Σχεδιασµός θλιβόµενων µελών φερουσών κατασκευών αλουµινίου στα πλαίσια του Ευρωκώδικα 9

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σχεδιασµός θλιβόµενων µελών φερουσών κατασκευών αλουµινίου στα πλαίσια του Ευρωκώδικα 9"

Transcript

1 Σχεδιασµός θλιβόµενων µελών φερουσών κατασκευών αλουµινίου στα πλαίσια του Ευρωκώδικα 9.Ν. Καζιόλας Dr.-Ing., Επίκουρος Καθηγητής Τ.Ε.Ι. Καβάλας Τµήµα ασοπονίας & ιαχείρισης Φυσικού Περιβάλλοντος ράµα, Ελλάδα Χ.Κ. Μπανιωτόπουλος Dr.-Ing., Καθηγητής Α.Π.Θ. Εργαστήριο Μεταλλικών Κατασκευών - Τµήµα Πολιτικών Μηχανικών Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Θεσσαλονίκη, Ελλάδα ΠΕΡΙΛΗΨΗ Το αλουµίνιο αποτελεί σήµερα ένα από τα δοµικά υλικά του οποίου η χρήση σε φέρουσες κατασκευές αυξάνεται όλο και περισσότερο, τόσο στον ελληνικό χώρο, όσο και σε διεθνές επίπεδο. Ο πρόσφατα ολοκληρωµένος Ευρωκώδικας 9 [] παρέχει ήδη το πλαίσιο αρχών σχεδιασµού φερουσών κατασκευών από αλουµίνιο και ως εκ τούτου, αποτελεί σήµερα αυτός αντικείµενο µελέτης και διερεύνησης της εφαρµογής του τόσο από τους µηχανικούς όσο και από τους ερευνητές που ασχολούνται µε τις φέρουσες κατασκευές αλουµινίου. Παρά το γεγονός ότι ο χάλυβας και το αλουµίνιο παρουσιάζουν πολλές οµοιότητες ως δοµικά υλικά, εν τούτοις οι µέθοδοι σχεδιασµού χαλύβδινων δοµικών στοιχείων δεν µπορούν να εφαρµοστούν άµεσα και µε τον ίδιο τρόπο στο σχεδιασµό µελών αλουµινίου. Γίνεται έτσι αντιληπτό το µεγάλο ενδιαφέρον σχετικά µε τη διερεύνηση της δοµικής συµπεριφοράς φερουσών κατασκευών από αλουµίνιο και των µελών τους και ειδικότερα, οι σχετικές µέθοδοι σχεδιασµού τους. Στην παρούσα εργασία παρουσιάζεται εν συντοµία και διερευνάται η εφαρµογή της µεθόδου σχεδιασµού θλιβόµενων στοιχείων αλουµινίου όπως αυτή παρέχεται από τον Ευρωκώδικα 9, δίνοντας έµφαση στα σηµεία εκείνα που κατά καιρούς έχουν αποτελέσει αντικείµενο ενδελεχούς διερεύνησης από ερευνητές. 2. ΕΙΣΑΓΩΓΗ Το αλουµίνιο είναι ένα από τα δοµικά υλικά που η χρήση του έχει ήδη αρχίσει να εισάγεται στις φέρουσες κατασκευές λόγω ορισµένων πλεονεκτηµάτων που παρουσιάζει έναντι του χάλυβα. Τα πλεονεκτήµατα αυτά συνοπτικά είναι: το πολύ µικρό του βάρος (περίπου το ένα τρίτο του βάρους του χάλυβα), η µη οξείδωση του ακόµα και σε έντονα 427

2 οξειδωτικό περιβάλλον (π.χ. παραθαλάσσιο), η δυνατότητα να χρησιµοποιείται ως κράµα µε άλλα στοιχεία (Mn, Mg, Si, Zn, Cu) µε αποτέλεσµα τα κράµατα που προκύπτουν να έχουν αυξηµένη αντοχή. Λαµβάνοντας ακόµη υπόψη πως µε την εφαρµογή ψυχρής ή θερµικής κατεργασίας οδηγούµαστε σε τιµές ελαστικού ορίου µέχρι Ν/mm 2 και πως µε τη χρησιµοποίηση εξελιγµένων µεθόδων υπολογισµού αντιµετωπίζονται τα προβλήµατα τοπικού λυγισµού που παρουσιάζονται στα κράµατα αλουµινίου, γίνεται αντιληπτός ο λόγος που το αλουµίνιο άρχισε σήµερα να χρησιµοποιείται ως εναλλακτική λύση ως προς το χάλυβα σε ορισµένα τεχνικά µεταλλικά έργα. Τα ιδιαίτερα χαρακτηριστικά των κραµάτων του αλουµινίου δεν επιτρέπουν την ανάλυση της συµπεριφοράς του µε απλά στατικά µοντέλα διότι τα διάφορα κράµατα παρουσιάζουν διαφορετικό µέτρο ελαστικότητας και επιπλέον η διαδικασία παραγωγής τους επηρεάζει άµεσα τη σκληρότητά τους [2]. Τα παραπάνω έχουν ως συνέπεια να µην είναι εφικτή η κατηγοριοποίηση των διατοµών σε κλάσεις µε βάση τα µηχανικά χαρακτηριστικά τους αφού οι καµπύλες τάσεων-παραµορφώσεων που προκύπτουν διαφέρουν κατά πολύ µεταξύ τους. Έτσι η ανάλυση των κατασκευών από αλουµίνιο πρέπει να γίνεται µε την παραδοχή ότι αυτές παρουσιάζουν ανελαστική συµπεριφορά µε αποτέλεσµα διάφοροι ερευνητές να έχουν αναπτύξει ποικίλα µοντέλα για την κατηγοριοποίηση των διατοµών σε κλάσεις. Τα κράµατα αλουµινίου είναι λιγότερο δύσκαµπτα από ότι ο χάλυβας, γεγονός που υποδηλώνει ότι τα πρώτα παρουσιάζουν αυξηµένη λυγηρότητα. Έτσι οι κατασκευές από αλουµίνιο παρουσιάζουν µια αυξηµένη ευαισθησία σε λυγισµό. Γνωρίζοντας ότι οι θλιπτικές τάσεις είναι αυτές οι οποίες επιδρούν στο φαινόµενο του λυγισµού, γίνεται κατανοητό γιατί η µελέτη και ο σχεδιασµός θλιβόµενων µελών φερουσών κατασκευών αλουµινίου αποτελεί ένα από τα κύρια αντικείµενο διερεύνησης από τους ερευνητές. 3. ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ ΙΑΤΟΜΩΝ ΑΛΟΥΜΙΝΙΟΥ ΣΕ ΚΛΑΣΕΙΣ Στον Ευρωκώδικα 9 η ταξινόµηση των διατοµών σε κλάσεις γίνεται µε βάση τα γεωµετρικά χαρακτηριστικά τους και εξαρτάται από το µέγεθος της αναλογίας του πλάτους προς το πάχος των µελών που υπόκεινται σε θλίψη όπως ακριβώς συµβαίνει και στον Ευρωκώδικα 3. Έτσι ορίζονται οι ακόλουθες κλάσεις: i) ιατοµές κλάσης είναι αυτές που είναι δυνατόν να φτάσουν σε δηµιουργία πλαστικής άρθρωσης µε την απαιτούµενη από την πλαστική ανάλυση ικανότητα στροφής χωρίς µείωση της αντοχής της διατοµής. ii) ιατοµές κλάσης 2 είναι εκείνες που µπορούν να αναπτύξουν την πλαστική ροπή αντοχής τους αλλά έχουν περιορισµένη ικανότητα στροφής λόγω τοπικού λυγισµού. iii) ιατοµές κλάσης 3 είναι αυτές που η τάση στην ακραία θλιβόµενη ίνα του µέλους αλουµινίου µπορεί να φτάσει την αντοχή διαρροής, αλλά ο τοπικός λυγισµός είναι πιθανόν να αποτρέψει την ανάπτυξη της πλαστικής ροπής αντοχής. iv) ιατοµές κλάσης 4 είναι εκείνες στις οποίες ο τοπικός λυγισµός θα συµβεί πριν την ανάπτυξη της τάσης διαρροής σε ένα ή περισσότερα µέρη της διατοµής. Στο παράρτηµα F του Ευρωκώδικα 9 συµπληρωµατικά µε την παραπάνω ταξινόµηση, γίνεται µία ποιοτική κατηγοριοποίηση των διατοµών σε κλάσεις, µε βάση τη δυνατότητά τους να φτάσουν τις ακόλουθες καταστάσεις: ελαστική οριακή κατάσταση λυγισµού, ελαστική οριακή κατάσταση, πλαστική οριακή κατάσταση, οριακή κατάσταση κατάρρευσης. Μια τέτοια κατηγοριοποίηση µπορεί να εφαρµοστεί αν πρέπει να καθοριστούν οι δυνατότητες της διατοµής να αρχίσει να συµπεριφέρεται στην πλαστική περιοχή. Ανάλογα µε τη σχέση γενικευµένης δύναµης F - µετατόπισης D, οι διατοµές 428

