Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 15. Πίνακεσ ΙI. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 15. Πίνακεσ ΙI. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων"

Transcript

1 Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 15. Πίνακεσ ΙI Ιωάννθσ Κατάκθσ

2 Σιμερα o Ειςαγωγι o Διλωςθ o Αρχικοποίθςθ o Πρόςβαςθ o Παραδείγματα

3 Πίνακεσ - Επανάλθψθ o Στθν προθγοφμενθ διάλεξθ κάναμε μια ειςαγωγι ςτθν δομι δεδομζνων Πίνακασ o Σε ζνα πίνακα ζνα ςφνολο αντικειμζνων του ιδίου τφπου αποκθκεφονται ςε ςειρά, π.χ. int md[12]= {31,28,31,30,31,30,31; τύπος όνομα μέγεθος md[0] md[1] md[2] md[11] τιμές

4 Εφαρμογζσ Πινάκων Σιμερα κα δοφμε τισ εξισ εφαρμογζσ Πινάκων 1. Παράλλθλοι Πίνακεσ 2. Γραμμικι Αναηιτθςθ (Linear Search) 3. Γραμμικι Αναηιτθςθ & Ενθμζρωςθ 4. Μζτρθςθ Στοιχείων που ικανοποιοφν κάποια ςυνκικθ. 5. Αλγόρικμοσ Ταξινόμθςθσ Πίνακα Selection-Sort

5 1) Παράλλθλοι Πίνακεσ Περιςςότεροι από ζνα μονοδιάςτατουσ πίνακεσ, όπου κάκε δείκτθσ i αναφζρεται ςτα ςτοιχεία ενόσ κοινοφ αντικειμζνου. #define STUDENT_NUM 55 int student_id[student_num]; float student_grade[student_num]; 2 παράλλθλοι πίνακεσ o int student_id[i] περιζχει αρ. ταυτότθτασ του i o float student_grade[i] περιζχει τον βακμό του φοιτθτι i.

6 1) Παράλλθλοι Πίνακεσ Δθλαδι θ αποκικευςθ των πλθροφοριϊν ςε αυτοφσ τουσ πίνακεσ μοιάηει ωσ εξισ: student_id student_grade

7 1) Παράλλθλοι Πίνακεσ - Παράδειγμα #include <stdio.h> #define STUDENT_NUM 3 int main() { int i; int student_id[]={12345, 37349, 9995; float student_grade[]={90.3,78.2,45.3; for(i=0;i<student_num;i++) printf("student with id: %d, grade: %f\n", student_id[i], student_grade[i]); Εκτυπϊνει Student with id: 12345, grade: Student with id: 37349, grade: Student with id: 9995, grade:

8 1) Παράλλθλοι Πίνακεσ Θα μποροφςα να είχα περιςςότερουσ από 2 πίνακεσ. π.χ. #define STUDENT_NUM 55 int student_id[student_num]; float student_grade[student_num]; int student_age[student_num]; int student_year[student_num]; char student_sex[student_num];..

9 2) Γραμμικι αναηιτθςθ (Linear Search) o Γράψετε τμιμα προγράμματοσ που αναηθτά μζςα ςτον πίνακα ακζραιων ςτοιχείων student_id τθ κζςθ που περιζχει τθν τιμι z. o Δθλαδι ψάχνουμε να βροφμε αν υπάρχει μια ςυγκεκριμζνθ ταυτότθτα ςτον πίνακα ταυτοτιτων. o Το μζγεκοσ του πίνακα ορίηεται με τθν ςτακερά STUDENT_NUM. o Αν δεν βρεκεί το ςτοιχείο το πρόγραμμα να εκτυπϊνει μινυμα λάκουσ, αν βρεκεί επιςτρζφει τθν κζςθ i ςτθν οποία βρζκθκε.

10 2) Γραμμικι αναηιτθςθ (Linear Search) o Τι πρζπει να γίνει; Αναηιτθςθ o Ψευδοκϊδικασ για κάκε ςτοιχείο του πίνακα εάν είναι ίςο με z φφλαξε κζςθ τερμάτιςε επανάλθψθ o Κόςτοσ Στθν χειρότερθ περίπτωςθ εξζταςθ όλων των ςτοιχείων του πίνακα Στθν καλφτερθ περίπτωςθ βρίςκουμε το ςτοιχείο ςτθν πρϊτθ κζςθ student_id

11 2) Γραμμικι αναηιτθςθ - Υλοποίθςθ #include <stdio.h> #define STUDENT_NUM 3 // Εδϊ χρθςιμοποιοφμε μόνο 3 φοιτθτζσ αντί 54 int main() { int i; int student_id[]={12345, 37349, 9995; int z = 98995; for(i=0; i<student_num; i++) if (student_id[i]==z) break; if (i==student_num) printf("not FOUND"); else printf("found at position:%d", i);

12 3) Γραμμικι Αναηιτθςθ & Ενθμζρωςθ o Υποκζςτε φπαρξθ δυο παράλλθλων πινάκων με ίδιο μζγεκοσ (student_id και student_grade) o Γράψετε πρόγραμμα που αναηθτά μζςα ςτον student_id τον φοιτθτι με αρικμό ταυτότθτασ id και ενθμερϊνει ςτον student_grade τθν βακμολογία (του φοιτθτι id) με τθν τιμι 100 o Αν δεν υπάρχει ο ςυγκεκριμζνοσ φοιτθτισ δϊςτε το κατάλλθλο μινυμα λάκουσ

