CURS MECANICA CONSTRUCŢIILOR

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CURS MECANICA CONSTRUCŢIILOR"

Transcript

1 CURS MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu

2 CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la orice moment t de timp, poziţia r(t), viteza v(t) si acceleraţia a(t) ale acestuia. In cadrul cinematicii solidului rigid problema se pune analog, cu deosebirea ca este vorba de infinitatea punctelor materiale care alcătuiesc solidul.

3 Mişcarea generală a solidului rigid Cunoscându-se mişcarea unui solid rigid în raport cu un sistem de referinţă fix O 1 x 1 y 1 z 1, se cere să se determine expresiile generale ale vectorului de poziţie, vitezei şi acceleraţiei unui punct oarecare P i al acestuia. Pentru a cunoaşte poziţia solidului rigid, respectiv a sistemului de referinţă solidar cu rigidul este necesar să cunoaştem în orice moment de timp vectorul de poziţie r 10 şi poziţia versorilor k, j, i. Punctul P i nu îşi schimbă poziţia relativa în raport cu sistemul Oxyz, deci coordonatele lui rămân constante în timp.

4 Mişcarea generală a solidului rigid

5 (1) În relaţiile (1) apar 12 parametri scalari de poziţie. Ţinând cont de relaţiile (2), vom avea 12 6 = 6 parametri scalari de poziţie a solidului rigid. Putem concluziona că solidul rigid în mişcare generală are şase grade de libertate. (2) Versorii sunt vectori unitari şi doi câte doi perpendiculari între ei

6 Între vectorul de poziţie r i1 al unui punct din solidul rigid, definit faţă de sistemul fix, vectorul de poziţie r i al punctului faţă de un sistem mobil (legat invariabil de solid) şi vectorul de poziţie r 10 al originii sistemului mobil, faţă de sistemul fix, există relaţiile: unde (3) (4)

7 Proiectăm relaţia (1) pe axele sistemului de coordonate fix O 1 x 1 y 1 z 1 şi obţinem: (5) Relaţiile (5) reprezintă ecuaţiile parametrice ale traiectoriei punctelor P i.

8 Prin derivarea relaţiei (3) în raport cu timpul obţinem: (6) Deoarece: (7) Relaţia (7), cunoscută sub denumirea de relaţia lui Euler reprezintă distribuţia de viteze a punctelor unui solid rigid.

9 Prin proiectarea relaţiei (7) pe axele sistemului de referinţă Oxyz: i i i rezultă componentele vectorului v i în sistemul Oxyz: (8)

10 Din relaţia (7) se observă că proiecţiile a două puncte ale solidului rigid pe direcţiile determinate de acestea sunt egale între ele. Fie punctele P i, respectiv P j ale solidului rigid pentru care se aplică relaţia lui Euler.

11 Pentru obţinerea formulei lui Euler pentru distribuţia de acceleraţii se derivează relaţia (7): (9) unde: acceleraţia punctului O; acceleraţia unghiulară a solidului rigid, respectiv a sistemului mobil Oxyz; Se stie că şi (10)

12 Prin proiectarea relaţiei (10) pe axele de coordonate se obţine:

13 În final se obţin componenetele vectorului acceleraţie a punctelor P i ale sistemului rigid, în raport cu sistemul de referinţă mobil Oxyz: (11)

14 Solidul rigid poate executa o mişcare generală sau o mişcare particulară. Există două mişcări simple ale solidului rigid: mişcarea de translaţie şi mişcarea de rotaţie în jurul unui ax fix. Celelalte mişcări particulare ale solidului rigid: mişcarea de roto-translaţie, mişcarea plan-paralelă, mişcarea de rotaţie în jurul unui punct fix se obţin prin combinarea celor două mişcări simple.

15 Mişcarea de translaţie a solidului rigid Un solid rigid execută o mişcare de translaţie dacă în tot timpul mişcării o dreaptă solidară cu rigidul rămâne paralelă cu o dreaptă fixă din spaţiu sau cu ea însăşi. Pentru studiul mişcării de translaţie alegem două sisteme de referinţă: unul fix O 1 x 1 y 1 z 1 şi unul mobil Oxyz a cărui axe rămân tot timpul paralele cu axele sistemului fix.

16 Mişcarea de translaţie a solidului rigid

17 (12) Din relaţiile (12) rezultă că solidul rigid aflat în mişcare de translaţie posedă trei grade de libertate întrucât poziţia acestuia este determinată prin coordonatele x 10, y 10 respectiv z 10.

