Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β"

Transcript

1 Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β Κουγιουμτζής Δημήτρης Τμήμα Πολιτικών Μηχανικών Α.Π.Θ. Θεσσαλονίκη, Μάρτιος 4

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Common. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

3 Μέρος B Στατιστική Άσκηση [Θέµα στις εξετάσεις Φεβρουαρίου ] (α) Αν δύο τυχαίες µεταβλητές X και X έχουν κοινή διασπορά είναι οι αµερόληπτες δειγµατικές διασπορές των X και δείγµατα µεγέθους n και n, δείξτε ότι η εκτιµήτρια σ είναι επίσης αµερόληπτη. σ, και, X, αντίστοιχα, από ( n ) + ( n ) = n+ n (β) ύο εργοστάσια Α και Β παραγωγής χάλυβα θέλουν να εκτιµήσουν την περιεκτικότητα του χάλυβα σε ραδιενέργεια και γι αυτό έκαναν τις παρακάτω µετρήσεις ραδιενέργειας (η ραδιενέργεια µετριέται σε Bq/g) σε τυχαία δοκίµια χάλυβα: οκίµια Α (Bq/g) B (Bq/g) Θεωρούµε ότι η περιεκτικότητα του χάλυβα σε ραδιενέργεια ακολουθεί κανονική κατανοµή και η διασπορά της ραδιενέργειας στο χάλυβα είναι ίδια για τα δύο εργοστάσια ( σ = σ = ) σ () Εκτιµήστε τη µέση ραδιενέργεια στο χάλυβα για το εργοστάσιο Α και Β (σηµειακή εκτίµηση και 95% διάστηµα εµπιστοσύνης). () Το µέσο ανώτατο επιτρεπτό όριο µέσης ραδιενέργειας στο χάλυβα είναι.5bq/g. Με βάση τα παραπάνω δείγµατα και µε εµπιστοσύνη σε επίπεδο 95% θα γινόταν αποδεκτός στην αγορά ο χάλυβας από το εργοστάσιο Α? Από το εργοστάσιο Β? () Ελέγξτε σε επίπεδο εµπιστοσύνης 95% αν η µέση ραδιενέργεια στο χάλυβα των δύο εργοστασίων είναι ίδια. [Για την απάντηση σας στα ερωτήµατα () και () µπορείτε να χρησιµοποιήσετε διάστηµα εµπιστοσύνης ή στατιστικό έλεγχο] Λύση (α) Για να είναι η εκτιµήτρια Έχουµε της κοινής διασποράς σ θα πρέπει της E( ) = σ. E( ) ( n ) E + ( n ) ( n )E( ) + ( n )E( ) ( n ) σ + ( n ) σ ( n ) σ + ( n ) σ = = σ. n + n = = = n+ n n+ n n+ n (β) Η ραδιενέργεια του χάλυβα στα δύο εργοστάσια είναι οι δύο τ.µ. X και X που ακολουθούν κανονική κατανοµή και έχουν κοινή αλλά άγνωστη διασπορά ( σ = σ = ). Έχουµε n =, n = 5. σ 6