13 3) Γραμμικι Αναηιτθςθ & Ενθμζρωςθ #include <stdio.h> #define STUDENT_NUM 3 // Εδϊ χρθςιμοποιοφμε μόνο 3 φοιτθτζσ αντί 54 int main() { int i; int student_id[]={12345, 37349, 9995; float student_grade[]={90.3,78.2,45.3; int id = 9995; for(i=0; i<student_num; i++) { if (student_id[i]==id) { student_grade[i]=100; break; if (i==student_num) { printf("not FOUND\n"); else { printf("record Updated at position:%d\n", i); for(i=0;i<student_num;i++) printf("student with id: %d, grade: %f\n", student_id[i], student_grade[i]);

14 3) Γραμμικι Αναηιτθςθ & Ενθμζρωςθ Αποτζλεςμα του προγράμματοσ Record Updated at position:2 Student with id: 12345, grade: Student with id: 37349, grade: Student with id: 9995, grade: Τι θα αλλάζαμε αν θέλαμε να δώζοςμε ζε όλοςρ με βαθμό από 93 και πάνω ηην ηιμή 100;

15 4) Μζτρθςθ Στοιχείων o Γράψετε ζνα πρόγραμμα που υπολογίηει και επιςτρζφει τον αριθμό των φοιτητών που παίρνουν βακμό από 80 και πάνω. o Οι βακμοί είναι αποκθκευμζνοι ςε πίνακα. #define SIZE 3 float student_grade[]={90.3,78.2,45.3; o Το μζγεκοσ του πίνακα περιζχεται ςτθν παράμετρο SIZE.

16 4) Μζτρθςθ Στοιχείων #include <stdio.h> #define STUDENT_NUM 3 int main() { int i; float student_grade[]={90.3,78.2,45.3; int count = 0; for(i=0; i<student_num; i++) { if (student_grade[i]>=80) { count++; printf("υπάρχουν %d φοιτθτζσ me 80 και πάνω", count);

17 5) Αλγόρικμοσ Ταξινόμθςθσ Πίνακα SelectioSort o Μασ δίδεται ζνασ πίνακασ αρικμϊν. Θζλουμε να τον ταξινομιςουμε. o Υπάρχουν πολλοί αλγόρικμοι. Ζνασ τζτοιοσ αλγόρικμοσ είναι ο SelectionSort. o Η SelectionSort βαςίηεται ςτα ακόλουκα τρία βιματα: 1. επιλογι του ελάχιςτου ςτοιχείου 2. ανταλλαγι με το i-οςτό ςτοιχείο (i είναι μια μεταβλθτι που αυξάνεται κατά ζνα). 3. επανάλθψθ των βθμάτων 1 και 2 για τα υπόλοιπα ςτοιχεία.

18 5) Παράδειγμα Selection Sort Θζςη Αρχικός Πίνακας Με i= Με i= Με i= Με i= Με i= Τελικός Πίνακας

19 5) Υλοποίθςθ Selection Sort #include <stdio.h> #define SIZE 7 int main() { int A[ ]={34, 8, -21, 64, 51, 32, 33; int pos, temp; int i,j; for (i=0; i<size-1; i++) { // θζςη επόμενου μικρότερου ςτοιχείου pos=i; // βρζσ το μικρότερο ςτοιχείο for (j = i+1; j < SIZE; j++) { if (A[j]<A[pos]) pos=j; // κζςθ μικρότερου // αντάλλαξε το A[i] με το A[pos] temp = A[i]; A[i] = A[pos]; A[pos] = temp; // Εκηύπωζη Πίνακα for (i=0; i<size; i++) { printf("%d, ", A[i]); Σηο ηέλορ μποπούμε να εκηςπώζοςμε ηον ηαξινομημένο πίνακα

20 5) Εκτζλεςθ Selection Sort BEFORE: [8,4,8,43,3,5,2,1,10,] Swapping 8 <-> 1 [1,4,8,43,3,5,2,8,10,] Swapping 4 <-> 2 [1,2,8,43,3,5,4,8,10,] Swapping 8 <-> 3 [1,2,3,43,8,5,4,8,10,] Swapping 43 <-> 4 [1,2,3,4,8,5,43,8,10,] Swapping 8 <-> 5 [1,2,3,4,5,8,43,8,10,] Swapping 8 <-> 8 [1,2,3,4,5,8,43,8,10,] Swapping 43 <-> 8 [1,2,3,4,5,8,8,43,10,] Swapping 43 <-> 10 [1,2,3,4,5,8,8,10,43,] AFTER:[1,2,3,4,5,8,8,10,43,]

21 Τζλοσ διάλεξθσ

Κεφάλαιο 8.6. Πίνακες ΙI (Διάλεξη 17)

Κεφάλαιο 8.6. Πίνακες ΙI (Διάλεξη 17) Κεφάλαιο 8.6 Πίνακες ΙI (Διάλεξη 17) 16-1 Πίνακες - Επανάληψη Στην προηγούμενη διάλεξη κάναμε μια εισαγωγή στην δομή δεδομένων Πίνακας Σε ένα πίνακα ένα σύνολο αντικειμένων του ιδίου τύπου αποθηκεύονται

Διαβάστε περισσότερα

Κεφάλαιο 8.6. Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο 8.6. Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 8.6 Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 16-1 Πίνακες - Επανάληψη Στην προηγούµενη διάλεξη κάναµε µια εισαγωγή στην δοµή δεδοµένων Πίνακας Σε ένα πίνακα ένα σύνολο αντικειµένων