18 Derivăm prima relaţie din (12) şi obţinem: (13) Deoarece: şi (14) adica, vitezele tuturor punctelor solidului rigid la un moment oarecare t sunt egale între ele. Prin derivarea relaţiei (14) rezultă: (15) acceleraţiile tuturor punctelor solidului rigid în mişcarea de translaţie, la un moment oarecare t, sunt egale între ele.

19 Mişcarea de rotaţie a solidului rigid cu axă fixă Un solid rigid execută o mişcare de rotaţie cu axă fixă dacă în tot timpul mişcării sale două puncte ale sale rămân suprapuse cu două puncte fixe din spaţiu. Pentru studiul acestei mişcări axa Oz a sistemului mobil coincide cu axa O 1 z 1 a sistemului fix şi în plus, originile celor două sisteme coincid O1 O.

20 Mişcarea de rotaţie a solidului rigid cu axă fixă

21 Solidul rigid în mişcare de rotaţie în jurul unei axe fixe Oz are un singur grad de libertate întrucât poziţia acestuia este determinată prin unghiul format de planul fix x 1 O 1 y 1 şi planul mobil xoy. Ambele plane conţin axa de rotaţie. Poziţia punctelor P i este dată de relaţia: (16) adică: (17) Ecuaţia (17) arată că traiectoria punctelor P i este un cerc cu centrul plasat pe axa de rotaţie.

22 Relaţiile: şi arată că vectorii şi au ca suport axa de rotaţie. Derivând ecuaţia (16) rezultă: Deoarece: şi (18) relaţie ce exprimă distribuţia câmpului vitezelor ale punctelor unui solid rigid aflat în mişcare de rotaţie cu axă fixă.

23 Proiectând relaţia (18) pe axele sistemului de referinţă mobil Oxyz, rezultă: (19) (20) Modulul vitezei este: (21)

24 Pentru determinarea acceleraţiilor punctelor P i derivăm relaţia (18): (22) Prin proiectarea relaţia (22) pe axele sistemului de referinţă mobil: (23)

25 unde:

26 Modulul acceleraţiei este: (24) Proprietăţile distribuţiei de viteze şi acceleraţii: vitezele (acceleraţiile) punctelor rigidului ce aparţin axei de rotaţie sunt nule; vitezele (acceleraţiile) punctelor rigidului în mişcarea de rotaţie cu axă fixă sunt plasate în plan perpendicular pe axa de rotaţie (v iz =0, a iz =0); vitezele (acceleraţiile) ce aparţin unei drepte 1 paralelă cu axa de rotaţie sunt egale între ele; vitezele (acceleraţiile) punctelor solidului rigid ce aparţin unei drepte 2, perpendiculară pe axa de rotaţie, au o variaţie liniară în funcţie de poziţia lor pe această dreaptă.

27 Distribuţia de viteze (acceleraţii) pe o dreaptă paralelă cu axa de rotaţie

28 Mişcarea de roto-translaţie a solidului rigid Un solid rigid execută o mişcare de rototranslaţie atunci când în tot timpul mişcării două puncte aparţinând acestuia rămân permanent pe o dreaptă fixă Oz 1. Mişcarea solidului rigid se poate descompune într-o mişcare de translaţie rectilinie în lungul axei fixe Oz 1 şi o mişcare de rotaţie efectuată în jurul aceleiaşi axe. Traiectoria unui punct oarecare P i, aparţinând rigidului în mişcare de rototranslaţie faţă de axa fixă Oz 1, este o curbă aparţinând cilindrului circular drept având ca axă de simetrie axa Oz 1 şi ca rază, distanţa de la punctul P i la axa Oz 1. La un moment oarecare, poziţia rigidului se poate determina dacă se cunoaşte distanţa OO 1 şi unghiul θ. Putem concluziona că rigidul în mişcare de rototranslaţie are două grade de libertate.