4 () Υπολογίζουµε τις δειγµατικές µέσες τιµές, διασπορές και τυπικές αποκλίσεις για τα n n δύο δείγµατα. (τυπολόγιο: x = x, = n = x nx ) n = x =.5, x =.37, =.7377, =.7 =.6979, =.64. Οι δύο δειγµατικές µέσες τιµές x =.5 και x =.37αποτελούν τις σηµειακές εκτιµήσεις της µέσης ραδιενέργειας χάλυβα στα δύο εργοστάσια. Το 95% διάστηµα εµπιστοσύνης (δ.ε.) της µέσης ραδιενέργειας χάλυβα στα δύο εργοστάσια δίνεται από τον τύπο για µικρό δείγµα, και τ.µ. µε άγνωστη διασπορά που ακολουθεί κανονική κατανοµή, κάνοντας χρήση της κρίσιµης τιµής t α /, n της κατανοµής tudent, δηλαδή είναι x ± t a/, n (τυπολόγιο). n Για το πρώτο εργοστάσιο, επίπεδο σηµαντικότητας α =.5, έχουµε από τον στατιστικό πίνακα για την κατανοµή tudent t.975,9 =.6 και το 95% δ.ε. είναι.7.5 ±.6.5 ±.94 [.38,.696]. Αντίστοιχα για το δεύτερο εργοστάσιο έχουµε την κρίσιµη τιµή t.975,4 =.4 και το 95% δ.ε. είναι.64.37± ±.46 [.5,.57]. Η µέση ραδιενέργεια του χάλυβα είναι πολύ πιθανό (µε εµπιστοσύνη σε επίπεδο 95%) να βρίσκεται µεταξύ.38 Bq/g και.696 Bq/g για το εργοστάσιο Α και µεταξύ.5 Bq/g και.57 Bq/g για το εργοστάσιο Β. () Χρησιµοποιώντας διάστηµα εµπιστοσύνης.: Με βάση τα παραπάνω αποτελέσµατα, το µέσο ανώτατο επιτρεπτό όριο µέσης ραδιενέργειας στο χάλυβα είναι.5 Bq/g περιέχεται στο 95% δ.ε. της µέσης ραδιενέργειας και για τα δύο εργοστάσια, που σηµαίνει ότι η µέση ραδιενέργεια του χάλυβα µπορεί να ξεπεράσει το µέσο επιτρεπτό όριο. Άρα ο χάλυβας και από τα δύο εργοστάσια δε θα γίνει αποδεκτός. Χρησιµοποιώντας έλεγχο υπόθεσης.: Για να απαντήσουµε στο ερώτηµα, µπορούµε εναλλακτικά να κάνουµε έλεγχο υπόθεσης για το αν η µέση ραδιενέργεια µπορεί να πάρει την τιµή µ =.5. Η : µ = µ Η : µ µ [δίπλευρος έλεγχος] Για µικρό δείγµα και τ.µ. µε άγνωστη διασπορά που ακολουθεί κανονική κατανοµή, η x µ στατιστική για τον έλεγχο αυτό είναι t = ~t n (δεν υπάρχει στο τυπολόγιο, n προκύπτει άµεσα από το αντίστοιχο δ.ε. στο τυπολόγιο). Η απορριπτική περιοχή R για επίπεδο σηµαντικότητας α =.5 σχηµατίζεται από την κρίσιµη τιµή t α /, n R= t t > t α /, n. της κατανοµής tudent : { } Για το εργοστάσιο Α είναι R { t t.6} = >. Η δειγµατική στατιστική είναι 7

5 .5.5 t = =.3. Ισχύει t R και δεν απορρίπτεται η Η..7 / R = t t >.4. Η δειγµατική στατιστική είναι Για το εργοστάσιο Α είναι { }.37.5 t = =.4. Ισχύει και πάλι t R και δεν απορρίπτεται η Η. Άρα και.64 / 5 για τα δύο εργοστάσια η µέση ραδιενέργεια του χάλυβα µπορεί να είναι.5 Bq/g, δηλαδή να ξεπεράσει το µέσο επιτρεπτό όριο και ο χάλυβας και από τα δύο εργοστάσια δε θα γίνει αποδεκτός. Θα µπορούσαµε να κάνουµε µονόπλευρο έλεγχο, δηλαδή να εξετάσουµε για την εναλλακτική υπόθεση Η : µ < µ, όποτε και θα άλλαζε η απορριπτική περιοχή, δηλαδή θα ήταν R { t t t α, n } = < (θα εξετάζαµε µόνο αν η δειγµατική στατιστική t µπορεί να βρίσκεται στην αριστερή ουρά της κατανοµής tudent). Τα συµπεράσµατα θα ήταν τα ίδια αφού οι δειγµατικές στατιστικές και για τα δύο δείγµατα δεν είναι κοντά στην αριστερή ουρά της κατανοµής tudent. () Υπολογίζουµε πρώτα τη διαφορά των δειγµατικών µέσων τιµών x x =.3 και την εκτίµηση της κοινής διασποράς ( n ) + ( n ) = = = n+ n (δεν υπάρχει στο τυπολόγιο, προκύπτει ως σταθµισµένος µέσος των δύο δειγµατικών διασπορών σταθµίζοντας µε τους βαθµούς ελευθερίας κάθε δείγµατος (µέγεθος δείγµατος - ) Χρησιµοποιώντας διάστηµα εµπιστοσύνης.: Χρησιµοποιούµε το 95% διάστηµα εµπιστοσύνης (δ.ε.) για τη διαφορά της µέσης ραδιενέργειας χάλυβα στα δύο εργοστάσια µ µ. Εδώ έχουµε ότι τα δύο δείγµατα είναι µικρά και οι τ.µ. ακολουθούν κανονική κατανοµή αλλά µε άγνωστη και κοινή διασπορά. Γι αυτό κάνουµε χρήση του τύπου που βασίζεται στην κατανοµή tudent και η κρίσιµη τιµή είναι t.975,3 =.7. Το 95% δ.ε. είναι x x ± t a/, n + n + (τυπολόγιο) n n ( ) και έχουµε.3± ±.6 [-.94,.357]. Παρατηρούµε ότι το δ.ε. περιέχει το, έστω και οριακά, δηλαδή η διαφορά µ µ µπορεί να είναι και, άρα οι δύο µέσες ραδιενέργειες σε χάλυβα του εργοστασίου Α και Β δε φαίνεται να διαφέρουν (σε επίπεδο εµπιστοσύνης 95%). Χρησιµοποιώντας έλεγχο υπόθεσης.: Ελέγχουµε την υπόθεσης η µέση ραδιενέργεια να είναι ίδια στους χάλυβες των δύο εργοστασίων. Η : µ = µ ή µ µ = Η : µ µ [δίπλευρος έλεγχος] Η στατιστική για τον έλεγχο αυτόν ακολουθεί κατανοµή tudent και είναι 8

6 ( x x ) ( µ µ ) ( x x ) t = + + n n n n ~ t n+ n (δεν υπάρχει στο τυπολόγιο, προκύπτει άµεσα από το αντίστοιχο δ.ε. στο τυπολόγιο) Η απορριπτική περιοχή R για επίπεδο σηµαντικότητας α =.5 σχηµατίζεται από την κρίσιµη τιµή.975,3.7 R = t t >.7. Η t = της κατανοµής tudent : { } δειγµατική στατιστική είναι.3 t = =.. Ισχύει t R και δεν απορρίπτεται η Η, οριακά.67 / + /5 όµως καθώς η τιµή της δειγµατικής στατιστικής t είναι πολύ κοντά στην κρίσιµη τιµή για τη δεξιά ουρά. Έτσι παρ όλο που φαίνεται (µε δ.ε. και έλεγχο υπόθεσης) η µέση ραδιενέργεια στο χάλυβα του εργοστασίου Α να είναι µεγαλύτερη από αυτή του εργοστασίου Β, η διαφορά αυτή δε βρέθηκε σηµαντική σε επίπεδο εµπιστοσύνης 95%.. Άσκηση [Θέµα στις εξετάσεις Φεβρουαρίου ] Στον παρακάτω πίνακα δίνεται για σταθµούς ο αριθµός των ηµερών σ ένα χρόνο που η θερµοκρασία έπεσε κάτω από ο C και το υψόµετρο τους. Υψόµετρο (µ) Αριθµός ηµερών (α) Υποθέτουµε ότι ο αριθµός των ηµερών Υ εξαρτάται γραµµικά από το υψόµετρο Χ ( Ε(Υ X=x) = α+βx ). Σχηµατίστε το κατάλληλο διάγραµµα διασποράς και σχολιάστε αν αυτή η υπόθεση φαίνεται σωστή µε βάση το δείγµα των παρατηρήσεων του πίνακα. (β) Υπολογίστε τις σηµειακές εκτιµήσεις a και b των παραµέτρων α και β της ευθείας παλινδρόµησης (µε τη µέθοδο των ελαχίστων τετραγώνων). (γ) Με βάση το δείγµα, µπορείτε να εκτιµήσετε το µέσο αριθµό ηµερών το χρόνο που η θερµοκρασία πέφτει κάτω από ο C σε υψόµετρο 5µ; Σε υψόµετρο µ; Λύση (α) Η ανεξάρτητη µεταβλητή X είναι το υψόµετρο του σταθµού και η εξαρτηµένη µεταβλητή Y είναι ο αριθµός των ηµερών σ ένα χρόνο που η θερµοκρασία έπεσε κάτω από ο C. Σχηµατίζουµε το διάγραµµα διασποράς. 8 y [n day] x [n m] 9

7 Από το διάγραµµα διασποράς φαίνεται να υπάρχει γραµµική θετική εξάρτηση γιατί όταν µεγαλώνει το υψόµετρο πληθαίνουν αναλογικά οι µέρες που η θερµοκρασία πέφτει κάτω από ο C. Φαίνεται επίσης η εξάρτηση αυτή να είναι ισχυρή γιατί µπορούµε να καθορίσουµε µε αρκετή ακρίβεια των αριθµό των ηµερών ανά έτος που η θερµοκρασία πέφτει κάτω από ο C όταν γνωρίζουµε το υψόµετρο (τα σηµεία βρίσκονται πολύ κοντά σε µια νοητή ευθεία). (β) Έχουµε δείγµα µεγέθους n =. Υπολογίζουµε τα παρακάτω: x = 368 y = 5.9 = x = 95 = x y = 7677 και βρίσκουµε τη δειγµατική διασπορά της X καθώς και τη δειγµατική συνδιασπορά των X και Y : n X = x nx ( ) n = = (τυπολόγιο) = 9 n XY = x y nx y ( ) 64 n = =. (τυπολόγιο) = 9 Στη συνέχεια εκτιµούµε τις παραµέτρους της ευθείας ελαχίστων τετραγώνων, δηλαδή του µοντέλου γραµµικής παλινδρόµησης: 64 b = = =.74 (τυπολόγιο) XY X a= y b x = = 47.6 (τυπολόγιο) και η ευθεία ελαχίστων τετραγώνων είναι y = x. (γ) Κάνουµε προβλέψεις χρησιµοποιώντας την ευθεία ελαχίστων τετραγώνων για υψόµετρα µέσα στο εύρος του δείγµατος από µ µέχρι 95µ. Για υψόµετρο x = 5, έχουµε y = = 6.46 και άρα περιµένουµε 6 µέρες το χρόνο να πέφτει η θερµοκρασία κάτω από ο C. Για υψόµετρο x = δε µπορούµε να κάνουµε πρόβλεψη γιατί δεν είναι µέσα στο εύρος γνωστών υψοµέτρων για τα οποία ισχύει το γραµµικό µοντέλο. Άσκηση 3 [Θέµα στις εξετάσεις Φεβρουαρίου 4] ίνονται οι παρακάτω µετρήσεις (α) Σχεδιάστε το θηκόγραµµα αφού εξηγήσετε πως προέκυψαν οι 5 αριθµοί που χρησιµοποιήσατε για να το σχεδιάσετε. (β) Σχολιάστε αν η κατανοµή της µεταβλητής στην οποία αναφέρονται οι µετρήσεις φαίνεται να είναι κανονική. Λύση (α) Παραθέτουµε τις παρατηρήσεις σε αύξουσα σειρά βρίσκουµε: x mn = 3 Q = 5 x = 7.5 Q 3 = x max = 3

8 και σχηµατίζουµε το θηκόγραµµα, όπως στο παρακάτω σχήµα (σε κατακόρυφη θέση). Column Number Value (β) Το δείγµα περιέχει µια απόµακρη τιµή, την τιµή 3. Η ύπαρξη µιας τόσης ακραίας τιµής σε ένα µικρό δείγµα παρατηρήσεων δηµιουργεί κάποια ανησυχία για το αν η κατανοµή της τυχαίας µεταβλητής είναι κανονική. Άσκηση 4 [Θέµα στις εξετάσεις Φεβρουαρίου 4] Ένας δείκτης της κυκλοφορίας οχηµάτων είναι ο αριθµός χιλιοµέτρων που κάνει ένα όχηµα το χρόνο. Για µια περιοχή Α συλλέξαµε ένα τυχαίο δείγµα αυτοκινήτων και καταγράψαµε για κάθε αυτοκίνητο τον αριθµό χιλιοµέτρων που διένυσε τον τελευταίο χρόνο. ίνονται τα παρακάτω αποτελέσµατα για το δείγµα: µέση τιµή x = 45 km, τυπική απόκλιση = 4 km (α) Υπολογίστε το 95% διάστηµα εµπιστοσύνης για το µέσο αριθµό χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α. Κάνετε το ίδιο για 99% επίπεδο εµπιστοσύνης και συγκρίνετε τα δύο διαστήµατα εµπιστοσύνης. (β) Σε ίδια µελέτη που έγινε πριν χρόνια είχε βρεθεί πως η τυπική απόκλιση ήταν 3 km. Εξετάστε µε βάση το νέο δείγµα και σε επίπεδο εµπιστοσύνης 9% αν µπορούµε να δεχτούµε ότι η τυπική απόκλιση δεν άλλαξε σηµαντικά [µπορείτε να χρησιµοποιήσετε διάστηµα εµπιστοσύνης ή έλεγχο υπόθεσης]. Λύση (α) Έχουµε n =, x = 45 km και = 4 km. Άρα το (-α)% διάστηµα εµπιστοσύνης (δ.ε.) για το µέσο αριθµό χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α θα δίνεται από τον τύπο για µεγάλο δείγµα και άγνωστη διασπορά, κάνοντας χρήση της κρίσιµης τιµής z α / της τυπικής κανονικής κατανοµής, δηλαδή είναι x ± za / (τυπολόγιο). n Για α =.5 έχουµε από τον στατιστικό πίνακα για την τυπική κανονική κατανοµή z.975 =.96 και το 95% δ.ε. είναι 4 45 ± ± [ , ]. Για α =. έχουµε από τον στατιστικό πίνακα για την τυπική κανονική κατανοµή z.995 =.58 και το 99% δ.ε. είναι 4 45 ± ± [377.45, 58.55].

9 Παρατηρούµε ότι το 99% δ.ε. για το µέσο αριθµό χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α είναι µεγαλύτερο από αυτό για 95% επίπεδο εµπιστοσύνης, όπως αναµένεται αφού αυξάνουµε την εµπιστοσύνη (πιθανότητα) το διάστηµα αυτό να περιέχει το πραγµατικό µέσο αριθµό χιλιοµέτρων. (β) Χρησιµοποιώντας διάστηµα εµπιστοσύνης: Βρίσκουµε πρώτα το 9% δ.ε. για τη διασπορά του αριθµού χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α. Αυτό δίνεται κάνοντας χρήση της X κατανοµής και είναι ( n ) ( n ), (τυπολόγιο). χn, a / χ n, a / Για α =. έχουµε από τον στατιστικό πίνακα για την X κατανοµή ότι η αριστερή κρίσιµη τιµή είναι χ = και η δεξιά χ = (οι τιµές.5, , αυτές δεν συµπεριλαµβάνονται στον πίνακα που έχει ως βαθµούς ελευθερίας). Το 9% δ.ε. για τη διασπορά είναι , [ , ] Το αντίστοιχο δ.ε. για την τυπική απόκλιση προκύπτει παίρνοντας τη τετραγωνική ρίζα των ορίων του παραπάνω διαστήµατος και άρα το 9% δ.ε. για την τυπική απόκλιση του αριθµού χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α είναι [3697.4, 436.7]. Το διάστηµα αυτό δεν περιέχει την εµπειρική τιµή 3 km και άρα η τυπική απόκλιση άλλαξε σηµαντικά από αυτήν που είχαµε εκτιµήσει πριν χρόνια. Χρησιµοποιώντας έλεγχο υπόθεσης.: Κάνουµε έλεγχο υπόθεσης για το αν η 6 διασπορά µπορεί να πάρει την τιµή σ = 3 = 9. Η : σ = σ Η : σ σ [δίπλευρος έλεγχος] Η απορριπτική περιοχή R για επίπεδο σηµαντικότητας α =. σχηµατίζεται από τις δύο κρίσιµες τιµές της R = χ χ < χ > 3.9. Η δειγµατική στατιστική είναι ( n ) 99 4 χ = = = 354. σ 3 X κατανοµής : { } (δεν υπάρχει στο τυπολόγιο, προκύπτει άµεσα από το αντίστοιχο δ.ε. στο τυπολόγιο) Ισχύει χ R και άρα απορρίπτεται η Η και συµπεραίνουµε ότι µε 9% εµπιστοσύνη (πιθανότητα) δε δεχόµαστε ότι η εµπειρική τιµή 3 km που είχαµε εκτιµήσει πριν χρόνια για την τυπική απόκλιση του αριθµού χιλιοµέτρων µπορεί να ισχύει και τώρα. Άσκηση 5 [Θέµα στις εξετάσεις Φεβρουαρίου 4] Σε µια έρευνα στις Η.Π.Α. για την επίδραση του πληθυσµού της πόλης στη συγκέντρωση του όζοντος συγκεντρώθηκαν τα παρακάτω στοιχεία. Ο πληθυσµός των πόλεων δίνεται σε εκατοµµύρια και η συγκέντρωση του όζοντος που µετρήθηκε σε κάθε πόλη δίνεται σε b [art er bllon] ανά ώρα.

10 Πληθυσµός πόλης Συγκέντρωση όζοντος (α) Σχηµατίστε το κατάλληλο διάγραµµα διασποράς. Εκτιµείστε το συντελεστή συσχέτισης µεταξύ της συγκέντρωσης του όζοντος και του πληθυσµού της πόλης. Με βάση αυτά τα αποτελέσµατα σχολιάστε αν φαίνεται να υπάρχει εξάρτηση της συγκέντρωσης του όζοντος από τον πληθυσµό της πόλης. (β) Υπολογίστε τις σηµειακές εκτιµήσεις a και b των παραµέτρων α και β της ευθείας παλινδρόµησης (µε τη µέθοδο των ελαχίστων τετραγώνων) για το πρόβληµα της γραµµικής εξάρτησης της συγκέντρωσης του όζοντος από τον πληθυσµό της πόλης. Σχηµατίστε την ευθεία ελαχίστων τετραγώνων στο διάγραµµα διασποράς που σχηµατίσατε στο (α). Λύση (α) Σχηµατίζουµε το διάγραµµα διασποράς (X: πληθυσµός πόλης, Y: συγκέντρωση όζοντος) y [n b] x [n mllon] Από το διάγραµµα διασποράς φαίνεται να υπάρχει γραµµική θετική συσχέτιση (η αύξηση του πληθυσµού της πόλης δηµιουργεί αύξηση της συγκέντρωσης όζοντος), χωρίς όµως να φαίνεται πολύ ισχυρή (δεν εξηγείται σε µεγάλο βαθµό η µεταβολή της µιας τ.µ. όταν γνωρίζουµε τη µεταβολή της άλλης, τα σηµεία απλώνονται αρκετά γύρω από µια νοητή ευθεία). Έχουµε δείγµα µεγέθους n =. Υπολογίζουµε τα παρακάτω: x =.37 y = 8. = x = 38.3 = y = 6443 = x y = 788. και βρίσκουµε τις δειγµατικές διασπορές και τυπικές αποκλίσεις των X και Y καθώς και τη δειγµατική συνδιασπορά τους: (οι τύποι δίνονται στο τυπολόγιο) X = ( ) =.4 X =.4 =.46 9 Y = ( ) = 8.6 Y = 8.6 =.94 9 XY = ( ) =

11 Η εκτίµηση του συντελεστή συσχέτισης µεταξύ πληθυσµού πόλης και συγκέντρωση όζοντος είναι 3.54 r = = Η εκτίµηση του συντελεστή συσχέτισης επιβεβαιώνει ότι η συσχέτιση δεν είναι ισχυρή (r <.9). (β) Η ανεξάρτητη µεταβλητή X είναι ο πληθυσµός πόλης και η εξαρτηµένη µεταβλητή Y είναι η συγκέντρωση όζοντος. Εκτιµούµε τις παραµέτρους του µοντέλου γραµµικής παλινδρόµησης: 3.54 b = = =.654 (τυπολόγιο).4 XY X a= y b x = = 5.94 (τυπολόγιο) και η ευθεία ελαχίστων τετραγώνων είναι y = x. Για να σχηµατίσουµε την ευθεία υπολογίζουµε δύο σηµεία που ανήκουν σε αυτήν (καλύτερα για τη µικρότερη και µεγαλύτερη τιµή της X στο δείγµα), π.χ. x =. y = = 6. x = 4.9 y = = 34.4 και χαράζουµε το ευθύγραµµο τµήµα που περνά από αυτά τα δύο σηµεία και προεκτείνεται µόνο για το εύρος των γνωστών τιµών του πληθυσµού πόλης X y [n b] x [n mllon] 4

Λυµένες Ασκήσεις στο Μάθηµα Στατιστικής στο Τµήµα Πολιτικών Μηχανικών

Λυµένες Ασκήσεις στο Μάθηµα Στατιστικής στο Τµήµα Πολιτικών Μηχανικών Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 Λυµένες Ασκήσεις στο Μάθηµα Στατιστικής στο Τµήµα Πολιτικών Μηχανικών Μέρος Α Θεωρία Πιθανοτήτων Άσκηση [Θέµα στις εξετάσεις Φεβρουαρίου ]

Διαβάστε περισσότερα

Περιγραφική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων. της σ 2 είναι επίσης αµερόληπτη. n 1 +n 2

Περιγραφική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων. της σ 2 είναι επίσης αµερόληπτη. n 1 +n 2 4.2. ΑΠΛ Η ΓΡΑΜΜΙΚ Η ΠΑΛΙΝ Ρ ΟΜΗΣΗ 79 ΑΣΚΗΣΕΙΣ Περιγραφική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων 1. είξτε ότι η εκτιµήτρια s 2 της διασποράς σ 2 είναι αµερόληπτη. 2. ύο τυχαίες µεταβλητές X 1 και

Διαβάστε περισσότερα

Περιγραϕική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων

Περιγραϕική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων 78 ΚΕΦΑΛΑΙΟ 4. ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ ΑΣΚΗΣΕΙΣ Περιγραϕική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων 1. είξτε ότι η εκτιµήτρια s 2 της διασποράς σ 2 είναι αµερόληπτη. 2. ύο τυχαίες µεταβλητές X 1

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

της σ 2 είναι επίσης αµερόληπτη. n 1 +n 2

της σ 2 είναι επίσης αµερόληπτη. n 1 +n 2 ΑΣΚΗΣΕΙΣ Περιγραφική Στατιστική, Εκτίµηση Παραµέτρων 1. είξτε ότι η εκτιµήτρια s 2 της διασποράς σ 2 είναι αµερόληπτη. 2. ύο τυχαίες µεταβλητές X 1 και X 2 έχουν κοινή διασπορά σ 2 και s 2 1, s2 2 είναι

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται

Διαβάστε περισσότερα

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Θεόδωρος Χ. Κουτρουµ ανίδης Αναπληρωτής Καθηγητής ΠΘ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Θεόδωρος Χ. Κουτρουµ ανίδης Αναπληρωτής Καθηγητής ΠΘ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Θεόδωρος Χ. Κουτρουµ ανίδης Αναπληρωτής Καθηγητής ΠΘ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ορεστιάδα 7 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο : Παράγωγες κατανοµές

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20, ΜΕΜ64: Εφαρμοσμένη Στατιστική 1 ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=0, X = 7.5, σ = 16, α = 5%. Πως αλλάζει το διάστημα αν

Διαβάστε περισσότερα

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ.

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ. Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Στα προηγούµενα κεφάλαια ορίσαµε και µελετήσαµε την τ.µ. µε τη ϐοήθεια της πιθανο- ϑεωρίας (κατανοµή, ϱοπές) και της στατιστικής (εκτίµηση, στατιστική υπόθεση). Σ

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 3.1 Συσχέτιση δύο τ.µ.

Κεφάλαιο 3 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 3.1 Συσχέτιση δύο τ.µ. Κεφάλαιο 3 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Στα προηγούµενα κεφάλαια ορίσαµε και µελετήσαµε την τ.µ. µε τη ϐοήθεια της πιθανο- ϑεωρίας (κατανοµή, ϱοπές) και της στατιστικής (εκτίµηση, στατιστική υπόθεση). Σ

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Κεφάλαιο 3 ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Σε πολλά προβλήµατα της µηχανικής δεν ενδιαφερόµαστε να εκτιµήσουµε την τιµή της παραµέτρου αλλά να διαπιστώσουµε αν η παραµέτρος είναι µικρότερη ή µεγαλύτερη από

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Κεϕάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Στα προηγούµενα κεϕάλαια ορίσαµε και µελετήσαµε την τ.µ. µε τη ϐοήθεια της πιθανο- ϑεωρίας (κατανοµή, ϱοπές) και της στατιστικής (εκτίµηση, στατιστική υπόθεση). Σ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 6 : Έλεγχος Υποθέσεων Ι. Αντωνίου, Χ. Μπράτσας Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) Α. Ερωτήσεις πολλαπλών επιλογών.(11 βαθµοί) (1:3 βαθµοί, 2-9:8 βαθµοί) 1. ίνεται ο πίνακας: Χ

Διαβάστε περισσότερα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΠΡΑΓΜΑΤΙΚΟ ΚΟΣΤΟΣ ΣΥΛΛΟΓΗ ΠΛΗΡΟΦΟΡΙΩΝ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΠΙΛΟΓΗ ΚΑΤΑΝΟΜΗΣ Υπολογισμός πιθανοτήτων και πρόβλεψη τιμών από τις τιμές των παραμέτρων και

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 4: Ψηφιακός χάρτης - Διαχείριση 2o μέρος Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Έλεγχοι υποθέσεων Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #3: Εκτιμητική Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Οικονομετρία. Απλή Παλινδρόμηση. Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία. Απλή Παλινδρόμηση. Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Οικονομετρία Απλή Παλινδρόμηση Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 6: Συσχέτιση και παλινδρόμηση εμπειρική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό

Διαβάστε περισσότερα

Στατιστική για Πολιτικούς Μηχανικούς

Στατιστική για Πολιτικούς Μηχανικούς ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Στατιστική για Πολιτικούς Μηχανικούς Ενότητα 3: Εκτίμηση παραμέτρων (μέρος 2 ο ) Κουγιουμτζής Δημήτριος Τμήμα Πολιτικών Μηχανικών Άδειες

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ .Φουσκάκης- Ασκήσεις στους Ελέγχους Υποθέσεων ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ ) Με µια νέα µέθοδο προσδιορισµού του σηµείου τήξης (σ.τ.) µετάλλων προέκυψαν οι παρακάτω µετρήσεις για το µαγγάνιο: 67,

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Διαστήματα εμπιστοσύνης Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Πίνακας Περιεχομένων Εργασία η... Θέμα ο :... Θέμα ο :... 4 Θέμα 3 ο :...

Διαβάστε περισσότερα

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80.

ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80. ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑΙΟΤ ΧΟΛΗ ΕΠΙΣΗΜΩΝ ΣΗ ΔΙΟΙΚΗΗ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑ ΚΑΙ ΔΙΟΙΚΗΗ ΣΑΣΙΣΙΚΗ Ακαδ. Έτος -3 Διδάσκων: Βασίλης ΚΟΤΣΡΑ Διδάσκων επί Συμβάσει Π.Δ 47/8 v.kouras@fμe.aegea.gr Σηλ: 735457 Διωνυμικό

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Ανάλυση διακύμανσης Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

επ. Κωνσταντίνος Π. Χρήστου

επ. Κωνσταντίνος Π. Χρήστου 1 2 3 1 2 2 0 3 3 4 6 5 10 6 11 7 7 8 6 9 3 10 2 4 Εάν έχουµε οµαδοποιηµένη µεταβλητή τότε είναι το σηµείο τοµής των ευθυγράµµων τµηµάτων τα οποία ορίζονται από α) ΑΒ, όπου Α το άνω δεξί άκρο της κλάσης

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Οικονομετρία Εξειδίκευση του υποδείγματος Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση

Διαβάστε περισσότερα

4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ

4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ 4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑ (STRATIFIED RANDOM SAMPLING) Στην τυχαία δειγµατοληψία κατά στρώµατα ο πληθυσµός των Ν µονάδων (πρόκειται για τον στατιστικό πληθυσµό και τις στατιστικές µονάδες)

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 6: Χωρική ανάλυση στα ΣΓΠ Μέρος 1ο Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1) Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY

Διαβάστε περισσότερα

Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ. 2.1 Σηµειακή Εκτίµηση. ˆθ παίρνει διαφορετικές τιµές, δηλαδή η ˆθ είναι η ίδια τ.µ. µε κάποια κατανοµή κι έχει µέση

Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ. 2.1 Σηµειακή Εκτίµηση. ˆθ παίρνει διαφορετικές τιµές, δηλαδή η ˆθ είναι η ίδια τ.µ. µε κάποια κατανοµή κι έχει µέση Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ Οι στατιστικές δείγµατος, όπως η δειγµατική µέση τιµή x και η δειγµατική διασπορά s 2, που ϑα δούµε παρακάτω, υπολογίζονται από τα στατιστικά δεδοµένα που έχουµε συλλέξει

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

) = a ο αριθµός των µηχανών n ο αριθµός των δειγµάτων που παίρνω από κάθε µηχανή

) = a ο αριθµός των µηχανών n ο αριθµός των δειγµάτων που παίρνω από κάθε µηχανή Ανάλυση Συνδιακύµανσης Alsis of Covrice Η ανάλυση συνδιακύµανσης είναι µία άλλη τεχνική για να βελτιώσουµε την ακρίβεια της προσέγγισης του µοντέλου µας στο πείραµα. Ας υποθέσουµε ότι σ ένα πείραµα εκτός

Διαβάστε περισσότερα

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ. Άσκηση : Έστω Χ,,Χ τυχαίο δείγµα µεγέους από την κατανοµή µε σππ 3 p (,, >, > 0 α είξτε ότι η στατιστική συνάρτηση Τ( Χ : Χ ( m είναι επαρκής για την παράµετρο και πλήρης κ β Βρείτε ΑΕΕ του α Το στήριγµα

Διαβάστε περισσότερα

Στατιστική για Πολιτικούς Μηχανικούς

Στατιστική για Πολιτικούς Μηχανικούς ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Στατιστική για Πολιτικούς Μηχανικούς Ενότητα 1: Εισαγωγή, Περιγραφική στατιστική Κουγιουμτζής Δημήτριος Τμήμα Πολιτικών Μηχανικών Άδειες

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

Οικονομετρία. Πολυσυγγραμμικότητα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης

Οικονομετρία. Πολυσυγγραμμικότητα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης Οικονομετρία Πολυσυγγραμμικότητα Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση της έννοιας της πολυσυγγραμμικότητας και των συνεπειών της

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το

Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το ΜΑΘΗΜΑ 9ο ΣΥΝΟΛΟΚΛΗΡΩΣΗ (Έννοιες, Ορισµοί) Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το πρόβληµα της

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή Σειρά Α σ1 Επώνυµο Όνοµα Αρ. Μητρώου Ζήτηµα 1 ο (3 µονάδες) Εξετάσεις Φεβρουαρίου (2011/12) στο Μάθηµα: Στατιστική Θεσσαλονίκη: 03/03/2012 Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗΣ Ασκήσεις 1 ου Κεφαλαίου 1. Σε ένα δείγµα 90 δοχείων ελαιολάδου το µέσο βάρος των δοχείων είναι 500 γραµµάρια. Από µετρήσεις έχει γίνει γνωστή η διακύµανση

Διαβάστε περισσότερα

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός

Διαβάστε περισσότερα

Ιατρικά Μαθηματικά & Βιοστατιστική

Ιατρικά Μαθηματικά & Βιοστατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιατρικά Μαθηματικά & Βιοστατιστική Στατιστικοί έλεγχοι για συνεχή και κατηγορικά δεδομένα Διδάσκοντες: Ευάγγελος Ευαγγέλου, Kωνσταντίνος Τσιλίδης, Ιωάννης

Διαβάστε περισσότερα