Διαβάστε περισσότερα

Μεθόδων Επίλυσης Προβλημάτων

Μεθόδων Επίλυσης Προβλημάτων ΕΠΛ 032.3: 3: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 11 Πίνακες ΙΙ Πίνακες - Επανάληψη Στην προηγούμενη

Διαβάστε περισσότερα

16. Πίνακεσ και Συναρτήςεισ

16. Πίνακεσ και Συναρτήςεισ Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 16. Πίνακεσ και Συναρτήςεισ Ιωάννθσ Κατάκθσ Σιμερα o Κλιςθ με τιμι o Κλιςθ με αναφορά o Πίνακεσ και ςυναρτιςεισ o Παραδείγματα Ειςαγωγι o Στισ προθγοφμενεσ

Διαβάστε περισσότερα

Δομζσ Δεδομζνων. Αναηιτθςθ και Ταξινόμθςθ Διάλεξθ 3

Δομζσ Δεδομζνων. Αναηιτθςθ και Ταξινόμθςθ Διάλεξθ 3 Δομζσ Δεδομζνων Αναηιτθςθ και Ταξινόμθςθ Διάλεξθ 3 Περιεχόμενα Αλγόρικμοι αναηιτθςθσ Σειριακι αναηιτθςθ Αναηιτθςθ κατά ομάδεσ Δυαδικι Αναηιτθςθ Ταξινόμθςθ Ταξινόμθςθ με παρεμβολι (insertion sort) Ταξινόμθςθ

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 20. Αρχεία. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων

Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 20. Αρχεία. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 20. Αρχεία Ιωάννθσ Κατάκθσ Aποκικευςθ Για να αποκθκεφςουμε δεδομζνα από ζνα πρόγραμμα, πρζπει να χρθςιμοποιιςουμε τθ δευτερεφουςα μνιμθ Aποκικευςθ Η πιο ςυνθκιςμζνθ

Διαβάστε περισσότερα

Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. Διαφάνειεσ: Βαςικζσ Αρχζσ Προγραμματιςμοφ Α.Π.Θ. Δθμιτρθσ Βράκασ

Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. Διαφάνειεσ: Βαςικζσ Αρχζσ Προγραμματιςμοφ Α.Π.Θ. Δθμιτρθσ Βράκασ Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 21. Δομζς Ιωάννθσ Κατάκθσ Διαφάνειεσ: Βαςικζσ Αρχζσ Προγραμματιςμοφ Α.Π.Θ. Δθμιτρθσ Βράκασ Τφποι Δεδομζνων Οριηόμενοι από το Χριςτθ o Πζρα από τουσ απλοφσ τφπουσ

Διαβάστε περισσότερα

Στόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων

Στόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων Στόχοι και αντικείμενο ενότητας Πέρασμα Πίνακα σε Συνάρτηση #8.. Ειδικά Θέματα Αλγορίθμων Προβλήματα Αναζήτησης Γραμμική Αναζήτηση (Linear Search) Ενημέρωση Μέτρηση Δυαδική Αναζήτηση (Binary Search) Προβλήματα

Διαβάστε περισσότερα

Ιδιότθτεσ πεδίων Γενικζσ.

Ιδιότθτεσ πεδίων Γενικζσ. Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ

Διαβάστε περισσότερα

Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε:

Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: ΔΟΜΗ ΑΠΟΦΑΗ Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: Όταν το if που χρθςιμοποιοφμε παρζχει μόνο μία εναλλακτικι διαδρομι εκτζλεςθ, ο τφποσ δομισ

Διαβάστε περισσότερα

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ

Διαβάστε περισσότερα

8 ΥΜΒΟΛΟΕΙΡΕ - STRINGS

8 ΥΜΒΟΛΟΕΙΡΕ - STRINGS 8 ΥΜΒΟΛΟΕΙΡΕ - STRINGS Οι Συμβολοςειρζσ Strings ςτθ Java είναι αντικείμενα και όχι Πίνακεσ Χαρακτιρων. Η Διλωςθ μιασ Συμβολοςειράσ γίνεται με τθ διλωςθ του τφπου String των ςτοιχείων που κα αποκθκεφςει,

Διαβάστε περισσότερα

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα:

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 ο Σετ Ασκήσεων Δομές Δεδομένων - Πίνακες Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιςτικι είναι ο κλάδοσ των μακθματικϊν που αςχολείται με τθ ςυλλογι, τθν οργάνωςθ, τθν παρουςίαςθ και τθν ανάλυςθ αρικμθτικϊν

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Εφαρμογές σε ταξινομήσεις και αναζήτηση στοιχείων Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα

Διαβάστε περισσότερα

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9 Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά

Διαβάστε περισσότερα

Ειςαγωγι ςτθν Επιςτιμθ Υπολογιςτϊν. Ειςαγωγι ςτθν Python

Ειςαγωγι ςτθν Επιςτιμθ Υπολογιςτϊν. Ειςαγωγι ςτθν Python Ειςαγωγι ςτθν Επιςτιμθ Υπολογιςτϊν Ειςαγωγι ςτθν Python Γ Μζροσ Modules, Αντικειμενοςτραφισ Προγραμματιςμόσ ςτθν Python, Classes, Objects, Αλλθλεπίδραςθ με αρχεία Ειςαγωγι αρκρωμάτων (modules): import

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

(3Μονάδεσ) Δεδομζνα //Α// Για i από 1 μζχρι 10 k (100+i)mod 101 B[k] A[i] Τζλοσ_επανάλθψθσ Αποτελζςματα //Β,k//

(3Μονάδεσ) Δεδομζνα //Α// Για i από 1 μζχρι 10 k (100+i)mod 101 B[k] A[i] Τζλοσ_επανάλθψθσ Αποτελζςματα //Β,k// Μάθημα: Ανάπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβάλλον Τάξη Γ Λυκείου, Πληροφορική Οικονομικών Καθηγητής : Σιαφάκασ Γιώργοσ Ημερομηνία : 21/2/2016 Διάρκεια: 3 ώρεσ ΘΕΜΑ Α /40 (Α1)Να απαντήςετε αν είναι

Διαβάστε περισσότερα

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι.