29 Mişcarea de rototranslaţie a solidului rigid

30 Mişcarea plan-paralelă a solidului rigid Un solid rigid execută o mişcare plan-paralelă dacă în tot timpul mişcării, un plan aparţinând acestuia rămâne suprapus cu un plan fix din spaţiu. Pentru studiul mişcării alegem două sisteme de referinţă: unul fix O 1 x 1 y 1 z 1 şi unul mobil Oxyz, solidar cu solidul rigid, al cărui plan xoy rămâne tot timpul mişcării suprapus cu planul fix x 1 O 1 y 1. Solidul rigid în mişcare plan-paralelă are 3 grade de libertate, deoarece sunt necesari 3 parametri scalari de poziţie: x 10, y 10 şi θ în determinarea poziţiei acestuia.

31

32 Mişcarea plan-paralelă a solidului rigid se realizează prin suprapunerea unei mişcări de translaţie a acestuia, efectuată paralel cu un plan-reper π, cu o mişcare de rotaţie a rigidului în jurul unei axe perpendiculare pe planul π. La un anumit moment t există un punct pentru care viteza acestuia este nulă. Acest punct notat cu I se numeşte centru instantaneu de rotaţie. Locul geometric al punctelor succesive pentru care viteza lor este nulă se numeşte axă instantanee de rotaţie. Locul geometric al CIR faţă de sistemul de referinţă mobil se numeşte rostogolitoare (centroidă mobilă). Locul geometric al CIR faţă de sistemul de referinţă fix poartă numele de bază (centroidă fixă).

33 Mişcarea de rotaţie a solidului rigid în jurul unui punct fix

34 În cadrul mişcării de rotaţie a rigidului C în jurul punctului fix O 1, orice rotaţie finită poate fi descompusă într-o infinitate de rotaţii elementare în jurul punctului său fix. Acestea pot fi înlocuite, din punct de vedere al traiectoriilor şi distribuţiei câmpului de viteze, prin rotaţii elementare efectuate în jurul unor axe instantanee de rotaţie cu viteza unghiulară. Locul geometric al axelor instantanee de rotaţie faţă de sistemul cartezian fix O 1 x 1 y 1 z 1 este o suprafaţă riglată având forma unei pânze duble conice cu vârful plasat în punctul fix O 1, numită axoidă fixă. Faţă de sistemul cartezian mobil Oxyz, locul geometric al axelor instantanee de rotaţie poartă denumirea de axoidă mobilă, fiind tot o suprafaţă rigidă de forma unei pânze duble conice.

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB = Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului

Διαβάστε περισσότερα

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1 CURS 2 SISTEME DE FORŢE CUPRINS 2. Sisteme de forţe.... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 2.1. Forţa...2 Test de autoevaluare 1...3 2.2. Proiecţia forţei pe o axă. Componenta forţei

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

6.CONUL ŞI CILINDRUL. Fig Fig. 6.2 Fig. 6.3

6.CONUL ŞI CILINDRUL. Fig Fig. 6.2 Fig. 6.3 6.CONUL ŞI CILINDRUL 6.1.GENERALITĂŢI Conul este corpul geometric mărginit de o suprafaţă conică şi un plan; suprafaţa conică este generată prin rotaţia unei drepte mobile, numită generatoare, concurentă

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Liviu BERETEU FUNDAMENTE DE INGINERIE MECANICA

Liviu BERETEU FUNDAMENTE DE INGINERIE MECANICA Liviu BERETEU FUNDAMENTE DE INGINERIE MECANICA 200 .Momentul unei forţe în raport cu un punct şi în raport cu o axă. Cuplu de forţe Momentul unei forţe F în raport cu un punct O se defineşte ca fiind produsul

Διαβάστε περισσότερα

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE Gabriel POPA, Paul GEORGESCU c August 0, 009, Iaşi Cuprins 1 SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ 4 SPAŢIUL VECTORILOR LIBERI.

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

Cap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI

Cap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI Cap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI In mecanică există mărimi scalare sau scalari şi mărimi vectoriale sau vectori. Mărimile scalare (scalarii) sunt complet determinate prin valoarea lor numerică

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene

CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene Geometrie liniară în spaţiu CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU 6.. Sisteme de coordonate în plan şi în spaţiu I. Coordonate carteziene În cele ce urmează, notăm cu E 3 spaţiul punctual tridimensional

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Brutus Demşoreanu. Mecanica analitică. - Note de curs -

Brutus Demşoreanu. Mecanica analitică. - Note de curs - Brutus Demşoreanu Mecanica analitică - Note de curs - TIMIŞOARA 2003 Tehnoredactarea în L A TEX 2ε aparţine autorului. Copyright c 2003, B. Demşoreanu Cuprins I Mecanica newtoniană 7 1 Elemente de cinematica

