedinih njegovih elemenata, dok će drugi ivodi predstavljati ubranja ili ugaona ubranja. Biće neophodno tražiti vee imeđu prvih ivoda koordinata (to jest, vee imeđu brina i ugaonih brina pojedinih elemenata). Dobijene veeće se preslikati na same koordinate i na druge ivode koordinata (to jest, vee imeđu ubranja i ugaonih ubranja). Nakon nalaženja vea, neophodno je i iraa a E k i eliminisati pomoćne koordinate (samim tim njihove ivode po vremenu) na račun adate. Kinetička energija sistema E k će se dobijati sabiranjem kinetičkih energija svih elemenata koji imaju masu a kreću se na neki način. Kinetička energija sistema u početnom položaju E k 0 biće samo brojka (konstanta), a ne funkcija, i u takvim tipskim adacima neće trebati da se određuje. Za raliku od nje, ako bi adata koordinata bila s, funkcije i bi bile E k Ek = Ek ( s& ) = B s&, = ( s) = D s, gde su B i D konstante.

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Rotacija krutog tijela

Rotacija krutog tijela Rotacija krutog tijela 6. Rotacija krutog tijela Djelovanje sile na tijelo promjena oblika tijela (deformacija) promjena stanja gibanja tijela Kruto tijelo pod djelovanjem vanjskih sila ne mijenja svoj

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Dinamičke jednačine ravnog kretanja krutog tela.

Dinamičke jednačine ravnog kretanja krutog tela. Dinamičke jednačine ravnog kretanja krutog tela. Prve dve dinamičke jednačine ravnog kretanja krutog tela, u prvoj varijanti, imaju oblik: 1) m & x X, ) m & y = Y. = i i Dok, u drugoj varijanti, njihov

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

ODREĐIVANJE TEŽIŠTA KRUTOG TELA Korišćenjem Varinjonove teoreme, dobija se: = Gi. = G z

ODREĐIVANJE TEŽIŠTA KRUTOG TELA Korišćenjem Varinjonove teoreme, dobija se: = Gi. = G z TEŽIŠTE Svako kruto telo je sačinjeno od velikog brojačestica (elementarnih delova). Kada se telo nalazi u blizini Zemljine površine na svaku od tihčestica dejstvuje sila njene težine koja je usmerena

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

Geometrija (I smer) deo 2: Afine transformacije

Geometrija (I smer) deo 2: Afine transformacije Geometrija (I smer) deo 2: Afine transformacije Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Transformacije koordinata tačaka Transformacije koordinata tačaka Pretpostavimo da za bazne

Διαβάστε περισσότερα

Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona.

Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona. Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona Prema osnovnoj formuli za dimenzionisanje maksimalni tangencijalni napon τ max koji se javlja u štapu mora biti manji

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar

TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar Prof. dr Stanko Br i Prof. dr Rastislav Mandi Doc. dr Stanko ori email: cstanko@grf.bg.ac.rs Graževinski fakultet Univerzitet u Beogradu k. god.

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: Refleksija S φ u odnosu na pravu kroz koordinatni početak Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: ( ) ( ) ( ) x cos 2φ

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

1 Kinematika krutog tela

1 Kinematika krutog tela M. Tadić, Predavanja iz Fizike 1, ETF, grupe P2 i P3, IV predavanje, 2017. 1 Kinematika krutog tela Kruto telo je sistem materijalnih tačaka čija se međusobna udaljenost ne menja tokom vremena. Kruta tela

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

OTPORNOST MATERIJALA. Geometrijske karakteristike ravnih površina

OTPORNOST MATERIJALA. Geometrijske karakteristike ravnih površina OTPORNOST MTERJL Geometrijske karakteristike ravnih površina GEOMETRJSKE KRKTERSTKE RVNH POVRŠN POVRŠN POPREČNOG PRESEK STTČK MOMENT POPREČNOG PRESEK MOMENT NERJE POPREČNOG PRESEK GEOMETRJSKE KRKTERSTKE

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar

TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar Prof. dr Stanko Br i Prof. dr Rastislav Mandi Doc. dr Stanko ori email: cstanko@grf.bg.ac.rs Graževinski fakultet Univerzitet u Beogradu k. god.

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

Prostorni spojeni sistemi

Prostorni spojeni sistemi Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

Računarska grafika. Transformacije u 3D i projekcije

Računarska grafika. Transformacije u 3D i projekcije Računarska grafika Transformacije u 3D i projekcije I ove se pretpostavlja konvencija pokretne virtuelne kamere Postoji formalna sličnost sa transformacijama u 2D grafici: oaje se jean član jenačina (a

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

20 mm. 70 mm i 1 C=C 1. i mm

20 mm. 70 mm i 1 C=C 1. i mm MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Analitička geometrija

Analitička geometrija 1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA.   Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

OSNOVNI DINAMIČKI KONCEPTI

OSNOVNI DINAMIČKI KONCEPTI UNIVERZIE U NOVOM SADU, PRIRODNO-MAEMAIČKI FAKULE, DEPARMAN ZA MAEMAIKU I INFORMAIKU Seminarski rad iz predmeta Seminarski rad B na temu: OSNOVNI DINAMIČKI KONCEPI U REALNOJ ANALIZI, SUDEN: Andrija Blesić,

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

Totalni napon u tački preseka. Normalni i tangencijalni napon.

Totalni napon u tački preseka. Normalni i tangencijalni napon. Totalni napon u tački preseka. Normalni i tangencijalni napon. Zamislimo da je opterećeno elastično telo nekom proizvoljnom ravni presečeno na dva dela. Odbačeni desni deo tela, na posmatrani levi, na

Διαβάστε περισσότερα

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017.

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017. M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017. Konzervativne sile i potencijalna energija 1 Konzervativne sile Definicija konzervativne sile. Sila je konzervativna ako rad te sile

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

VEKTORI. Opera u Sidneju, Australija

VEKTORI. Opera u Sidneju, Australija VEKTORI Ciljevi poglavlja Sabiranje i razlaganje vektora na komponente, množenje i deljenje vektora skalarom Predstavljanje vektora u Dekartovom koordinatnom sistemu i operacije sa vektorima koji su izraženi

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

2. Kolokvijum iz MEHANIKE (E1)

2. Kolokvijum iz MEHANIKE (E1) Fakultet tehničkih nauka Novi Sad Katedra za Mehaniku 2. Kolokvijum iz MEHANIKE (E1) A grupa A3 Dva robota se kreću po glatkoj horizontalnoj podlozi. Robot A, mase 20, 0 kg, kreće se brzinom 2, 00 m/s

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

f n z n, (2) F (z) = pri čemu se pretpostavlja da red u (2) konvergira bar za jednu konačnu vrednost kompleksne promenljive Z(f n ) = F (z).

f n z n, (2) F (z) = pri čemu se pretpostavlja da red u (2) konvergira bar za jednu konačnu vrednost kompleksne promenljive Z(f n ) = F (z). Z-TRANSFORMACIJA Laplaceova transformacija je primer integralne transformacije koja se primenjuje na funkcije - originale. Ova transformacija se primenjuje u linearnim sistemima koji su opisani diferencijalnim

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I 5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I ČISTO KOSO SAVIJANJE Pod pravim savijanjem podrazumeva se slučaj kada se ravan savijanja poklapa sa jednom od glavnih ravni

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

OTPORNOST MATERIJALA

OTPORNOST MATERIJALA 3/8/03 OTPORNOST ATERIJALA Naponi ANALIZA NAPONA Jedinica u Si-sistemu je Paskal (Pa) Pa=N/m Pa=0 6 Pa GPa=0 9 Pa F (N) kn/cm =0 Pa N/mm =Pa Jedinična površina (m ) U tečnostima pritisak jedinica bar=0

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku.

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku. VEKTOR OENT SILE Z TČKU Vekto momenta sile, koja dejstvuje na neku tačku tela, za poizvoljno izabanu tačku pedstavlja meu obtnog dejstva sile u odnosu na tu poizvoljno izabanu tačku. Ovde je tačka momentna

Διαβάστε περισσότερα