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι. 1 ο Σετ Ασκήσεων Δομή Επιλογής - Επανάληψης Άςκθςθ 1θ: Ζνα παιχνίδι με ηάρια παίηεται ωσ εξισ: Α. Ο παίκτθσ αρχικά ποντάρει κάποιο ποςό και ρίχνει δφο ηάρια. Β. Ο παίκτθσ κερδίηει (το ποςό που ζχει ποντάρει)

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Ενότητα 8: Ειδικά Θέματα Αλγορίθμων

Προγραμματισμός Η/Υ. Ενότητα 8: Ειδικά Θέματα Αλγορίθμων Προγραμματισμός Η/Υ Ενότητα 8: Ειδικά Θέματα Αλγορίθμων Νίκος Καρακαπιλίδης, Καθηγητής Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Κατανόηση

Διαβάστε περισσότερα

Μεθόδων Επίλυσης Προβλημάτων

Μεθόδων Επίλυσης Προβλημάτων ΕΠΛ 032.3: 3: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 12 Πολυδιάστατοι Πίνακες Πολυδιάστατοι πίνακες

Διαβάστε περισσότερα

Βαγγζλθσ Οικονόμου Διάλεξθ 7. Συναρτιςεισ Μζροσ 2ο

Βαγγζλθσ Οικονόμου Διάλεξθ 7. Συναρτιςεισ Μζροσ 2ο Συναρτιςεισ Μζροσ 2 ο Βαγγζλθσ Οικονόμου Διάλεξθ 7 1 Περιεχόμενα Βιβλιοκικεσ τθσ C Μεταβίβαςθ παραμζτρων παράδειγμα swap Αναδρομικότθτα Συναρτιςεισ και Πίνακεσ 2 H βαςικι βιβλιοκικθ τθσ C Η βαςικι βιβλιοκικθ

Διαβάστε περισσότερα

Κεφάλαιο 8.7. Πολυδιάστατοι Πίνακες (Διάλεξη 19)

Κεφάλαιο 8.7. Πολυδιάστατοι Πίνακες (Διάλεξη 19) Κεφάλαιο 8.7 Πολυδιάστατοι Πίνακες (Διάλεξη 19) Πολυδιάστατοι πίνακες Μέχρι τώρα μιλούσαμε για Μονοδιάστατους Πίνακες. ή π.χ. int age[5]= {31,28,31,30,31; για Παράλληλους πίνακες, π.χ. int id[5] = {1029,1132,1031,9991,1513;

Διαβάστε περισσότερα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ

Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ Δεκζμβριοσ 2016 Άςκθςθ 1 Θεωρείςτε ότι κζλουμε να διαγράψουμε τθν τιμι 43 ςτο Β+ δζντρο τθσ Εικόνασ 1. Η διαγραφι αυτι προκαλεί

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while )

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) 3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) Στα πιο πολλά προγράμματα απαιτείται κάποια ι κάποιεσ εντολζσ να εκτελοφνται πολλζσ φορζσ για όςο ιςχφει κάποια ςυνκικθ. Ο αρικμόσ των επαναλιψεων μπορεί να είναι

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)».

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εφδοξοσ+ Διαθζτοντασ βιβλία μζςω του «Εφδοξοσ+» Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εμφανίηεται θ λίςτα με όλα ςασ τα βιβλία. Από εδϊ μπορείτε: -

Διαβάστε περισσότερα

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μεταφραστές Γραμματικές Διδάσκων: Επικ. Καθ. Γεώργιος Μανής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Κεφάλαιο Πίνακες Ι. (Διάλεξη 16)

Κεφάλαιο Πίνακες Ι. (Διάλεξη 16) Κεφάλαιο 8.1-8.3 Πίνακες Ι (Διάλεξη 16) 15-1 Πίνακες (Arrays) Σε αυτή την ενότητα θα μιλήσουμε για την δομή δεδομένων Πίνακας: 1. Εισαγωγή & Σύνταξη 2. Δήλωση Πίνακα 3. Αρχικοποίηση Πίνακα 4. Πρόσβαση

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13

Διαβάστε περισσότερα

Υπολογιςτική πολυπλοκότητα αλγορίθμων γραμμικοφ προγραμματιςμοφ

Υπολογιςτική πολυπλοκότητα αλγορίθμων γραμμικοφ προγραμματιςμοφ Υπολογιςτική πολυπλοκότητα αλγορίθμων Διπλωματικι Εργαςία του φοιτθτι Οβελίδθ Παρίςθ Α.Μ.: 27/11 για το Μεταπτυχιακό ςτο Τμιμα Εφαρμοςμζνθσ Πλθροφορικισ Επιβλζπων Κακθγθτισ: Σαμαράσ Νικόλαοσ Πανεπιςτιμιο