Διαβάστε περισσότερα

Capitolul 1. Noțiuni Generale. 1.1 Definiții

Capitolul 1. Noțiuni Generale. 1.1 Definiții Capitolul 1 Noțiuni Generale 1.1 Definiții Forța este acțiunea asupra unui corp care produce accelerația acestuia cu condiția ca asupra corpului să nu acționeze şi alte forțe de sens contrar primeia. Forța

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

CUPRINS 6. Centre de greutate... 1 Cuprins..1

CUPRINS 6. Centre de greutate... 1 Cuprins..1 URS 6 ENTRE DE GREUTATE UPRINS 6. entre de greutate...... 1 uprins..1 Introducere modul.1 biective modul....2 6.1. entre de greutate......2 6.2. Momente statice...4 Test de autoevaluare 1...5 6.3. entre

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

Geometria diferenţială a curbelor în spaţiu

Geometria diferenţială a curbelor în spaţiu Geometria diferenţială a curbelor în spaţiu A. U. Thor 0.1 Generalităţi Definitia 1.1 Se numeşte curbă înspaţiu dată parametric mulţimea punctelor M (x, y, z) din spaţiuacăror coordonate sunt date de x

Διαβάστε περισσότερα

Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ. Simina Mariş Simona Epure Ioan Rodilǎ

Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ. Simina Mariş Simona Epure Ioan Rodilǎ Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ Liliana Brǎescu Eva Kaslik Simina Mariş Simona Epure Ioan Rodilǎ CURS DE GEOMETRIE Timişoara 2007

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber Algebră liniară CAPITOLUL VECTORI LIBERI. Segment orientat. Vector liber Acest capitol este dedicat în totalitate studierii spaţiului vectorilor liberi, spaţiu cu foarte multe aplicaţii în geometrie, fizică

Διαβάστε περισσότερα

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU 81 Curbe în plan I Definiţia analitică a curbelor plane În capitolul 7 am studiat deja câteva eemple de curbe plane, amintim aici conicele nedegenerate: elipsa, hiperbola

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Lucrul si energia mecanica

Lucrul si energia mecanica Lucrul si energia mecanica 1 Lucrul si energia mecanica I. Lucrul mecanic este produsul dintre forta si deplasare: Daca forta este constanta, atunci dl = F dr. L 1 = F r 1 cos α, unde r 1 este modulul

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

4. METODELE GEOMETRIEI DESCRIPTIVE

4. METODELE GEOMETRIEI DESCRIPTIVE 4. METODELE GEOMETRIEI DESCRIPTIVE 4.1. GENERALITĂŢI În general corpurile geometrice sunt în poziţii oarecare faţă de planele de proiecţie. Prin metodele geometriei descriptive proiecţiile acestor corpuri

Διαβάστε περισσότερα

Vectori liberi-seminar 1

Vectori liberi-seminar 1 Vectori liberi-seminar ) Determinati α R astfel incat vectorii ā = m+ n si b = m+α n sa fie coliniari, unde m, n sunt necoliniari. ) Demonstrati ca urmatorii trei vectori liberi sunt coplanari: ā = ī j

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

4.Inversul lui z=a+bi este nr.complex, z cu proprietatea ca zz =1, rezulta z =a/(a 2 +b 2 ) (bi)/(a 2 +b 2 ) si notam z =z -1

4.Inversul lui z=a+bi este nr.complex, z cu proprietatea ca zz =1, rezulta z =a/(a 2 +b 2 ) (bi)/(a 2 +b 2 ) si notam z =z -1 Numere complexe 1.Multimea numerelor complexe este C=RxR={(a;b)/a,b R} cu operatiile: z 1 =(a 1 ;b 1 ), z 2 =(a 2 ;b 2 ) a 1 ;b 1 ;a 2 ;b 2 R, z 1 +z 2 = (a 1 +a 2 ; b 1 +b 2 ), z 1 z 2 = (a 1 a 2 - b

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Emil Budescu. BIOMECANICA GENERALã

Emil Budescu. BIOMECANICA GENERALã Emil Budescu BIOMECANICA GENERALã IASI 03 C U P R I N S pag. I. Introducere în biomecanica 3. Obiectul de studiu 3. Terminologie 7 3. Aspecte de baza ale biomecanicii 4. Aspecte de baza ale anatomiei si