3 διακρίνονται (Σχ. ) σε: πλάστιµες (Κλάση ), συµπαγείς (Κλάση 2), ηµισυµπαγείς (Κλάση 3) και λεπτότοιχες (Κλάση 4). Σχ. Ταξινόµηση διατοµών Η αντοχή των διατοµών που υπόκεινται σε αξονική θλίψη µπορεί να υπολογιστεί αναφορικά µε τις παραπάνω οριακές καταστάσεις υπολογίζοντας την τιµή του αξονικού φορτίου από τη σχέση: Ed = α, j A f () d όπου f d = f o / γ M η τιµή σχεδιασµού του συµβατικού ορίου διαρροής 0,2%, f o είναι η χαρακτηριστική τιµή του συµβατικού ορίου διαρροής 0,2%, A το εµβαδόν της πλήρους διατοµής και α διορθωτικός συντελεστής, που δίνεται στον Πίν. και εξαρτάται από τη, j θεωρούµενη οριακή κατάσταση. Αξονικό φορτίο Οριακή Κατάσταση Κατηγορία ιατοµής ιορθωτικός συντελεστής u Κατάρρευση Κατηγορία α, = f t / fd pl Πλαστική Κατηγορία 2 α,2 = el Ελαστική Κατηγορία 3 α,3 = red Ελαστικός λυγισµός Κατηγορία 4 α,4 = A eff / A Πιν. Τιµές διορθωτικού συντελεστή α συναρτήσει του οριακού αξονικού φορτίου Στον Πιν., A eff είναι η ενεργός επιφάνεια της διατοµής, που υπολογίζεται αφού ληφθούν υπόψη φαινόµενα τοπικού λυγισµού και f t = f u / γ M2 η τιµή σχεδιασµού της οριακής αντοχής. Το οριακό φορτίο όµως που υπολογίζεται από τη σχέση () δεν καλύπτει φαινόµενα λυγισµού και ως εκ τούτου η σχέση () δεν µπορεί να χρησιµοποιηθεί µε άµεσο τρόπο για τους ελέγχους αυτούς. 4. ΑΝΤΟΧΗ ΜΕΛΩΝ ΑΛΟΥΜΙΝΙΟΥ ΣΕ ΘΛΙΨΗ Πειράµατα θλίψης [3] που έχουν γίνει σε δοκίµια διαφόρων διατοµών αλουµινίου έχουν δείξει διάφορους τρόπους συµπεριφοράς απόκρισης. Αυτή η συµπεριφορά ταυτίζεται, όσο αφορά τον τρόπο αστοχίας, µε αντίστοιχους αριθµητικούς υπολογισµούς. Η συµπεριφορά των δοκιµίων µπορεί να κατηγοριοποιηθεί ανάλογα µε το αν αυτά βρίσκονται σε αρχικό στάδιο λυγισµού ή σε τελικό οπότε οδηγούνται σε αστοχία. Τα φορτία που µπορούν να προσδιοριστούν είναι: το αξονικό θλιπτικό φορτίο όταν αρχίζει ο 429

4 λυγισµός και το οριακό φορτίο ή φορτίο κατάρρευσης. Οι µορφές συµπεριφοράς που παρατηρήθηκαν είναι: Σύνθλιψη µε την ξαφνική εµφάνιση σηµαντικών πλαστικών παραµορφώσεων εκτός επιπέδου, καµπτικός και στρεπτικός ή στρεπτοκαµπικός λυγισµός όπου το διάγραµµα φορτίου-µετακινήσεων έχει µικρές παρεκκλίσεις από την ελαστική συµπεριφορά µέχρι το οριακό φορτίο, τοπικός λυγισµός, συστροφικός λυγισµός και αλληλεπίδραση τοπικού και καµπτικού λυγισµού όπου οι διατοµές αλουµινίου λόγω της ευπάθειας τους σε τοπικές αστάθειες προσεγγίζουν γραµµικά ελαστικά το κρίσιµο φορτίο µε συνέπεια να οδεύουν σταδιακά σε ελαστική κατάρρευση που χαρακτηρίζεται από φαινόµενα καθολικού λογισµού του µέλους. Αυτός είναι ο λόγος που η ιεθνής Ένωση Αλουµινίου (Aluminum Association) για το σχεδιασµό θλιβόµενων στοιχείων αλουµινίου, συνιστά τον υπολογισµό µίας οριακής αντοχής η οποία είναι µικρότερη i) από την αντοχή σε καθολικό λυγισµό, ii) από τη µέση τιµή της αντοχής σε λυγισµό όλων των επιµέρους στοιχείων του µέλους, και iii) από την αντοχή που υπολογίζεται λαµβάνοντας υπόψη την αλληλεπίδραση τοπικού και καθολικού λυγισµού, όταν το φορτίο διαρροής σε τοπικό λυγισµό είναι µικρότερο από αυτό σε καθολικό. Στο πλαίσιο παρόµοιας φιλοσοφίας, οι έλεγχοι που επιβάλλονται από τον Ευρωκώδικα 9 εξετάζουν και το ενδεχόµενο πλαστικοποίησης αλλά και τα φαινόµενα αστάθειας. Ως οριακό φορτίο λαµβάνεται το µικρότερο που προκύπτει από τις δύο οµάδες ελέγχων οι οποίες εξετάζουν και τις επιδράσεις τοπικού λυγισµού και µείωσης της αντοχής στις συγκολλήσεις. Οι µέθοδοι σχεδιασµού που ορίζονται στον Ευρωκώδικα 9 για τον τοπικό λυγισµό βασίζονται σε θεωρητικές λύσεις που προέκυψαν από τη λύση του προβλήµατος σε λυγισµό πλακών. Μία τέτοια αντιµετώπιση είναι κατάλληλη για τις λεγόµενες «παραδοσιακές» διατοµές, δηλαδή τις διατοµές µορφής Ι και U, τις κοίλες ορθογωνικές διατοµές αλλά δεν µπορεί να εφαρµοστεί άµεσα στις υπόλοιπες διατοµές αφού δεν λαµβάνονται υπόψη οι αλληλεπιδράσεις των πλακολωρίδων που τις αποτελούν. Συνεπώς, πρωταρχικά, σύµφωνα µε τον Ευρωκώδικα 9, η τιµή σχεδιασµού της αξονικής θλιπτικής δύναµης Ed πρέπει να πληροί τη σχέση: Ed,0 (2) c,rd H αντοχή σχεδιασµού σε οµοιόµορφη θλίψη u,rd και c, Rd όπου : για διατοµές µε οπές: για τις λοιπές διατοµές: u, Rd Anet fu / γ M2 c, Rd Aeff f o /γ M c, Rd πρέπει να είναι η µικρότερη από τις = (3) = (4) Στις σχέσεις (3) και (4), A net είναι η καθαρή διατοµή, µε µείωση της διατοµής για τις οπές και εξασθένηση των θερµικά επηρεασµένων ζωνών (ΘΕΖ) εάν είναι αναγκαίο. Για οπές που βρίσκονται σε περιοχές µειωµένου πάχους οι µειώσεις µπορούν να βασίζονται στο µειωµένο πάχος και όχι στο ολικό πάχος. A eff είναι η ενεργός διατοµή βασιζόµενη σε µειωµένο πάχος λαµβάνοντας υπόψη τον τοπικό λυγισµό και την εξασθένηση στις ΘΕΖ αλλά αγνοώντας τις οπές. Γίνεται λοιπόν αντιληπτό ότι, αξονικά θλιβόµενα µέλη αλουµινίου µπορεί να αστοχήσουν µε έναν από τους ακόλουθους τρόπους: λόγω καµπτικού λυγισµού, στρεπτικού ή στρεπτοκαµπτικού λυγισµού, τοπικής σύνθλιψης. Ο έλεγχος αστοχίας σε καµπτικό λυγισµό πρέπει να πραγµατοποιείται πάντα. Ο έλεγχος αστοχίας σε στρεπτικό ή στρεπτοκαµπτικό λυγισµό είναι αναγκαίος αλλά µπορεί να παραλείπεται σε ορισµένες 430

5 περιπτώσεις, ενώ ο έλεγχος σε τοπική σύνθλιψη εκτελείται µόνο σε θλιβόµενες ράβδους µικρής λυγηρότητας στις οποίες υπάρχει σηµαντική εξασθένιση λόγω οπών ή συγκολλήσεων. Η ανηγµένη λυγηρότητα λ για καµπτικό λυγισµό δίνεται από τη σχέση: Aeff f o Lcr Aeff fo λ = = (5) cr i π A E Στην παραπάνω σχέση Lcr είναι το µήκος λυγισµού στο επίπεδο λυγισµού που ελέγχεται και i είναι η ακτίνα αδράνειας στον αντίστοιχο άξονα της διατοµής που υπολογίζεται χρησιµοποιώντας τα χαρακτηριστικά της πλήρους διατοµής. Το µήκος λυγισµού L cr ισούται µε kl, όπου L είναι το µήκος µεταξύ των σηµείων πλευρικής στήριξης, όπου για µία θλιβόµενη αµφιέρειστη ράβδο, L είναι το γεωµετρικό µήκος της. Η τιµή του συντελεστή µήκους λυγισµού k για θλιβόµενες ράβδους, προσδιορίζεται από τις συνοριακές συνθήκες. Η ανηγµένη λυγηρότητα τη σχέση: λ T = Aeff fo cr λ= λt για στρεπτικό και στρεπτοκαµπτικό λυγισµό δίνεται από Στην σχέση (6) A eff είναι η διατοµή που υπολογίζεται σύµφωνα µε τον Πίν.2, και cr είναι το ελαστικό κρίσιµο φορτίο για στρεπτικό λυγισµό, λαµβάνοντας υπόψη την αλληλεπίδραση µε τον καµπτικό λυγισµό, όπου αυτό είναι απαραίτητο (στρεπτοκαµπτικός λυγισµός) (Παράρτηµα Ι, Ευρωκώδικα 9). (6) ιατοµή α λ 0 Γενικά ιατοµές ακτινωτής µορφής 0,35 0,20 0,4 0,6 A eff A eff A Πιν. 2 Τιµές των α, λ 0, και A eff για στρεπτικό και στρεπτοκαµπτικό λυγισµό Από την ανηγµένη λυγηρότητα λ υπολογίζεται για την αντίστοιχη µορφή λυγισµού ο µειωτικός συντελεστήςχ από τη σχέση: 2 χ =, χ <, 0 µε φ = 0,5(+ α( λ λ 0 ) + λ ) (7) 2 2 φ + φ - λ Στη σχέση (7), α είναι ο συντελεστής ατελειών, λ 0 είναι το όριο του οριζόντιου κλάδου που αντιστοιχεί στην κατάλληλη καµπύλη λυγισµού και προκύπτει από τους Πιν.2 και 3, ανάλογα µε τον έλεγχο λυγισµού που γίνεται. Οι τιµές για τον µειωτικό συντελεστή χ για την κατάλληλη ανηγµένη λυγηρότητα λ δίδονται στα Σχ.2 και 3. Η κατηγορία λυγισµού του υλικού προκύπτει από τις ιδιότητες του υλικού για διάφορα ελατά κράµατα αλουµινίου και δίνεται σε ειδικούς πίνακες στο κεφάλαιο 3 του Ευρωκώδικα 9. Η αντοχή σχεδιασµού λυγισµού ενός θλιβόµενου µέλους υπολογίζεται τώρα από τη σχέση: = κχ A f (8) b, Rd eff o /γ M 43

6 όπουκ είναι ο συντελεστής µέσω του οποίου λαµβάνεται υπόψη η εξασθένηση λόγω συγκολλήσεων. Αν υπάρχουν διαµήκεις συγκολλήσεις, τότε στην περίπτωση του καµπτικού λυγισµού τοκ υπολογίζεται από τον Πίν.4 ενώ για στρεπτικό ή στρεπτοκαµπτικό λυγισµό κ =. Επίσης στη σχέση (8), A eff = A για διατοµές κλάσης, 2 ή 3, ενώ για διατοµές κλάσης 4 A eff είναι η ενεργός επιφάνεια για να ληφθεί υπόψη ο τοπικός λυγισµός. Για στρεπτικό και στρεπτοκαµπτικό λυγισµό το A eff υπολογίζεται από τον Πιν.2. Κατηγορία λυγισµού υλικού α λ 0 Κατηγορία A Κατηγορία B 0,20 0,32 0,0 0,00 Πιν. 3 Τιµές των α καιλ 0 για καµπτικό λυγισµό χ 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, 0 0 0,5,0,5 2,0 λ 2 Υλικό κατηγορίας Α 2 Υλικό κατηγορίας Β Σχ. 2 Συντελεστής µείωσης χ για καµπτικό λυγισµό χ 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, 0 0 0,5,0,5 2,0 λ T 2 ιατοµές ακτινωτής µορφής, 2 Γενικές διατοµές Σχ. 3 Συντελεστής µείωσηςχ για στρεπτικό και στρεπτοκαµπτικό λυγισµό Υλικό κατηγορίας A A λ A,3( λ) κ = 0 0,05 + 0, λ A A µε A = A A ) όπου haz ( ρa, haz A haz = περιοχή ΘΕΖ Υλικό κατηγορίας B κ = αν λ 0, 2 (0,5 λ ).4( λ ) κ= + 0,04(4λ) 0,22λ αν λ > 0, 2 Πίν. 4 Τιµές του συντελεστή κ για µέλη µε διαµήκεις συγκολλήσεις Ορίζοντας ως Ed την τιµή σχεδιασµού της θλιπτικής δύναµης, ένα θλιβόµενο στοιχείο αλουµινίου είναι εξασφαλισµένο έναντι αστοχίας εξαιτίας καµπτικού και στρεπτοκαµπτικού λυγισµού όταν ικανοποιείται η σχέση: 432

7 Ed b,rd,0 (9) 5. ΑΡΙΘΜΗΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Για τον έλεγχο διατοµής µε µορφή µε χαρακτηριστικά ίδια αυτής της ΗΕΒ από κράµα αλουµινίου ΕΝ-ΑW 6063 T6 ( f o =60Ν/mm 2, κατηγορία υλικού A, Ε=70000Ν/mm 2 ) χωρίς διαµήκεις συγκολλήσεις (κ=), για θλιβόµενη ράβδο µήκους 3,00m, µε αµετάθετα τα δύο άκρα αλλά όχι άστρεπτα και στις δυο διευθύνσεις τής διατοµής (k=,0), που υπόκειται σε δύναµη 250kΝ, ξεκινώντας από την ταξινόµηση της διατοµής σε κλάσεις, υπολογίζουµε την ελάχιστη αποδεκτή διατοµή όπως φαίνεται στον Πιν.5 που είναι η ΗΕΒ60. Ο έλεγχος γίνεται µόνο για καµπτικό λυγισµό αφού λόγω της διπλής συµµετρίας της διατοµής δεν είναι απαραίτητος ο έλεγχος σε στρεπτικό και στρεπτοκαµπτικό λυγισµό. ΙΑΤΟΜΗ ΚΛΑΣΗ λ (y-y) λ (z-z) χ (y-y) χ (z-z) b,rd (y-y) b,rd (z-z) (y-y) (z-z) ΗΕΒ ,9,49 0,72 0,37 355, ,70,35 ΗΕΒ ,77,28 0,80 0, ,63,05 ΗΕΒ ,67,3 0,84 0, ,60 0,89 Ed b, Rd Πίν. 5 Υπολογισµός θλιβόµενης ράβδου από αλουµίνιο σε καµπτικό λυγισµό Ed b,rd 6. ΣΥΜΠΕΡΑΣΜΑΤΑ Ο σχεδιασµός θλιβόµενων µελών σε φέρουσες κατασκευές αλουµινίου σύµφωνα µε τον Ευρωκώδικα 9 είναι µια διαδικασία που απαιτεί αυξηµένη προσοχή από το µελετητή εξαιτίας της µεγάλης ποικιλίας ιδιοτήτων των διαφόρων κραµάτων αλουµινίου. Γνωρίζοντας την ποιότητα του υλικού των κραµάτων, αρχικά γίνεται κατηγοριοποίηση του υλικού και εν συνεχεία, βάση αυτής της κατηγοριοποίησης και λαµβάνοντας υπόψη το γεγονός αν υπάρχουν ή όχι διαµήκεις συγκολλήσεις στη διατοµή, καθορίζεται η κατάταξη της διατοµής σε κλάσεις. Στην τελική φάση γίνεται ο έλεγχος σε καµπτικό λυγισµό, και έπειτα αναλόγως της µορφής και της κλάσης της διατοµής καθορίζεται εαν θα πρέπει να γίνει έλεγχος σε στρεπτικό και στρεπτοκαµπτικό λυγισµό. 6. ΒΙΒΛΙΟΓΡΑΦΙΑ [] EUROPEA COMMITTEE FOR STADARDISATIO, pre 999-: 2004 Eurocode 9 Design of aluminium structures Part -: General structural rules, 2004, Brussels. [2] MAZZOLAI F.M., Aluminum Alloy Structures [3] MEIK J., SOETES F., SIDGER H.H., Cross-sectional stability of aluminium extrusions with arbitrary cross-sectional shapes-experimental and numerical research, Heron, (2005), Vol. 50, o

8 Design of structural aluminum members in compression in the framework of Eurocode 9 D.. Kaziolas Dr.-Ing., Assistant Professor Technological Educational Institute of Kavala Drama, Greece C.C. Baniotopoulos Professor Dr.-Ing. AUTH Institute of Steel Structures GR-5424 Thessaloniki, Greece Summary Aluminium is one of the structural materials whose use in constructions is nowadays increased worldwide. The recently completed Eurocode 9 provides the frame of the design of aluminum structures. According to this code the design of structural works from aluminium is an issue of study for engineers and researchers. Steel and aluminium appear some similarities as structural materials. However the methods of design of steel structural works can not be applied straightly to the design of aluminium elements. Thus, it is obvious the great interest in point of the study of structural behavior of aluminium civil engineering and structural works and especially the relevant directives of their design. In the present work, the application of the methods of design in aluminium elements in compression, as provided by Eurocode 9, is presented. Attention is paid to those points that have been objects of study for many decades for researchers. These points concern the classification of aluminium cross-sections according to their capability to reach the defined in Eurocode 9 limit states (elastic buckling, elastic, plastic, collapse limit state) and the verification of compression members against flexural and torsional or torsional-flexural buckling. At the final chapter of the paper, a numerical application illustrates the previously presented methodology. 434

Ευστάθεια μελών μεταλλικών κατασκευών

Ευστάθεια μελών μεταλλικών κατασκευών Ευστάθεια μελών μεταλλικών κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Χαλύβδινες και Σύμμικτες Κατασκευές Επιστημονικό Σεμινάριο Μυτιλήνη 9-10 Οκτωβρίου 009 Περιεχόμενα παρουσίασης Εισαγωγή Μορφές

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 3 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Τ.Ε.Ι. Θεσσαλίας - Σχολή Τεχνολογικών Εφαρμογών

Διαβάστε περισσότερα

Παραδείγματα μελών υπό αξονική θλίψη

Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων.

Διαβάστε περισσότερα

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη 1. Εισαγωγή Οι ανοξείδωτοι χάλυβες ως υλικό κατασκευής φερόντων στοιχείων στα δομικά έργα παρουσιάζει διαφορές ως προ

Διαβάστε περισσότερα

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά.

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά. ΜΕΤΑΛΛΟΝ [ ΑΝΤΟΧΗ ΑΜΦΙΑΡΘΡΩΤΩΝ ΚΥΚΛΙΚΩΝ ΤΟΞΩΝ ΚΟΙΛΗΣ ΚΥΚΛΙΚΗΣ ΔΙΑΤΟΜΗΣ ΥΠΟ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΟ ΚΑΤΑΚΟΡΥΦΟ ΦΟΡΤΙΟ ΚΑΤΑ ΤΟΝ ΕΚ3 Χάρης Ι. Γαντές Δρ. Πολιτικός Μηχανικός, Αναπληρωτής Καθηγητής & Χριστόφορος

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Σχεδιασμός Μεταλλικών Κατασκευών

Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Πλευρικός λυγισμός δοκού γέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΗΡΑΚΛΕΙΟ ΜΑΡΤΙΟΣ 1999 Α. ΑΝΤΟΧΗ ΙΑΤΟΜΗΣ 1.ΕΦΕΛΚΥΣΜΟΣ ( 5.4.3 ). N t.rd = min { N pl. Rd = A f y / γ M0, N u.

Διαβάστε περισσότερα

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή ΚΕΦΑΛΑΙΟ 2 Αρχές σχεδιασμού ΚΕΦΑΛΑΙΟ 3 Συμπεριφορά και αντοχή διατομών... 81

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή ΚΕΦΑΛΑΙΟ 2 Αρχές σχεδιασμού ΚΕΦΑΛΑΙΟ 3 Συμπεριφορά και αντοχή διατομών... 81 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 11 1.1 Γενικά...11 1.2 Χαλύβδινες διατομές ψυχρής έλασης...15 ΚΕΦΑΛΑΙΟ 2 Αρχές σχεδιασμού... 45 2.1 Οριακές καταστάσεις και έλεγχοι μη υπέρβασής τους...45 2.2 Προσδιορισμός

Διαβάστε περισσότερα

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005)

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005) RUET sotware Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, E1993-1-1:005) Πίνακες με όλες τις πρότυπες χαλύβδινες διατομές, διαστάσεις και ιδιότητες, κατάταξη, αντοχές, αντοχή σε καμπτικό και στρεπτοκαμπτικό

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Στο

Διαβάστε περισσότερα

Περιεχόμενα. 1 Εισαγωγή... 17

Περιεχόμενα. 1 Εισαγωγή... 17 Περιεχόμενα 1 Εισαγωγή... 17 1.1 Αντικείμενο... 17 1. Δομικά στοιχεία με σύμμικτη δράση... 17 1.3 Κτίρια από σύμμικτη κατασκευή... 19 1.4 Περιορισμοί... 19 Βάσεις σχεδιασμού... 1.1 Δομικά υλικά... 1.1.1

Διαβάστε περισσότερα

NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR}

NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR} NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR} {EMAIL}r.j.plank@sheffield.ac.uk{/EMAIL} {OVERVIEW} οκοί

Διαβάστε περισσότερα

Σύγκριση μεθόδων 1 και 2 κατά τον EC 3 αναφορικά με τον λυγισμό μελών

Σύγκριση μεθόδων 1 και 2 κατά τον EC 3 αναφορικά με τον λυγισμό μελών Σύγκριση μεθόδων 1 και κατά τον EC 3 αναφορικά με τον λυγισμό μελών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Γιάχος Ζαχαρίας Επιβλέπων Καθηγητής: Ιωάννης Βάγιας Αθήνα Ιούλιος 01 ΕΜΚ ΔΕ 01/14 ` 3 Πίνακας περιεχομένων ΠΕΡΙΛΗΨΗ...

Διαβάστε περισσότερα

Ε.202-2: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ (ΘΕΩΡΙΑ, ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ, ΕΡΓΑΣΤΗΡΙΟ)

Ε.202-2: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ (ΘΕΩΡΙΑ, ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ, ΕΡΓΑΣΤΗΡΙΟ) ΚΩΔΙΚΟΣ: Ε.202-2 ΕΝΤΥΠΑ ΣΥΣΤΗΜΑΤΟΣ ΠΟΙΟΤΗΤΑΣ ΕΝΤΥΠΟ: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΚΔΟΤΗΣ: ΥΠΕΥΘΥΝΟΣ ΣΥΝΤΑΞΗΣ ΕΓΧΕΙΡΙΔΙΟΥ Ε.202-2: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ (ΘΕΩΡΙΑ, ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ, ΕΡΓΑΣΤΗΡΙΟ) A ΜΕΡΟΣ 1. ΓΕΝΙΚΑ

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ευρωκώδικας 9- EN 1999 Σχεδιασμός κατασκευών από αλουμίνιο

Ευρωκώδικας 9- EN 1999 Σχεδιασμός κατασκευών από αλουμίνιο Ευρωκώδικας 9- EN 1999 Σχεδιασμός κατασκευών από αλουμίνιο Χ. Κ. Μπανιωτόπουλος, Καθηγητής Δρ. Πολιτικός Μηχανικός ΑΠΘ Εργαστήριο Μεταλλικών Κατασκευών Τμήμα Πολιτικών Μηχανικών Αριστοτέλειο Πανεπιστήμιο

Διαβάστε περισσότερα

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013 ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια παρουσιάζεται σε κατασκευές οι οποίες περιλαμβάνουν δομικά στοιχεία μεγάλης λυγηρότητας με σημαντικές θλιπτικές

Διαβάστε περισσότερα

Αντοχή γωνιακών σε κάμψη και θλίψη

Αντοχή γωνιακών σε κάμψη και θλίψη ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Αντοχή γωνιακών σε κάμψη και θλίψη ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ιωάννης Χ. Κριαράς Επιβλέπων: Ιωάννης Βάγιας Αθήνα, Ιούλιος

Διαβάστε περισσότερα

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος v ΣΥΜΒΟΛΑ Λατινικά A b A g A e A f = εμβαδόν ράβδου οπλισμού = συνολικό εμβαδόν διατομής = εμβαδόν περισφιγμένου σκυροδέματος στη διατομή = εμβαδόν διατομής συνθέτων υλικών A f,tot = συνολικό εμβαδόν συνθέτων

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΛΥΣΕΩΝ ΚΑΝΟΝΙΣΤΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7 Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια Κεφάλαιο 7 Διαφάνειες παρουσίασης εκπαιδευτικών σεμιναρίων Γεώργιος Πενέλης, ομότιμος καθηγητής Α.Π.Θ. Ανδρέας

Διαβάστε περισσότερα

Πειραματική Αντοχή Υλικών Ενότητα:

Πειραματική Αντοχή Υλικών Ενότητα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 1Μοντέλο πεπερασμένων στοιχείων (FEM) Κόμβοι κατασκευής Κόμβος x [m] y[m] 1 0.000 0.000 2 0.000 4.600 3 8.400 4.600 4 8.400 0.000 Στηρίξεις κατασκευής Κόμβος

Διαβάστε περισσότερα

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί?

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί? Τι είναι σεισμός? Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα Πού γίνονται σεισμοί? h

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

Λυγισμός Ευστάθεια (Euler και Johnson)

Λυγισμός Ευστάθεια (Euler και Johnson) Λυγισμός Ευστάθεια (Euler και Johnson) M z P z EI z P z P z z 0 και αν EI k EI P 0 z k z Η λύση της διαφορικής εξίσωσης έχει την μορφή: 1 sin z C kz C cos kz Αν οι οριακές συνθήκες είναι άρθρωση άρθρωση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης 5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΑ ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΜΕΛΩΝ ΑΠΟ ΓΩΝΙΑΚΑ ΨΥΧΡΗΣ ΕΛΑΣΗΣ ΜΕ ΚΟΧΛΙΩΣΗ ΣΤΟ ΕΝΑ ΣΚΕΛΟΣ ΤΟΥΣ

ΑΡΙΘΜΗΤΙΚΑ ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΜΕΛΩΝ ΑΠΟ ΓΩΝΙΑΚΑ ΨΥΧΡΗΣ ΕΛΑΣΗΣ ΜΕ ΚΟΧΛΙΩΣΗ ΣΤΟ ΕΝΑ ΣΚΕΛΟΣ ΤΟΥΣ ΑΡΙΘΜΗΤΙΚΑ ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΜΕΛΩΝ ΑΠΟ ΓΩΝΙΑΚΑ ΨΥΧΡΗΣ ΕΛΑΣΗΣ ΜΕ ΚΟΧΛΙΩΣΗ ΣΤΟ ΕΝΑ ΣΚΕΛΟΣ ΤΟΥΣ Ιωάννης Γ. Ραυτογιάννης Αναπληρωτής Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Κόμβοι πλαισιακών κατασκευών

Κόμβοι πλαισιακών κατασκευών Κόμβοι πλαισιακών κατασκευών Κόμβοι πλαισιακών κατασκευών Κόμβοι δοκού-υποστυλώματος Κόμβοι δοκού-δοκού Βάσεις υποστυλωμάτων Κοχλιωτοί Συγκολλητοί Κόμβοι δοκού - υποστυλώματος Με μετωπική πλάκα Με γωνιακά

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σιδηρές Κατασκευές Ι Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2010.354

Νέα έκδοση προγράμματος STeel CONnections 2010.354 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2010.354 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Αντοχή Υλικού Ερρίκος Μουρατίδης (BSc, MSc) Σεπτέμβριος 015 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού Δρ. Σωτήρης Δέμης Πανεπιστημιακός Υπότροφος Τσιμεντοπολτός Περιλαμβάνονται διαγράμματα από τα βιβλία «Μηχανική των Υλικών» και «Δομικά Υλικά» του Αθανάσιου

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΕΛΤΙΩΣΗΣ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΤΙΡΙΟΥ ΣΕ ΕΝΔΕΧΟΜΕΝΟ ΣΧΗΜΑΤΙΣΜΟ ΜΑΛΑΚΟΥ ΟΡΟΦΟΥ ΜΕΣΩ ΕΛΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΕΛΕΤΗ ΒΕΛΤΙΩΣΗΣ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΤΙΡΙΟΥ ΣΕ ΕΝΔΕΧΟΜΕΝΟ ΣΧΗΜΑΤΙΣΜΟ ΜΑΛΑΚΟΥ ΟΡΟΦΟΥ ΜΕΣΩ ΕΛΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Μελέτη βελτίωσης της συμπεριφοράς κτιρίου σε ενδεχόμενο σχηματισμό μαλακού ορόφου μέσω ελαστικής ανάλυσης ΜΕΛΕΤΗ ΒΕΛΤΙΩΣΗΣ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΤΙΡΙΟΥ ΣΕ ΕΝΔΕΧΟΜΕΝΟ ΣΧΗΜΑΤΙΣΜΟ ΜΑΛΑΚΟΥ ΟΡΟΦΟΥ ΜΕΣΩ ΕΛΑΣΤΙΚΗΣ

Διαβάστε περισσότερα

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση

Διαβάστε περισσότερα

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Σχεδιασµός φορέων από σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Καττής Μαρίνος, Αναπληρωτής Καθηγητής ΕΜΠ Λιβαδειά, 26 Σεπτεµβρίου 2009 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ

Διαβάστε περισσότερα

(a) Λεία δοκίµια, (b) δοκίµια µε εγκοπή, (c) δοκίµια µε ρωγµή

(a) Λεία δοκίµια, (b) δοκίµια µε εγκοπή, (c) δοκίµια µε ρωγµή ΜηχανικέςΜετρήσεις Βασισµένοστο Norman E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, Third Edition, 2007 Pearson Education (a) οκιµήεφελκυσµού,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 1.1 Ιστορική αναδρομή...1 1. Μικροδομή του χάλυβα...19 1.3 Τεχνολογία παραγωγής χάλυβα...30 1.4 Μηχανικές ιδιότητες χάλυβα...49 1.5 Ποιότητες δομικού χάλυβα...58 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής»

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» ΠΕΡΙΛΗΨΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ «Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» του Θεμιστοκλή Τσαλκατίδη, Δρ. Πολιτικού Μηχανικού

Διαβάστε περισσότερα

Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8

Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8 Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8 Α. ΑΒΔΕΛΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.Π.Θ. Α. ΑΒΔΕΛΑΣ 1986: Οδηγίες Σχεδιασμού της ECCS (European Convention

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 1 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Σκοπός και Στόχος του μαθήματος Στόχος του μαθήματος

Διαβάστε περισσότερα

ΠΛΑΣΤΙΚΗ ΜΕΛΕΤΗ ΚΑΤΑΣΚΕΥΩΝ ΑΠΟΣΤΟΛΟΣ Σ. ΠΑΠΑΓΕΩΡΓΙΟΥ

ΠΛΑΣΤΙΚΗ ΜΕΛΕΤΗ ΚΑΤΑΣΚΕΥΩΝ ΑΠΟΣΤΟΛΟΣ Σ. ΠΑΠΑΓΕΩΡΓΙΟΥ ΠΛΑΣΤΙΚΗ ΜΕΛΕΤΗ ΚΑΤΑΣΚΕΥΩΝ ΑΠΟΣΤΟΛΟΣ Σ. ΠΑΠΑΓΕΩΡΓΙΟΥ ΠΛΑΣΤΙΚΗ ΜΕΛΕΤΗ ΚΑΤΑΣΚΕΥΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ (1) Εισαγωγή: Πλαστική Ανάλυση και Σύνθεση Σιδηρών Κατασκευών (2) Ελαστοπλαστική Κάμψη Δοκών (3) Πλαστική

Διαβάστε περισσότερα

Συµπεριφορά µεταλλικών και σύµµικτων συστηµάτων πλάκας σε πυρκαγιά Μέθοδος απλοποιηµένου σχεδιασµού

Συµπεριφορά µεταλλικών και σύµµικτων συστηµάτων πλάκας σε πυρκαγιά Μέθοδος απλοποιηµένου σχεδιασµού Συµπεριφορά µεταλλικών και συστηµάτων πλάκας σε πυρκαγιά Μέθοδος απλοποιηµένου σχεδιασµού Σκοπός της µεθόδου 2 3 Περιεχόµενα παρουσίασης σε περίπτωση πυρκαγιάς στους 20 C Μοντέλο πλάκας δαπέδου Μορφές

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών Σιδηρές Κατασκευές Ι Άσκηση 4: Θλιβόμενο υποστύλωμα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Γιώργος ΒΑ ΑΛΟΥΚΑΣ 1, Κρίστης ΧΡΥΣΟΣΤΟΜΟΥ 2. Λέξεις κλειδιά: Ευρωκώδικας 2, CYS159, όγκος σκυροδέµατος, βάρος χάλυβα

Γιώργος ΒΑ ΑΛΟΥΚΑΣ 1, Κρίστης ΧΡΥΣΟΣΤΟΜΟΥ 2. Λέξεις κλειδιά: Ευρωκώδικας 2, CYS159, όγκος σκυροδέµατος, βάρος χάλυβα Συγκριτική µελέτη τυπικών κτιρίων οπλισµένου σκυροδέµατος µε το Ευρωκώδικα 2 και τον CYS 159 Comparative Study of typical reinforced concrete structures according το EC2 and CYS 159 Γιώργος ΒΑ ΑΛΟΥΚΑΣ

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ ΜΠΕΡΝΑΚΟΣ ΑΝΤΩΝΙΟΣ Περίληψη Στόχος της παρούσας εργασίας είναι η πρακτική εφαρμογή αναλυτικών προβλέψεων του ΚΑΝΕΠΕ

Διαβάστε περισσότερα

Επιρροή του διαμήκους οπλισμού των ακραίων περισφιγμένων περιοχών, στην αντοχή τοιχωμάτων μεγάλης δυσκαμψίας

Επιρροή του διαμήκους οπλισμού των ακραίων περισφιγμένων περιοχών, στην αντοχή τοιχωμάτων μεγάλης δυσκαμψίας Επιρροή του διαμήκους οπλισμού των ακραίων περισφιγμένων περιοχών, στην αντοχή τοιχωμάτων μεγάλης δυσκαμψίας Γεώργιος Κωνσταντινίδης Πολιτικός Μηχανικός MSc, DIC, PhD, Αττικό Μετρό Α.Ε. email gkonstantinidis@ametro.gr

Διαβάστε περισσότερα

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...7 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση...9 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση

Διαβάστε περισσότερα

10,2. 1,24 Τυπική απόκλιση, s 42

10,2. 1,24 Τυπική απόκλιση, s 42 Ασκηση 3.1 (a) Αν μία ράβδος οπλισμού θεωρηθεί ότι λυγίζει μεταξύ δύο διαδοχικών συνδετήρων με μήκος λυγισμού το μισό της απόστασης, s w, των συνδετήρων, να υπολογισθεί η απόσταση συνδετήρων, s w, πέραν

Διαβάστε περισσότερα

Εργαστήριο Ωπλισµένου Σκυροδέµατος. ηµοκρίτειο Πανεπιστήµιο Θράκης Ξάνθη

Εργαστήριο Ωπλισµένου Σκυροδέµατος. ηµοκρίτειο Πανεπιστήµιο Θράκης Ξάνθη Εργαστήριο Ωπλισµένου Σκυροδέµατος Τµήµα Πολιτικών Μηχανικών ηµοκρίτειο Πανεπιστήµιο Θράκης Ξάνθη ΟΚΛ ΚΕΦΑΛΑΙΟ 7 ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ - EC2 Περιορισμός των παραμορφώσεων Θεόδωρος Χ. Ρουσάκης

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 105 Κεφάλαιο 5 ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 5.1 Εισαγωγή Στα προηγούμενα κεφάλαια αναλύσαμε την εντατική κατάσταση σε δομικά στοιχεία τα οποία καταπονούνται κατ εξοχήν αξονικά (σε εφελκυσμό ή θλίψη) ή πάνω

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET Παραμετρική ανάλυση κοχλιωτών συνδέσεων με μετωπική πλάκα χρησιμοποιώντας πεπερασμένα στοιχεία Χριστόφορος Δημόπουλος, Πολιτικός Μηχανικός, Υποψήφιος Διδάκτωρ ΕΜΠ Περίληψη Η εν λόγω εργασία παρουσιάζει

Διαβάστε περισσότερα

ΝΕΕΣ ΔΥΝΑΤΟΤΗΤΕΣ CONSTEEL

ΝΕΕΣ ΔΥΝΑΤΟΤΗΤΕΣ CONSTEEL ΝΕΕΣ ΔΥΝΑΤΟΤΗΤΕΣ CONSTEEL Version 9.0 08. 04.201 5 www.ergocad.eu www. consteelsoftware.com ΠΕΡΙΕΧΟΜΕΝΑ 1. ΜΟΝΑΔΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ 3 1.1 ΟΔΗΓΟΣ ΓΩΝΙΑΣ ΚΟΜΒΟΥ ΠΛΑΙΣΙΟΥ.3 1.2 ΑΥΤΟΜΑΤΗ ΕΠΙΛΟΓΗ ΤΟΥ ΚΑΘΟΡΙΣΤΙΚΟΥ

Διαβάστε περισσότερα

Πλαστική Κατάρρευση Δοκών

Πλαστική Κατάρρευση Δοκών Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση : Κόμβος δοκού υποστυλώματος (συγκολλητή σύνδεση) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα

Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Αλληλεπίδραση Ανωδοµής-Βάθρων- Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα ΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ

ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ Βλ. Κεφ. 4, Παρ. 4.4, για την λογική των ελέγχων. 9.1.1 Το παρόν Κεφάλαιο περιλαµβάνει τα κριτήρια ελέγχου της ανίσωσης ασφαλείας, κατά την αποτίµηση ή τον ανασχεδιασµό,

Διαβάστε περισσότερα

9 ΚΕΦΑΛΑΙΟ 9. ΚΑΔΕΤ-ΚΕΦΑΛΑΙΟ 9 ΕΚΔΟΣΗ 2η ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ

9 ΚΕΦΑΛΑΙΟ 9. ΚΑΔΕΤ-ΚΕΦΑΛΑΙΟ 9 ΕΚΔΟΣΗ 2η ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ 9 ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ Βλ. Κεφ. 4, Παρ. 4.4, για την λογική των ελέγχων. Το παρόν Κεφάλαιο περιλαμβάνει τα κριτήρια ελέγχου της ανίσωσης ασφαλείας, κατά την αποτίμηση ή τον ανασχεδιασμό,

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Εφελκυσμού. ΕργαστηριακήΆσκηση2 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Εφελκυσμού. ΕργαστηριακήΆσκηση2 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Εφελκυσμού ΕργαστηριακήΆσκηση2 η Κατηγορίες υλικών Μέταλλα Σιδηρούχαµέταλλα (ατσάλι, ανθρακούχοι, κραµατούχοι και ανοξείγωτοιχάλυβες, κ.α. Πολυµερικά υλικά Πλαστικά Ελαστοµερή Μη

Διαβάστε περισσότερα

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών.Π.Μ.Σ. οµοστατικος Σχεδιασµός και Ανάλυση Κατασκευών Εργαστήριο Μεταλλικών Κατασκευών ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΛΥΓΙΣΜΟΣ ΑΝΩ ΘΛΙΒΟΜΕΝΟΥ ΠΕΛΜΑΤΟΣ ΙΚΤΥΩΤΗΣ

Διαβάστε περισσότερα

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, v ΠEPIEXOMENA ΠΡΟΛΟΓΟΣ ΠEPIEXOMENA iii v KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, ΣΧΕ ΙΑΣΜΟΣ ΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 1 1.1 Εισαγωγή 1 1.2 H µέθοδος των τοµών 2 1.3 Ορισµός της τάσης 3 1.4 Ο τανυστής των τάσεων

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Δομή - Βασικές Αρχές Ιούνιος 2009 Περιεχόμενα παρουσίασης Μέρη Ευρωκώδικα 3 Βασικές έννοιες o o o o o o o o Μηχανική συμπεριφορά δομικού χάλυβα Ποιότητες δομικού χάλυβα Σύγκριση χάλυβα με άλλα δομικά υλικά

Διαβάστε περισσότερα

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 20 1 XΑΛΥΒΔΌΦΥΛΛΟ SYMDECK 73 ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο

Διαβάστε περισσότερα

ΕΝΙΣΧΥΣΗ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΕ ΔΙΑΤΜΗΣΗ

ΕΝΙΣΧΥΣΗ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΕ ΔΙΑΤΜΗΣΗ 49 ΚΕΦΑΛΑΙΟ 5 ΕΝΙΣΧΥΣΗ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΕ ΔΙΑΤΜΗΣΗ 5.1 Γενικά Η ενίσχυση στοιχείων οπλισμένου σκυροδέματος σε διάτμηση με σύνθετα υλικά επιτυγχάνεται μέσω της επικόλλησης υφασμάτων ή, σπανιότερα,

Διαβάστε περισσότερα

Αντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων

Αντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων Αντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων 1. Γενικά Τα κριτήρια σχεδιασμού κτιρίων σε σεισμικές περιοχές είναι η προσφορά επαρκούς δυσκαμψίας, αντοχής και πλαστιμότητας. Η δυσκαμψία απαιτείται για την

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΝΕΠΑΡΚΩΝ ΜΗΚΩΝ ΠΑΡΑΘΕΣΗΣ ΜΕ ΣΥΝΘΕΤΑ ΥΛΙΚΑ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΑΙ EC8-3.

ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΝΕΠΑΡΚΩΝ ΜΗΚΩΝ ΠΑΡΑΘΕΣΗΣ ΜΕ ΣΥΝΘΕΤΑ ΥΛΙΚΑ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΑΙ EC8-3. ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΝΕΠΑΡΚΩΝ ΜΗΚΩΝ ΠΑΡΑΘΕΣΗΣ ΜΕ ΣΥΝΘΕΤΑ ΥΛΙΚΑ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΑΙ EC8-3. ΡΑΥΤΟΠΟΥΛΟΥ ΜΑΡΙΝΑ Περίληψη Οι κανονισμοί που ασχολούνται με τις επεμβάσεις κτιρίων στη χώρα μας είναι ο ΚΑΝ.ΕΠΕ. και

Διαβάστε περισσότερα

EYPΩKΩΔIKAΣ 4 ΣYMMIKTA YΠOΣTYΛΩMATA

EYPΩKΩΔIKAΣ 4 ΣYMMIKTA YΠOΣTYΛΩMATA EYPΩKΩΔIKAΣ 4 ΣYMMIKTA YΠOΣTYΛΩMATA Mέθοδοι υπολογισμού υποστυλωμάτων κατά EC4 H Γενική Mέθοδος H Aπλουστευμένη Mέθοδος Γενική Mέθοδος: Περιλαμβάνει και υποστυλώματα διατομής μη συμμετρικής ή μη ομοιόμορφης

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Υλικά

Βασικές Αρχές Σχεδιασμού Υλικά Βασικές Αρχές Σχεδιασμού Υλικά Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Το Ευρωπαϊκό πλαίσιο Μελετών και Εκτέλεσης έργων ΕΝ 10080 Χάλυβας οπλισμού Νοέμ. 2013 Χ. Ζέρης 2 ΕΚΩΣ, ΕΝ1992:

Διαβάστε περισσότερα

6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Περιεχόμενα Πρόλογος... 7 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση... 9 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση ανέμου... 7 3

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Διάλεξη 7 Μέλη υπό εγκάρσια φορτία. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι Διάλεξη 7 Μέλη υπό εγκάρσια φορτία. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Διάλεξη 7 έλη υπό εγκάρσια φορτία χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πειραματική Αντοχή Υλικών. Ενότητα: Μονοαξονική Θλίψη

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πειραματική Αντοχή Υλικών. Ενότητα: Μονοαξονική Θλίψη ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Μονοαξονική Θλίψη Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Η ΑΝΤΟΧΗ ΤΟΥ ΠΛΟΙΟΥ. Αντικείμενο της αντοχής του πλοίου. Έλεγχος της κατασκευής του πλοίου

Η ΑΝΤΟΧΗ ΤΟΥ ΠΛΟΙΟΥ. Αντικείμενο της αντοχής του πλοίου. Έλεγχος της κατασκευής του πλοίου Η ΑΝΤΟΧΗ ΤΟΥ ΠΛΟΙΟΥ Αντικείμενο της αντοχής του πλοίου Αντικείμενο της αντοχής του πλοίου είναι η μελέτη της κατασκευής του πλοίου σε σχέση με την ικανότητα της να φέρει ασφαλώς τις κάθε είδους δράσεις

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 οκίμια εφελκυσμού

Διαβάστε περισσότερα

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Ύλη μαθήματος -ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ -ΑΞΟΝΕΣ -ΚΟΧΛΙΕΣ -ΙΜΑΝΤΕΣ -ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΒΑΘΜΟΛΟΓΙΑ ΜΑΘΗΜΑΤΟΣ: 25% πρόοδος 15% θέμα

Διαβάστε περισσότερα

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ΑΣΤΟΧΙΑ ΚΟΝΤΩΝ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕΘΟΔΟΙ ΕΝΙΣΧΥΣΗΣ

ΑΣΤΟΧΙΑ ΚΟΝΤΩΝ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕΘΟΔΟΙ ΕΝΙΣΧΥΣΗΣ Αστοχία Κοντών Υποστυλωμάτων Μέθοδοι Ενίσχυσης ΑΣΤΟΧΙΑ ΚΟΝΤΩΝ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕΘΟΔΟΙ ΕΝΙΣΧΥΣΗΣ ΣΠΑΝΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Περίληψη Στην παρούσα εργασία εξετάζεται η αστοχία των κοντών υποστυλωμάτων όπως προκύπτει

Διαβάστε περισσότερα

ιατµητική αντοχή πολύ κοντών υπεροπλισµένων δοκών από οπλισµένο σκυρόδεµα Shear strength of very short over reinforced concrete beams

ιατµητική αντοχή πολύ κοντών υπεροπλισµένων δοκών από οπλισµένο σκυρόδεµα Shear strength of very short over reinforced concrete beams ιατµητική αντοχή πολύ κοντών υπεροπλισµένων δοκών από οπλισµένο σκυρόδεµα Shear strength of very short over reinforced concrete beams Πρόδροµος ΖΑΡΑΡΗΣ 1, Μαρία ΚΑΡΑΒΕΖΥΡΟΓΛΟΥ 2, Ιωάννης ΖΑΡΑΡΗΣ 3, Γεώργιος

Διαβάστε περισσότερα

Ελληνική Επιστημονική Εταιρία Ερευνών Σκυροδέματος (ΕΠΕΣ) ΤΕΕ / Τμήμα Κεντρικής Μακεδονίας

Ελληνική Επιστημονική Εταιρία Ερευνών Σκυροδέματος (ΕΠΕΣ) ΤΕΕ / Τμήμα Κεντρικής Μακεδονίας Πειραματική διερεύνηση της επιρροής της αντοχής σκυροδέματος και της πύκνωσης των συνδετήρων στη φέρουσα ικανότητα και τους μηχανισμούς αστοχίας δοκών Ο/Σ που υπόκεινται σε καμπτική φόρτιση Παναγιώτης

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ - 2017 Β3. Κόπωση Υλικών Κώστας Γαλιώτης, καθηγητης Τμήματος Χημικών Μηχανικών galiotis@chemeng.upatras.gr Β3. Κόπωση/Μηχανική Υλικών 1 Εισαγωγή (1/2) Η κόπωση είναι μία μορφή αστοχίας

Διαβάστε περισσότερα

9 Οριακή Κατάσταση Λειτουργικότητας: Έλεγχοι Μετακινήσεων

9 Οριακή Κατάσταση Λειτουργικότητας: Έλεγχοι Μετακινήσεων 9 Οριακή Κατάσταση Λειτουργικότητας: Έλεγχοι Μετακινήσεων 9.1 Εισαγωγή Η λειτουργικότητα αναφέρεται στην συµπεριφορά της κατασκευής υπό τα συνήθη φορτία λειτουργίας της. Με εξαίρεση την στιγµή της αστοχίας,

Διαβάστε περισσότερα

20/3/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος)

20/3/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εργαστηριακή Άσκηση 1 Εισαγωγή στη Δοκιμή Εφελκυσμού Δοκίμιο στερεωμένο ακλόνητα

Διαβάστε περισσότερα

Φαινόμενα 2ας τάξεως (Λυγισμός).

Φαινόμενα 2ας τάξεως (Λυγισμός). Φαινόμενα 2ας τάξεως (Λυγισμός). Περιεχόμενα: Α) Απόσπασμα από τον Ευρωκώδικα 2 (σελ 1-15) 5.1.4 Φαινόμενα δευτέρας τάξης 5.2 Γεωμετρικές ατέλειες 5.8 Επιρροές δευτέρας τάξεως σε στοιχεία με αξονικό φορτίο

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ. Ευρωκώδικας 4: Σύµµικτες κατασκευές

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ. Ευρωκώδικας 4: Σύµµικτες κατασκευές ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Ευρωκώδικας 4: Σύµµικτες κατασκευές 1. ΙΑΤΜΗΤΙΚΗ ΣΥΝ ΕΣΗ 2. ΣΥΜΜΙΚΤΑ ΥΠΟΣΤΥΛΩΜΑΤΑ Ερµόπουλος Γιάννης 1. ΙΑΤΜΗΤΙΚΗ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ Ε.Κ.Ω.Σ. 2000) ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ

ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ Ε.Κ.Ω.Σ. 2000) ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ. 2003 Ε.Κ.Ω.Σ. 2000) ΑΠΟΤΙΜΩΜΕΝΗΣ ΜΕ pushover ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ Περίληψη Σκοπός της παρούσης εργασίας είναι

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΑΝΑΛΥΤΙΚΩΝ ΣΧΕΣΕΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΔΕΙΚΤΗ ΠΛΑΣΤΙΜΟΤΗΤΑΣ ΚΑΜΠΥΛΟΤΗΤΩΝ ΟΡΘΟΓΩΝΙΚΩΝ ΔΙΑΤΟΜΩΝ Ο.Σ. ΣΕ ΔΙΑΞΟΝΙΚΗ ΚΑΜΨΗ ΜΕ ΟΡΘΗ ΔΥΝΑΜΗ

ΑΝΑΠΤΥΞΗ ΑΝΑΛΥΤΙΚΩΝ ΣΧΕΣΕΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΔΕΙΚΤΗ ΠΛΑΣΤΙΜΟΤΗΤΑΣ ΚΑΜΠΥΛΟΤΗΤΩΝ ΟΡΘΟΓΩΝΙΚΩΝ ΔΙΑΤΟΜΩΝ Ο.Σ. ΣΕ ΔΙΑΞΟΝΙΚΗ ΚΑΜΨΗ ΜΕ ΟΡΘΗ ΔΥΝΑΜΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΑΝΑΠΤΥΞΗ ΑΝΑΛΥΤΙΚΩΝ ΣΧΕΣΕΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΔΕΙΚΤΗ ΠΛΑΣΤΙΜΟΤΗΤΑΣ ΚΑΜΠΥΛΟΤΗΤΩΝ ΟΡΘΟΓΩΝΙΚΩΝ ΔΙΑΤΟΜΩΝ Ο.Σ. ΣΕ ΔΙΑΞΟΝΙΚΗ ΚΑΜΨΗ ΜΕ ΟΡΘΗ ΔΥΝΑΜΗ ΔΙΑΤΡΙΒΗ

Διαβάστε περισσότερα