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Επανάληψη Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό

Διαβάστε περισσότερα

Πωσ δθμιουργώ φακζλουσ;

Πωσ δθμιουργώ φακζλουσ; Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα

Διαβάστε περισσότερα

Μεθόδων Επίλυσης Προβλημάτων

Μεθόδων Επίλυσης Προβλημάτων ΕΠΛ 032.3: 3: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 11 Πίνακες Ι Πίνακες (Arrays) Σε αυτή την ενότητα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Επανάληψη σε συναρτήσεις Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Θ: διάλεξη (θεωρία)

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 11: Αντικειμενοςτραφήσ και αντικείμενοςχεςιακζσ βάςεισ Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Θ: διάλεξη (θεωρία)

Διαβάστε περισσότερα

Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8

Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8 Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 1000 1001 1002 1003 1004 1005 12 9.8 9976 3 1010 26 1006 1007 1008 1009 1010 1011 16 125 1299 a 13 1298 Δήλωση Δήλωση Τύπος

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΓΑΣΤΗΙΟ 3

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΓΑΣΤΗΙΟ 3 ΠΑΝΕΠΙΣΗΜΙΟ ΠΕΙΡΑΙΩ ΣΜΗΜΑ ΨΗΦΙΑΚΩΝ ΤΣΗΜΑΣΩΝ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΓΑΣΤΗΙΟ 3 ΔΕΣΡΟΙΝΑ ΡΑΡΑΚΩΝΣΤΑΝΤΙΝΟΥ dpap@unipi.gr ΡΑΑΚΟΛΟΥΘΗΣΗ ΥΡΑΛΛΗΛΩΝ ΕΤΑΙΙΑΣ ΕΩΤΗΜΑΤΑ SQL (1/2) Δθμιοφργθςε τουσ ακόλουκουσ πίνακεσ ςτον

Διαβάστε περισσότερα

1 ο Διαγώνιςμα για το Α.Ε.Π.Π.

1 ο Διαγώνιςμα για το Α.Ε.Π.Π. 1 ο Διαγώνιςμα για το Α.Ε.Π.Π. Θ Ε Μ Α Α Α 1. Ν α γ ρ ά ψ ε τ ε ς τ ο τ ε τ ρ ά δ ι ό ς α σ τ ο ν α ρ ι κ μ ό κ α κ ε μ ι ά σ α π ό τ ι σ π α ρ α κ ά τ ω π ρ ο τ ά ς ε ι σ 1-8 κ α ι δ ί π λ α τ θ λ ζ ξ

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 7: Ειςαγωγι ςτο Δυναμικό Προγραμματιςμό Κακθγθτισ Γιάννθσ Γιαννίκοσ Σχολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Τμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ

Διαβάστε περισσότερα

Κεφάλαιο 8.7. Πολυδιάστατοι Πίνακες ( ιάλεξη 18) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο 8.7. Πολυδιάστατοι Πίνακες ( ιάλεξη 18) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 8.7 Πολυδιάστατοι Πίνακες ( ιάλεξη 18) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Πολυδιάστατοι πίνακες Μέχρι τώρα µιλούσαµε για Μονοδιάστατους Πίνακες. ή π.χ. int age[5]= {31,28,31,30,31; για Παράλληλους πίνακες,

Διαβάστε περισσότερα

Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν. Κϊςτασ Αρβανιτάκθσ

Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν. Κϊςτασ Αρβανιτάκθσ Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν Κϊςτασ Αρβανιτάκθσ Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του

Διαβάστε περισσότερα

Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων. 14. Πίνακες Ι. Ιωάννης Κατάκης. ΕΠΛ 032: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων

Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων. 14. Πίνακες Ι. Ιωάννης Κατάκης. ΕΠΛ 032: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων 14. Πίνακες Ι Ιωάννης Κατάκης Πίνακες o Εισαγωγή o Δήλωση o Αρχικοποίηση o Πρόσβαση o Παραδείγματα 2 Πίνακες -Εισαγωγή o Μία δομή δεδομένων είναι ένα σύνολο

Διαβάστε περισσότερα

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7)

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7) (v.1.0.7) 1 Περίλθψθ Σο ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ Διαδικαςίασ Προγράμματοσ Ωρομζτρθςθσ. Παρακάτω προτείνεται μια αλλθλουχία ενεργειϊν τθν οποία ο χριςτθσ πρζπει

Διαβάστε περισσότερα

ΕΠΛ 034: Εισαγωγή στον Προγραμματισμό για ΗΜΥ

ΕΠΛ 034: Εισαγωγή στον Προγραμματισμό για ΗΜΥ ΕΠΛ 034: Εισαγωγή στον Προγραμματισμό για ΗΜΥ Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 10 Τύποι Δεδομένων και Εγγραφές Θέματα Διάλεξης Στην ενότητα

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 4 1. Επιμελητήριο... Error! Bookmark not defined. 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου...

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Σκοπός του μαθήματος Σκοπός του παρόντος μαθήματος είναι να μάθετε να κάνετε εισαγωγή δεδομένων σε πίνακες και περαιτέρω επεξεργασία

Διαβάστε περισσότερα

C: Από τη Θεωρία στην Εφαρμογή

C: Από τη Θεωρία στην Εφαρμογή Δρ. Γ. Σ. Τσελίκης Δρ. Ν. Δ. Τσελίκας C: Από τη Θεωρία στην Εφαρμογή Ενδεικτικές Ασκήσεις από το Βιβλίο C: Από τη Θεωρία στην Εφαρμογή (Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας) Ενδεικτικές Ασκήσεις του Βιβλίου Ε.Α.1

Διαβάστε περισσότερα

Τεχνικι Παρουςιάςεων με PowerPoint

Τεχνικι Παρουςιάςεων με PowerPoint Τεχνικι Παρουςιάςεων με PowerPoint Δρ. Παφλοσ Θεοδϊρου Ανϊτατθ Εκκλθςιαςτικι Ακαδθμία Ηρακλείου Κριτθσ Περιεχόμενα Ειςαγωγι Γιατί πρζπει να γίνει παρουςίαςθ τθσ εργαςίασ μου Βαςικι προετοιμαςία Δομι παρουςίαςθσ

Διαβάστε περισσότερα

22. Ασκήσεις Επανάληψης

22. Ασκήσεις Επανάληψης Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 22. Ασκήσεις Επανάληψης Ιωάννθσ Κατάκθσ Μετατροπι χαρακτιρων Να γίνει πρόγραμμα που κα δζχεται ςυνεχώσ χαρακτιρεσ μζχρι να πατθκεί το ESC και να μετατρζπει

Διαβάστε περισσότερα

Μεθόδων Επίλυσης Προβλημάτων

Μεθόδων Επίλυσης Προβλημάτων ΕΠΛ 032.3: 3: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy ιάλεξη 18 - Παραδείγματα Πίνακες Μονοδιάστατοι Πίνακες

Διαβάστε περισσότερα

Visual C Express - Οδηγός Χρήσης

Visual C Express - Οδηγός Χρήσης Visual C++ 2008 Express - Οδηγός Χρήσης Ζερβός Μιχάλης, Πρίντεζης Νίκος Σκοπόσ του οδθγοφ αυτοφ είναι να παρουςιάςει τισ βαςικζσ δυνατότθτεσ του Visual C++ 2008 Express Edition και πωσ μπορεί να χρθςιμοποιθκεί

Διαβάστε περισσότερα

Δζντρα. Δομζσ Δεδομζνων

Δζντρα. Δομζσ Δεδομζνων Δζντρα Δομζσ Δεδομζνων Περιεχόμενα Δζντρα Γενικζσ ζννοιεσ Κόμβοσ ενόσ δζντρου Δυαδικά δζντρα αναηιτθςθσ Αναηιτθςθ Κόμβου Ειςαγωγι ι δθμιουργία κόμβου Δζντρα Γενικζσ ζννοιεσ Οι προθγοφμενεσ δομζσ που εξετάςτθκαν

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Πίνακες (μονοδιάστατοι και πολυδιάστατοι) Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν

Διαβάστε περισσότερα

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7)

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7) Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων (v.1.0.7) 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ ςτθλών βιβλίου Εςόδων - Εξόδων.

Διαβάστε περισσότερα

Επαναλθπτικζσ Αςκιςεισ

Επαναλθπτικζσ Αςκιςεισ Επαναλθπτικζσ Αςκιςεισ Αςκιςεισ Ρίνακεσ Τιμϊν Άσκηση 1 η Γίλεηαη o παξαθάησ αιγόξηζκνο, ζηνλ νπνίν έρνπλ αξηζκεζεί νη εληνιέο εθρώξεζεο: Αιγόξηζκνο Πνιιαπιαζηαζκόο Γεδνκέλα //α,β// Αλ α > β ηόηε αληηκεηάζεζε

Διαβάστε περισσότερα

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων).

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_ (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). Βαςικοί παράμετροι @EDT@_ @CHK@_ @CXD@_ @CXDC@_ @CMB@_ @CHKLB@_ Παράμετροσ που

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Δίκτυα Επικοινωνιϊν ΙΙ Διδάςκων: Απόςτολοσ Γκάμασ (Διδάςκων ΠΔ 407/80) Βοθκόσ Εργαςτθρίου: Δθμιτριοσ Μακρισ Ενδεικτική Λύση 2

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Εργονομία, ωςτι ςτάςθ εργαςίασ, Εικονοςτοιχείο (pixel), Ανάλυςθ οκόνθσ (resolution), Μζγεκοσ οκόνθσ Ποιεσ επιπτϊςεισ μπορεί να ζχει θ πολφωρθ χριςθ του υπολογιςτι ςτθν

Διαβάστε περισσότερα

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3)

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Το όνομα ενόσ πίνακα, όπωσ και κάκε άλλου αντικειμζνου, μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Το όνομα ενόσ πεδίου μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Κάκε

Διαβάστε περισσότερα

Βάρειπ Δεδξμέμωμ. Επγαστήπιο ΙΙ. Τμήμα Πλεπουοπικήρ ΑΠΘ

Βάρειπ Δεδξμέμωμ. Επγαστήπιο ΙΙ. Τμήμα Πλεπουοπικήρ ΑΠΘ Βάρειπ Δεδξμέμωμ Επγαστήπιο ΙΙ Τμήμα Πλεπουοπικήρ ΑΠΘ 2016-2017 2 Σκξπόπ ςξσ 2 ξσ εογαρςηοίξσ Σκοπόρ αςτού τος επγαστεπίος είναι: Η μελέτε επωτεμάτων σε μία μόνο σσέσε. Εξετάδοςμε τοςρ τελεστέρ επιλογήρ

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 5 η : Η Μζθοδοσ Simplex Παρουςίαςη τησ μεθόδου Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

Στατιςτικζσ δοκιμζσ. Συνεχι δεδομζνα. Γεωργία Σαλαντι

Στατιςτικζσ δοκιμζσ. Συνεχι δεδομζνα. Γεωργία Σαλαντι Στατιςτικζσ δοκιμζσ Συνεχι δεδομζνα Γεωργία Σαλαντι Τι κζλουμε να ςυγκρίνουμε; Δφο δείγματα Μζςθ αρτθριακι πίεςθ ςε δφο ομάδεσ Πικανότθτα κανάτου με δφο διαφορετικά είδθ αντικατακλιπτικϊν Τθν μζςθ τιμι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ Οδηγός Χρήσης Εφαρμογής Ελέγχου Προσφορών Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα ωσ Πάροχοσ Προςφορϊν, κα λάβετε ζνα e-mail με

Διαβάστε περισσότερα

Εύρεςη Διαμέςου ςε κατανεμημένα δεδομένα με ΜΡΙ

Εύρεςη Διαμέςου ςε κατανεμημένα δεδομένα με ΜΡΙ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Τ ΑΠΘ ΣΟΜΕΑ ΗΛΕΚΣΡΟΝΙΚΗ ΚΑΙ Η/Τ Εύρεςη Διαμέςου ςε κατανεμημένα δεδομένα με ΜΡΙ Παράλλθλα και Διανεμθμζνα υςτιματα 2θ Εργαςία Μόςχογλου τυλιανόσ(697) - Καηά

Διαβάστε περισσότερα

i : 0<=i data[i] <= data[i+1] 25/10/2009

i : 0<=i<N-1 => data[i] <= data[i+1] 25/10/2009 Προγραµµατισµός Ι (ΗΥ120) ιάλεξη 10: Ταξινόµηση Πίνακα Αναζήτηση σε Ταξινοµηµένο Πίνακα Πρόβληµα ίνεται πίνακας tαπό Νακεραίους. Ζητούµενο: να ταξινοµηθούν τα περιεχόµενα του πίνακα σε αύξουσα αριθµητική

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Ραραμετροποίθςθ ειςαγωγισ δεδομζνων περιόδων

Ραραμετροποίθςθ ειςαγωγισ δεδομζνων περιόδων Παραμετροποίηςη ειςαγωγήσ δεδομζνων περιόδων 1 1 Περίληψη Το παρόν εγχειρίδιο παρουςιάηει αναλυτικά τθν παραμετροποίθςθ τθσ ειςαγωγισ αποτελεςμάτων μιςκοδοτικϊν περιόδων. 2 2 Περιεχόμενα 1 Ρερίλθψθ...2

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Έλεγχος ροής Δομή επιλογής (if, switch) Δομές επανάληψης (while, do-while, for) Διακλάδωση

Διαβάστε περισσότερα

Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση

Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση 1 Ταξινόµηση! Δεδοµένα: Δίνεται ένας πίνακας data από N ακεραίους! Ζητούµενο: Να ταξινοµηθούν τα περιεχόµενα σε αύξουσα αριθµητική σειρά:!i : 0 data[i]

Διαβάστε περισσότερα

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων) 1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ

Διαβάστε περισσότερα

Βαςεις δεδομενων 1. Δρ. Αλζξανδροσ Βακαλουδθσ

Βαςεις δεδομενων 1. Δρ. Αλζξανδροσ Βακαλουδθσ Βαςεις δεδομενων 1 Δρ. Αλζξανδροσ Βακαλουδθσ επικοινωνια Email: avakaloudis@hotmail.com Website: http://teiser.alvak.gr Ερωτιςεισ Στο ΤΕΙ Σερρϊν Δευτζρα, Τριτθ (κατοπιν ςυννενόθςθσ) Σιμερα Μοντζλο οντοτιτων

Διαβάστε περισσότερα

Αναφορά Εργαςίασ Nim Game

Αναφορά Εργαςίασ Nim Game Αναφορά Εργαςίασ Nim Game Αυτόνομοι Πράκτορεσ (ΠΛΗ 513) Βαγενάσ Σωτιριοσ 2010030034 Ειςαγωγή Για τθν εργαςία του μακιματοσ αςχολικθκα με το board game Nim. Ρρόκειται για ζνα παιχνίδι δφο παιχτϊν (2-player

Διαβάστε περισσότερα

Κεφάλαιο Πίνακες Ι. ( ιάλεξη 15) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο Πίνακες Ι. ( ιάλεξη 15) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 8.1-8.3 Πίνακες Ι ( ιάλεξη 15) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 15-1 Πίνακες (Arrays) Σε αυτή την ενότητα θα µιλήσουµε για την δοµή δεδοµένων Πίνακας: 1. Εισαγωγή & Σύνταξη 2. ήλωση Πίνακα 3. Αρχικοποίηση

Διαβάστε περισσότερα

Ηλεκτρονικι Υπθρεςία Ολοκλθρωμζνθσ Διαχείριςθσ Συγγραμμάτων και Λοιπϊν Βοθκθμάτων

Ηλεκτρονικι Υπθρεςία Ολοκλθρωμζνθσ Διαχείριςθσ Συγγραμμάτων και Λοιπϊν Βοθκθμάτων Ηλεκτρονικι Υπθρεςία Ολοκλθρωμζνθσ Διαχείριςθσ Συγγραμμάτων και Λοιπϊν Βοθκθμάτων ΟΔΗΓΟΣ ΕΦΑΡΜΟΓΗΣ ΒΙΒΛΙΟΘΗΚΩΝ ΙΔΡΥΜΑΤΩΝ 1/13 2/13 Οδθγίεσ Χριςθσ Εφαρμογισ Βιβλιοκθκϊν Ιδρυμάτων 1. Είςοδοσ ςτθν Εφαρμογι

Διαβάστε περισσότερα

Διαδικασία Δημιοσργίας Ειδικών Λογαριασμών. (v.1.0.7)

Διαδικασία Δημιοσργίας Ειδικών Λογαριασμών. (v.1.0.7) Διαδικασία Δημιοσργίας Ειδικών Λογαριασμών (v.1.0.7) 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δημιουργήθηκε για να βοηθήςει την κατανόηςη τησ διαδικαςίασ δημιουργίασ ειδικών λογαριαςμών. Παρακάτω προτείνεται

Διαβάστε περισσότερα

Εφαρμογέσ Μικροχπολογιςτών ςτισ Τηλεπικοινωνίεσ. Έλεγχοσ ςειριακήσ θφρασ του 8051 (Serial Port)

Εφαρμογέσ Μικροχπολογιςτών ςτισ Τηλεπικοινωνίεσ. Έλεγχοσ ςειριακήσ θφρασ του 8051 (Serial Port) Εφαρμογέσ Μικροχπολογιςτών ςτισ Τηλεπικοινωνίεσ Έλεγχοσ ςειριακήσ θφρασ του 8051 (Serial Port) 8051 Serial Ports Port Bit Name Alternate Function P3.0 RxD Receive data for serial port P3.1 TxD Transmit

Διαβάστε περισσότερα

ΕΠΛ 034: Εισαγωγή στον Προγραμματισμό για ΗΜΥ

ΕΠΛ 034: Εισαγωγή στον Προγραμματισμό για ΗΜΥ ΕΠΛ 034: Εισαγωγή στον Προγραμματισμό για ΗΜΥ Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 9 Πολυδιάστατοι Πίνακες Θέματα Διάλεξης Στην ενότητα αυτή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Υπεφκυνοι αςκιςεων: Αν. Κακθγθτισ Δ. Σοφντρθσ Μεταδιδάκτορασ Λάηαροσ Παπαδόπουλοσ Αςκήςεισ ςτη Βελτιςτοποίηςη Δυναμικϊν Δομϊν Δεδομζνων (Dynamic Data Type Refinement

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου) ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου) 19 Μαρτίου 011 10:00-11:15 3 point/μονάδες 1) Μια διάβαςθ πεηϊν ζχει άςπρεσ και μαφρεσ λωρίδεσ, πλάτουσ 50 cm. ε ζνα δρόμο θ διάβαςθ ξεκινά και τελειϊνει με άςπρεσ

Διαβάστε περισσότερα

Οδθγίεσ εγκατάςταςθσ και ρυκμίςεισ του ηυγοφ DIGI SM100

Οδθγίεσ εγκατάςταςθσ και ρυκμίςεισ του ηυγοφ DIGI SM100 Οδθγίεσ εγκατάςταςθσ και ρυκμίςεισ του ηυγοφ DIGI SM100 ΠΕΡΙΕΧΟΜΕΝΑ Γενικά Είςοδοσ ςτο πρόγραμμα Ρυιμίςεισ ζυγοφ Αλλαγι IP διεφκυνςθσ ηυγοφ Ρυκμίςεισ επικοινωνίασ Αποκικευςθ Ρυιμίςεισ εφαρμογθσ DIGICOM

Διαβάστε περισσότερα

Κεφάλαιο 4: Συνθήκες Έλεγχου (if-else, switch) και Λογικοί τελεστές / παραστάσεις. (Διάλεξη 8)

Κεφάλαιο 4: Συνθήκες Έλεγχου (if-else, switch) και Λογικοί τελεστές / παραστάσεις. (Διάλεξη 8) Κεφάλαιο 4: Συνθήκες Έλεγχου (if-else, switch) και Λογικοί τελεστές / παραστάσεις (Διάλεξη 8) 8-1 Τι θα δούμε σήμερα Η εντολή if else Η εντολή if else ιf - -else H εντολή switch Λογικές παραστάσεις Σχεσιακοί

Διαβάστε περισσότερα

Η γλώσσα προγραμματισμού C

Η γλώσσα προγραμματισμού C Η γλώσσα προγραμματισμού C Οι πίνακες στη C (μονοδιάστατοι πίνακες) Γενικά για τους πίνακες Ο πίνακας είναι μια αρκετά διαδεδομένη δομή που προσφέρεται από σχεδόν κάθε γλώσσα προγραμματισμού. Πρόκειται

Διαβάστε περισσότερα

ΧΡΗΙΜΟΠΟΙΩΝΣΑ ΣΟ VISUAL HISTORY ARCHIVE

ΧΡΗΙΜΟΠΟΙΩΝΣΑ ΣΟ VISUAL HISTORY ARCHIVE ΧΡΗΙΜΟΠΟΙΩΝΣΑ ΣΟ VISUAL HISTORY ARCHIVE Ένασ βιμα προσ βιμα οδθγόσ μιασ απλισ αναηιτθςθσ ςτο Visual History Archive. Για μια πλιρθ περιγραφι του τρόπου χριςθσ του Visual History Archive ςυμβουλευτείτε

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 6 Πίνακες Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Τύπος πίνακα (array) Σύνθετος τύπος δεδομένων Αναπαριστά ένα σύνολο ομοειδών

Διαβάστε περισσότερα