Διαβάστε περισσότερα

1. Introducere in Fizică

1. Introducere in Fizică FIZICA se ocupă cu studiul proprietăţilor şi naturii materiei, a diferitelor forme de energie şi a metodelor prin care materia şi enegia interacţionează în lumea în care ne înconjoară.. Introducere in

Διαβάστε περισσότερα

ALGEBRĂ LINEARĂ, GEOMETRIE. Valeriu Zevedei, Ionela Oancea

ALGEBRĂ LINEARĂ, GEOMETRIE. Valeriu Zevedei, Ionela Oancea ALGEBRĂ LINEARĂ, GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Valeriu Zevedei, Ionela Oancea April 9, 005 CUPRINS 1 CALCUL VECTORIAL 7 1.1 Vectori legaţi,vectori liberi... 7 1. Operaţiilinearecuvectori... 9 1..1

Διαβάστε περισσότερα

COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE

COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ BN - 1 B COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE 004-005 COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE

Διαβάστε περισσότερα

Dinamica. F = F 1 + F F n. si poarta denumirea de principiul suprapunerii fortelor.

Dinamica. F = F 1 + F F n. si poarta denumirea de principiul suprapunerii fortelor. Dinamica 1 Dinamica Masa Proprietatea corpului de a-si pastra starea de repaus sau de miscare rectilinie uniforma cand asupra lui nu actioneaza alte corpuri se numeste inertie Masura inertiei este masa

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Reflexia şi refracţia luminii.

Reflexia şi refracţia luminii. Reflexia şi refracţia luminii. 1. Cu cat se deplaseaza o raza care cade sub unghiul i =30 pe o placa plan-paralela de grosime e = 8,0 mm si indicele de refractie n = 1,50, pe care o traverseaza? Caz particular

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

I. BAZELE MECANICII CLASICE

I. BAZELE MECANICII CLASICE Alexandru RUSU Spiridon RUSU CURS DE FIZICĂ I. BAZELE MECANICII CLASICE Ciclu de prelegeri Chişinău 014 UNIVERSITATEA TEHNICĂ A MOLDOVEI Facultatea Inginerie şi Management în Electronică şi Telecomunicaţii

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

MECANICĂ CLASICĂ. Universitatea Al. I. Cuza Iaşi. Universitatea Politehnica Bucureşti

MECANICĂ CLASICĂ. Universitatea Al. I. Cuza Iaşi. Universitatea Politehnica Bucureşti MECANICĂ CLASICĂ Dumitru Luca Universitatea Al. I. Cuza Iaşi Cristina Stan Universitatea Politehnica Bucureşti 8 ianuarie 2007 Prefață Mecanică clasică este una din primele ramuri ale fizicii, atât în

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

STUDIUL FORTELOR DE INERTIE. FORTA CORIOLIS

STUDIUL FORTELOR DE INERTIE. FORTA CORIOLIS TUDIUL FORTELOR DE INERTIE. FORTA CORIOLI copul lucrării: Forţele de inerţie au un caracter fictiv, în sensul că ele nu constituie rezultatul unei interacţiuni şi, ca urmare, nu satisfac principiul al

Διαβάστε περισσότερα

2. CALCULE TOPOGRAFICE

2. CALCULE TOPOGRAFICE . CALCULE TOPOGRAFICE.. CALCULAREA DISTANŢEI DINTRE DOUĂ PUNCTE... CALCULAREA DISTANŢEI DINTRE DOUĂ PUNCTE DIN COORDONATE RECTANGULARE Distanţa în linie dreaptă dintre două puncte se poate calcula dacă

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

Capitolul 30. Transmisii prin lant

Capitolul 30. Transmisii prin lant Capitolul 30 Transmisii prin lant T.30.1. Sa se precizeze domeniile de utilizare a transmisiilor prin lant. T.30.2. Sa se precizeze avantajele si dezavantajele transmisiilor prin lant. T.30.3. Realizati

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune. Huţanu Radu, Axinte Constantin Irimescu Luminita

Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune. Huţanu Radu, Axinte Constantin Irimescu Luminita Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune Huţanu Radu, Axinte Constantin Irimescu Luminita 1. Generalităţi Există mai multe metode pentru a determina

Διαβάστε περισσότερα

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =. Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

Lucrarea: MECANISME CU CAME SINTEZĂ: TRASAREA SPIRALEI LUI ARHIMEDE

Lucrarea: MECANISME CU CAME SINTEZĂ: TRASAREA SPIRALEI LUI ARHIMEDE UNIVERSITATEA DIN CRAIOVA FACULTATEA DE MECANICĂ Laborator de Mecanisme Specializarea: TCM Lucrarea: MECANISME CU CAME SINTEZĂ: TRASAREA SPIRALEI LUI ARHIMEDE. Scopul lucrării a) Cunoaşterea unor profiluri

Διαβάστε περισσότερα

SINTEZA MECANISMELOR CU CAME TRASAREA SPIRALEI LUI ARHIMEDE

SINTEZA MECANISMELOR CU CAME TRASAREA SPIRALEI LUI ARHIMEDE UNIVERSITATEA DIN CRAIOVA FACULTATEA DE MECANICĂ Laborator de Mecanisme SINTEZA MECANISMELOR CU CAME TRASAREA SPIRALEI LUI ARHIMEDE Obiectivele lucrării a. Cunoaşterea unor profiluri uzuale utilizate la

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

A1. Valori standardizate de rezistenţe

A1. Valori standardizate de rezistenţe 30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea

Διαβάστε περισσότερα

CAPITOLUL 3 TRANSFORMĂRI GEOMETRICE ALE FIGURILOR DIN PLAN ŞI SPAŢIU

CAPITOLUL 3 TRANSFORMĂRI GEOMETRICE ALE FIGURILOR DIN PLAN ŞI SPAŢIU CAPITOLUL 3 TRANSFORMĂRI GEOMETRICE ALE FIGURILOR DIN PLAN ŞI SPAŢIU In urma parcurgerii acestui capitol: veţi obţine informaţii generale despre transformări geometrice şi despre predarea lor, veţi reactualiza

Διαβάστε περισσότερα

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este

Διαβάστε περισσότερα

3. DINAMICA FLUIDELOR. 3.A. Dinamica fluidelor perfecte

3. DINAMICA FLUIDELOR. 3.A. Dinamica fluidelor perfecte 3. DINAMICA FLUIDELOR 3.A. Dinamica fluidelor perfecte Aplicația 3.1 Printr-un reductor circulă apă având debitul masic Q m = 300 kg/s. Calculați debitul volumic şi viteza apei în cele două conducte de

Διαβάστε περισσότερα

MECANICA CINEMATICA. Cinematica lucrează cu noţiunile de spaţiu, timp, şi derivatele lor viteză şi acceleraţie.

MECANICA CINEMATICA. Cinematica lucrează cu noţiunile de spaţiu, timp, şi derivatele lor viteză şi acceleraţie. unde cos(a,b) este cosinusul unghiului dintre cei doi vectori a şi b, iar a şi b sunt modulele vectorilor a şi b. Fiindcă cos(π/)=0, produsele i j, j k şi k i sunt nule, iar produsele i i, j j şi k k sunt

Διαβάστε περισσότερα

Grupuri de simetrii. Oana Constantinescu

Grupuri de simetrii. Oana Constantinescu Rolul grupurilor de transformari in denirea unei geometrii Felix Klein (1849-1925) a dorit sa aplice conceptul de grup pentru a caracteriza diferitele geometrii ale timpului. In discursul inaugural de

Διαβάστε περισσότερα

Polarizarea tranzistoarelor bipolare

Polarizarea tranzistoarelor bipolare Polarizarea tranzistoarelor bipolare 1. ntroducere Tranzistorul bipolar poate funcţiona în 4 regiuni diferite şi anume regiunea activă normala RAN, regiunea activă inversă, regiunea de blocare şi regiunea

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Cuprins. I Geometrie Analitică 9

Cuprins. I Geometrie Analitică 9 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului POSDRU/56/1.2/S/32768, Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predareînvăţare-evaluare

Διαβάστε περισσότερα

Capitolul 6 DINAMICA FRÂNĂRII AUTOVEHICULELOR CU ROŢI

Capitolul 6 DINAMICA FRÂNĂRII AUTOVEHICULELOR CU ROŢI Capitolul 6 DINAMICA FRÂNĂRII AUTOVEHICULELOR CU ROŢI 61 ECUAŢIA GENERALĂ A MIŞCĂRII RECTILINII A AUTOVEHICULULUI FRÂNAT Se consideră un autovehicul care se deplasează cu viteză variabilă pe un drum cu

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα