Περιεχόμενα 1 Εισαγωγή 2 Κλασική Στατιστική Μηχανική 3 Μη Εκτατική Στατιστική Μηχανική 4 Αξιωματική Ταξινόμηση Εντροπικών Μορφών 5 Η Standard Απεικόνι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περιεχόμενα 1 Εισαγωγή 2 Κλασική Στατιστική Μηχανική 3 Μη Εκτατική Στατιστική Μηχανική 4 Αξιωματική Ταξινόμηση Εντροπικών Μορφών 5 Η Standard Απεικόνι"

Transcript

1 Στατιστική Μηχανική και Εντροπία Πολύπλοκων Συστημάτων Ευάγγελος Χ. Μητσοκάπας Αναστάσιος Μπούντης Τομέας Εφαρμοσμένης Ανάλυσης Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών 0 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

2 Περιεχόμενα 1 Εισαγωγή 2 Κλασική Στατιστική Μηχανική 3 Μη Εκτατική Στατιστική Μηχανική 4 Αξιωματική Ταξινόμηση Εντροπικών Μορφών 5 Η Standard Απεικόνιση 6 Συμπεράσματα και Ανοικτά Ερωτήματα 1 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

3 Εισαγωγή Εισαγωγή Χαοτική Δυναμική Ενα σύστημα N βαθμών ελευθερίας σε μία κατάσταση ημι-στατικής ισορροπίας χαρακτηρίζεται είτε από εργοδικότητα (ισχυρό χάος) είτε από μία ανομοιογενή «αταξία» (ασθενές χάος) Η κατανομή που περιγράφει ένα ισχυρά χαοτικό σύστημα είναι Gauss ενώ ένα ασθενώς χαοτικό σύστημα περιγράφεται από q-gaussians Αντικείμενο της Μελέτης Ποιες θερμοδυναμικές ιδιότητες περιγράφουν κατάλληλα τέτοια συστήματα; Ποιος ο ρόλος της Εντροπίας και των κατανομών που την βελτιστοποιούν στην ανάλυση αυτή; 2 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

4 Εισαγωγή Εισαγωγικές Εννοιες Περιγραφή Συστήματος Μακροσκοπικές Μεταβλητές (Θερμοδυναμική) π.χ. πίεση, όγκος, θερμοκρασία,... Μικροσκοπικές Μεταβλητές (Κλασσική Μηχανική) π.χ. ταχύτητα, ενέργεια, μάζα,... Η έννοια της Εντροπίας Clausius (1865): Παρατήρησε ότι το πηλίκο ds = dq T αντιστρεπτή μεταβολή είναι σταθερό Γενικά για ένα κλειστό (απομονωμένο) σύστημα: ds 0 σε μία ιδανική 3 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

5 Κλασική Στατιστική Μηχανική Κλασική Στατιστική Μηχανική Σκοπός Μελέτη μακροσκοπικών ιδιοτήτων συστημάτων N βαθμών ελευθερίας και των σχέσεων τους με την μικροσκοπική δυναμική σε μοριακό επίπεδο Στατιστική Κανονικού Συνόλου (Canonical Ensemble) Θεωρούμε N T ανεξάρτητα αντίγραφα απομονωμένου συστήματος, σε δεδομένη χρονική στιγμή, με διαφορετικές μικροκαταστάσεις και κοινά μακροσκοπικά μεγέθη Κανονικό Στατιστικό Σύνολο (NV T ): Ιδιος αριθμός N, όγκος V και θερμοκρασία T για όλα τα αντίγραφα N T 4 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

6 Κλασική Στατιστική Μηχανική Βέλτιστη Κατανομή Πληθυσμών Ο αριθμός των διαφορετικών τρόπων με τους οποίους μπορεί να επιτευχθεί μία οποιαδήποτε κατανομή (n 0, n 1, ) του συστήματος είναι: W = N T! Stirling = ln W N n 0!n 1! T ln (N T ) ni ln (ni) i Θεωρούμε κανονικό σύνολο (NV T ), N τέτοια ώστε d E /dt = 0, δηλαδή: i ni = N T και i niei = N T E Για να βρούμε την κατανομή με το μέγιστο στατιστικό βάρος βελτιστοποιούμε την ln W : ( ( ) φ ln W + α n i N T ) β n ie i N T E i i και επιβάλλοντας την συνθήκη φ/ n i = 0, i καταλήγουμε ότι: n i = µe βe i, µ = e α 1 5 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

7 Κλασική Στατιστική Μηχανική Κατανομή Boltzmann Προσδιορισμός Συντελεστών µ και β N ni = NT µ = i T i e βe i β = 1 k B, όπου T η θερμοκρασία και kb σταθερά Boltzmann T Κατανομή Boltzmann Αντικαθιστώντας µ, β: p i = e E i/k B T Z, Z = όπου Z η κανονική συνάρτηση επιμερισμού i e E i/k B T 6 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

8 Κλασική Στατιστική Μηχανική Εντροπία Boltzmann-Gibbs Ελεύθερη Ενέργεια Helmholtz A = A(N, V, T ) = U T S Για απειροστή μεταβολή da προκύπτει S = A/ T και έτσι έχουμε: A = A(0) k BT ln Z, Z = Z (N, V, T ) Εντροπία Boltzmann-Gibbs S BG = k B p i ln p i δεδομένου ότι i pi = 1 i 7 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

9 Κλασική Στατιστική Μηχανική Ιδιότητες S BG Μη-Αρνητικότητα Οταν υπάρχει μόνο μία πιθανή κατάσταση στην οποία μπορεί να βρεθεί το σύστημα τότε S BG = 0. Επιπλέον, δεδομένου ότι 0 < p i < 1, p i 1, και W > 1 ισχύει: S BG = k B ln (1/p i) Μέγιστη Εντροπία Εστω W ο αριθμός των καταστάσεων στις οποίες μπορεί να βρεθεί το σύστημα, με πιθανότητες p i. Στην περίπτωση ίσων πιθανοτήτων (p i = 1/W ), η εντροπία γίνεται μέγιστη: S BG = k B ln W Κοιλότητα Η εντροπία παρουσιάζει ένα μέγιστο για την περίπτωση ίσων πιθανοτήτων και ισχύει: S BG ({p i }) > λs BG({p i }) + (1 λ)s BG ({p i }) 8 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

10 Κλασική Στατιστική Μηχανική Ιδιότητες S BG Εκτατική και Αθροιστική Ιδιότητα Για δύο πιθανοκρατικώς ανεξάρτητα θερμοδυναμικά συστήματα A και B με καταστάσεις W A,W B αντίστοιχα ισχύει: Άρα S BG εκτατική μεταβλητή. S BG(A + B) = S BG(A) + S BG(B) Διασταλτικότητα Η εντροπία παραμένει αναλλοίωτη κάτω από την επιβολή νέων καταστάσεων με μηδενική πιθανότητα σε ένα σύστημα. S BG (p 1, p 2,..., p W ) = S BG (p 1, p 2,..., p W, 0) 9 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

11 Κλασική Στατιστική Μηχανική Μοναδικότητα S BG Θεώρημα Μοναδικότητας Khinchin Η S συνεχής συνάρτηση των p i Η S(p i = 1/W, i) αυξάνει γνησίως μονότονα Δεδομένου ότι p A+B ij = p A i p B j (i, j) τότε: S(A + B) = S(A) + S(B A) και την δεσμευμένη εντροπία S(B A) W A i=1 pa i S ( p A+B ij S(p 1, p 2,..., p w, 0) = S(p 1, p 2,..., p w) Τότε και μόνο τότε: S = S BG = k W p i ln p i, k > 0 i=1 p A i ). 10 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

12 Κλασική Στατιστική Μηχανική Κατανομή Gauss Εκθετική Κατανομή Δεδομένων των περιορισμών: x = xp(x)dx 0 0 p(x)dx = 1 προκύπτει η κατανομή: p(x) = e x/ x x Κατανομή Gauss Δεδομένων των περιορισμών: x 2 = x2 p(x)dx > 0 p(x)dx = 1 προκύπτει η κατανομή: p(x) = 1 /2 x 2 2π x 2 e x2 11 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

13 Μη Εκτατική Στατιστική Μηχανική q Συναρτήσεις Πρόβλημα Cauchy dy dx = yq, y(0) = 1, q R, q 1 q εκθετικό e x εάν q 1 e x 1 q = [1 + (1 q)x] (1 q) εάν q 1 και 1 + (1 q)x > 0 0 εάν q 1 και 1 + (1 q)x 0 q λογάριθμος ln q(x) = { ln(x) εάν x 0 και q 1 x 1 q 1 1 q εάν x 0 και q 1 12 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

14 Μη Εκτατική Στατιστική Μηχανική Εντροπία S q Εισαγωγή Στατιστική Μηχανική Boltzmann-Gibbs : Αλληλεπιδράσεις μικρής εμβέλειας Εκτατικότητα Μη Εκτατική Στατιστική Μηχανική: Αλληλεπιδράσεις μακράς εμβέλειας Μη Εκτατικότητα Εντροπία Tsallis Προκύπτει: Παρατήρηση: S BG = k B ln(1/p i) S q = k ln q(1/p i), k R W S q = k 1 p q i=1 i q 1 lim q 1 S q = S BG 13 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

15 Μη Εκτατική Στατιστική Μηχανική Ιδιότητες S q Μη Αρνητικότητα Για 0 < p i < 1: p i < 1 1/p i > 1 ln q (1/p i) > ln q 1 = 0 Άρα S q 0, q R Μέγιστη Εντροπία Εστω W ο αριθμός των καταστάσεων στις οποίες μπορεί να βρεθεί το σύστημα, με πιθανότητες p i. Στην περίπτωση ίσων πιθανοτήτων (p i = 1/W ), η εντροπία γίνεται μέγιστη: S q = k ln q W Κοιλότητα Η εντροπία παρουσιάζει ένα μέγιστο για την περίπτωση ίσων πιθανοτήτων και ισχύει: S q ( {p i }) > λs q ({p i}) + (λ 1)S q ( {p i }) 14 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

16 Μη Εκτατική Στατιστική Μηχανική Ιδιότητες S q Μη Εκτατική και Μη Αθροιστική Ιδιότητα Για δύο πιθανοκρατικώς ανεξάρτητα θερμοδυναμικά συστήματα A και B με καταστάσεις W A,W B αντίστοιχα ισχύει: S q(a + B) = S q(a) + S q(b) + (1 q)s q(a)s q(b) Άρα S q μη εκτατική μεταβλητή. Διασταλτικότητα Η εντροπία παραμένει αναλλοίωτη κάτω από την επιβολή νέων καταστάσεων με μηδενική πιθανότητα σε ένα σύστημα. S q (p 1, p 2,..., p W ) = S q (p 1, p 2,..., p W, 0) 15 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

17 Μη Εκτατική Στατιστική Μηχανική Μοναδικότητα S q Θεώρημα Μοναδικότητας Santos Η S συνεχής συνάρτηση των p i Η S(p i = 1/W, i) αυξάνει γνησίως μονότονα Δεδομένου ότι p A+B ij S(A + B) k = p A i pb j, (i, j) τότε: = S(A) k + S(B) k + (1 q) S(A) S(B) k k, k > 0 Για p L = L όροι pi, p M = M όροι pi, έτσι ώστε L + M = W και p L + p M = 1: Τότε και μόνο τότε: S (p i) = S(p L, p M ) + p q L S (pi p L) + p q M S (pi p M ) S = S q = k 1 W i=1 pq i, k > 0 q 1 16 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

18 Μη Εκτατική Στατιστική Μηχανική Κατανομές q-gauss Επιβολή Γενικευμένων Περιορισμών Κανονικοποίηση: p(x)dx = 1 0 Συνοδός Κατανομή: P (x) = τέτοια ώστε: P (x)dx = 1 0 p q (x) p q (k)dk 0 q-εκθετική Κατανομή Δεδομένης συνθήκης κανονικοποιήσης και q-μέσης τιμής: x q = xp (x)dx = X 0 q προκύπτει η q-συνάρτηση πυκνότητας πιθανότητας: p opt(x) = e βq(x Xq) q Z q, Z q = e βq(x Xq) q dx Παρατήρηση:p opt q 1 p Boltzmann 0 17 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

19 Μη Εκτατική Στατιστική Μηχανική Κατανομές q-gauss q-gaussian Κατανομή Δεδομένης συνθήκης κανονικοποίησης και ποσότητας: x 2 q = x2 P (x)dx = X q > 0 προκύπτει η q-συνάρτηση πυκνότητας πιθανότητας: p opt(x) = [1 β q(1 q)x 2 ] 1/(1 q) Z q, Z q = [1 βq(1 q)x2 ] 1/(1 q) dx Παρατήρηση:p opt q 1 p Gaussian 1.2 q= q= pq(x) 0.6 q= x 18 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

20 Αξιωματική Ταξινόμηση Εντροπικών Μορφών Η Κλάση Εντροπικών Μορφών κατά Thurner και Hanel Κατά Khinchin Θεμελίωση Μελετάμε S g[p] = W g(pi), W τέτοια ώστε: i=1 Κ1: S g συνεχής g συνεχής Κ2: S g μέγιστη για p i = 1/W g κοίλη Κ3: S g διασταλτική g(0) = 0 Μη Αθροιστική Εντροπία διότι S(A + B) S(A) + S(B A) Σχέσεις Κλιμάκωσης Δεδομένου ότι W προκύπτει η σχέση κλιμάκωσης: S g(λw ) S g(w = λ g(1/λw ) ) g(1/w ) και η συνάρτηση κλιμάκωσης f αποδεικνύεται: f(z) lim g(zx) x 0 + = g(x) zc, c (0, 1], 0 < z < 1 19 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

21 Αξιωματική Ταξινόμηση Εντροπικών Μορφών Ασυμπτωτικές Ιδιότητες Εντροπικών Μορφών Πρώτη Ασυμπτωτική Ιδιότητα Από τις σχέσεις κλιμάκωσης προκύπτει: lim W S(λW ) S(W ) λc 1 = 1 Δεύτερη Ασυμπτωτική Ιδιότητα Θεωρώντας τον μετασχηματισμό λ W α και ορίζοντας την ποσότητα: S g(w h c(α) = lim α+1 ) W S g(w ) προκύπτει: h c(α) = (1 + a) d, α R, d R Συμπέρασμα Εφικτός ο χαρακτηρισμός κάθε στατιστικού συστήματος Κ1-Κ3 μέσω του ζεύγους (c, d) το οποίο ορίζει κλάσεις ισοδυναμίας για τις g μέσω της σχέσης g α = g β c α = c β και d α = d β 20 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

22 Αξιωματική Ταξινόμηση Εντροπικών Μορφών Ταξινόμηση Στατιστικών Συστημάτων Προσδιορισμός Εντροπίας BG Για g BG(x) = x ln x προκύπτουν: f(z) = z c = 1 h c(α) = 1 + a d = 1 Άρα S BG (c, d) = (1, 1) Προσδιορισμός Εντροπίας Tsallis Για g q(x) = (x x q )/(1 q), 0 < q < 1 προκύπτουν: f(z) = z q c = q h c(α) = 1 d = 0 Άρα S q (c, d) = (q, 0) 21 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

23 Αξιωματική Ταξινόμηση Εντροπικών Μορφών Οικογένειες Εντροπικών Μορφών Συνάρτηση g c,d,r Η οικογένεια συναρτήσεων g c,d,r ικανοποιεί τις δύο ασυμπτωτικές ιδιότητες: g c,d,r (x) = ra d e A Γ (1 + d, A c ln x) rcx όπου η μη-πλήρης συνάρτηση Γάμμα: Γ(a, b) = t a 1 e t dt b και: A(c, d, r) = για c (0, 1], d R και r = r(c, d) cdr 1 (1 c)r 22 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

24 Αξιωματική Ταξινόμηση Εντροπικών Μορφών Ειδικές Περιπτώσεις Οικογένειας g c,d,r Προσδιορισμός Εντροπίας BG μέσω g c,d,r Για d > 0 επιλέγοντας r = 1/(cd + (1 c)) προκύπτει: S c,d [p] = W g i=1 c,d (p i) = e W Γ(1+d,1 c ln p i ) i=1 1+c(d 1) Η S BG ανήκει στην κλάση (c, d) = (1, 1) και αποδεικνύεται: S (1,1) [p] = W i=1 pi ln (1/pi) + 1 = SBG + 1 c 1+c(d 1) Προσδιορισμός Εντροπίας Tsallis μέσω g c,d,r Η S q ανήκει στην κλάση (c, d) = (q, 0) και για d = 0 επιλέγοντας r = 1/(1 q) προκύπτει: S c,d [p] = S (q,0) [p] = W g i=1 (q,0) (p i) = W i=1 Αποδεικνύεται ότι: S (q,0) [p] = 1 W i=1 pq i q = S q + 1 Γ(1, q ln p i ) qp i 1 q 23 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

25 Αξιωματική Ταξινόμηση Εντροπικών Μορφών Ειδικές Περιπτώσεις Οικογένειας g c,d,r Γενικευμένες Εντροπικές Μορφές Εντροπία ( ) c d S c,d = er Γ (d + 1, 1 c ln pi), i r = (1 c + cd) 1 c d S BG (p) = pi ln (1/pi) 1 1 i S q<1(p) i = 1 p q i, (q < 1) c = q < 1 0 q 1 S κ(p) = i pi p κ i p κ i (0 < κ 1) c = 1 κ 0 2κ S q>1(p) i = 1 p q i, (q > 1) 1 0 ( q 1 ) S b (p) = i 1 e bp i + e b 1 (b > 0) 1 0 S E (p) = i pi (1 e p i 1 p i ) ( ) ( ) S η(p) = Γ η+1 i=1 η, ln pi piγ η+1 η 1 0 (η > 0) 1 d = 1 η S γ(p) = i pi ln1/γ (1/p i) 1 d = 1 γ S β (p) = i pβ i ln (1/pi) c = β 1 24 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

26 Αξιωματική Ταξινόμηση Εντροπικών Μορφών Συναρτήσεις Κατανομών Γενικευμένος Λογάριθμος Ο γενικευμένος λογάριθμος της g c,d,r : Λ(x) = g c,d,r(x) είναι: [ Λ g(x) = g c,d,r(x) = rc x ( c 1 1 (1 (1 c)r ln x ) ] d dr 1 Βέλτιστη Κατανομή-Γενικευμένο Εκθετικό Η συνάρτηση πυκνότητας πιθανότητας που βελτιστοποιεί την g c,d,r ορίζεται ως η γενικευμένη εκθετική συνάρτηση p(x) = E c,d,r ( x) = Λ 1 g (x) και είναι: ( ) ] [W k p(x) = E c,d,r ( x) p(x) = e 1 c d B(1+x/rc) 1 d W k (B) ( (1 c)r ) όπου B (1 c)r e 1 (1 c)r και W 1 (1 c)r k ο k-οστός κλάδος της συνάρτησης Lambert-W, που αποτελεί λύση της x = W (x)e W (x). Για d 0 k = 0 και d < 0 k = / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

27 Αξιωματική Ταξινόμηση Εντροπικών Μορφών Ειδικές Περιπτώσεις Lambert-W Εκθετικών Κατανομές Boltzmann Η S BG ανήκει στην κλάση (c, d) = (1, 1) και από την οριακή διαδικασία lim c 1 E (c,1,r) ( x) = lim c 1 e 1 c 1 [W 0(B(1+x/rc)) W 0 (B)] προκύπτει: p(x) = e x c=0.9 e -x c=0.85 d=1 r=(1-c+cd) -1 p(x)=ec,d,r(-x) c= x 26 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

28 Αξιωματική Ταξινόμηση Εντροπικών Μορφών Ειδικές Περιπτώσεις Lambert-W Εκθετικών Κατανομές Tsallis Η S q ανήκει στην κλάση (c, d) = [(q, 0) και από την οριακή διαδικασία lim d 0 E( x) = lim d 0 + exp ( ) ( [ d W 1 q 0 B ( ) ] )] 1 + x 1 d W rq 0[B] προκύπτει: p(x) = ( 1 + x rq ) 1 q 1 4 (1+ x 1 rq ) q-1 d=0.01 r=(1-c+cd) -1 3 q=0.85 p(x)=ec,d,r(-x) 2 q=0.75 q= x 27 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

29 Αξιωματική Ταξινόμηση Εντροπικών Μορφών Διαταραχές των Lambert-W εκθετικών 1.0 q=0.8 r=(1-q+dq) q=0.9 r=(1-q+dq) d= d=10-1 p(x)=ec,d,r(-x 2 ) (1+ x2 rq ) 1 q-1 d=10-2 p(x)=ec,d,r(-x 2 ) (1+ x2 rq ) 1 q-1 d= d= d= x x 1.0 c= c= (1+ x2 rc ) 1 c-1 r= e-d 1 - c 0.8 (1+ x2 rc ) 1 c-1 r= e-d 1 - c p(x)=ec,d,r(-x 2 ) d=-3x10-2 p(x)=ec,d,r(-x 2 ) d=-3x d= d= x d=-5x x 28 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

30 Η Standard Απεικόνιση Standard Απεικόνιση Η Standard Απεικόνιση Ορίζεται ως: p i+1 = p i K sin x i x i+1 = x i + p i+1 όπου τα p i, x i [0, 2π] αναπαριστούν τις ορμές και τις θέσεις ενός σωματιδίου. Επιλογή 10 7 αρχικών συνθηκών με τυχαίο τρόπο, σε ολόκληρο το τετράγωνο [0, 2π] [0, 2π] 29 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

31 Η Standard Απεικόνιση Περίπτωση K = / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

32 Η Standard Απεικόνιση Περίπτωση K = / 37 23ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

33 Η Standard Απεικόνιση Περίπτωση K = 10 Numerical distribution Gaussian distribution Gaussian distribution 1 P(sM(j)) / 37 23ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική sm(j)

34 Η Standard Απεικόνιση Περίπτωση K = 2 32 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

35 Η Standard Απεικόνιση Περίπτωση K = 2 33 / 37 23ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

36 Η Standard Απεικόνιση Περίπτωση K = 2 Numerical distribution Gaussian distribution Gaussian distribution 1 P(sM(j)) / 37 23ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική sm(j)

37 Η Standard Απεικόνιση Περίπτωση K = / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

38 Η Standard Απεικόνιση Περίπτωση K = 2 35 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

39 Η Standard Απεικόνιση Περίπτωση K = 2 35 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

40 Συμπεράσματα και Ανοικτά Ερωτήματα Συμπεράσματα και Ανοικτά Ερωτήματα Συμπεράσματα Τα πολύπλοκα συστήματα μπορούν να περιγραφούν με μεγάλη επιτυχία από την μη εκτατική εντροπία Tsallis Τα εντροπικά συναρτησιακά που πληρούν τα Κ1,Κ2,Κ3 ταξινομούνται σε κλάσεις που ορίζονται από το ζεύγος παραμέτρων (c, d) Οι κατανομές που βελτιστοποιούν τις εντροπίες αυτές είναι της μορφής Lambert-W εκθετικών Ανοικτά Ερωτήματα Διαταραχή των q-gaussians που προκύπτουν μέσω της ανάλυσης των Thurner και Hanel Ταξινόμηση q-κατανομών που προκύπτουν από πειραματικά δεδομένα μέσω των κλάσεων αυτών 36 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

41 Συμπεράσματα και Ανοικτά Ερωτήματα Σας ευχαριστώ για την προσοχή σας! 37 / ο Θερινό Σχολείο - Συνέδριο, Χαλκιδική

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT ΕΝΤΡΟΠΙΑ-ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNO Η εντροπία είναι το φυσικό µέγεθος το οποίο εκφράζει ποσοτικά το βαθµό αταξίας µιας κατάστασης ενός θερµοδυναµικού συστήµατος. ΣΤΑΤΙΣΤΙΚΟΣ ΟΡΙΣΜΟΣ Η εντροπία

Διαβάστε περισσότερα

Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών

Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών Η Εντροπία Δρ. Αθανάσιος Χρ. Τζέμος Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών Θερμοδυναμική +Στατιστική Μηχανική= Θερμική Φυσική Η Θερμοδυναμική ασχολείται με τις μακροσκοπικές

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. O ος Θερμοδυναμικός Νόμος. Η Εντροπία 3. Εντροπία και αταξία 4. Υπολογισμός Εντροπίας

Διαβάστε περισσότερα

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Μικροκανονική- Kανονική κατανομή (Boltzmann) Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) ώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού

Διαβάστε περισσότερα

2 ΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

2 ΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 2 ΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΑΝΤΙΣΤΡΕΠΤΕΣ ΚΑΙ ΜΗ ΑΝΤΙΣΤΡΕΠΤΕΣ ΜΕΤΑΒΟΛΕΣ Ένα ζεστό φλυτζάνι καφέ πάντα κρυώνει καθώς θερμότητα μεταφέρεται προς το περιβάλλον. Πότε δεν παρατηρούμε το αντίθετο παρότι ΔΕΝ παραβιάζεται

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤΑ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Ο τρίτος θερμοδυναμικός Νόμος 2. Συστήματα με αρνητικές θερμοκρασίες 3. Θερμοδυναμικά

Διαβάστε περισσότερα

Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης

Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής 1 Γεώργιος Φανουργάκης 2 Κεφάλαιο 1 Εισαγωγή στη Στατιστική Θερμοδυναμική H Στατιστική θερμοδυναμική ή Στατιστική μηχανική είναι η εφαρμογή της θεωρίας πιθανοτήτων,

Διαβάστε περισσότερα

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Μικροκανονική- Kανονική κατανομή (Boltzmann) Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Δώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

κλασσική περιγραφή Κλασσική στατιστική

κλασσική περιγραφή Κλασσική στατιστική Η κανονική κατανομή στη κλασσική περιγραφή Κλασσική στατιστική φυσική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια o o Μια πολύ απλή περίπτωση για να ξεκινήσουμε είναι: Na θεωρήσουμε

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 5 ου κεφαλαίου Ελεγχοσυναρτήσεις για τις Παραμέτρους της Κανονικής Κατανομής Σταύρος Χατζόπουλος 08/05/207, 5/05/207 Εισαγωγή Στις παραγράφους που ακολουθούν παρουσιάζονται

Διαβάστε περισσότερα

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Μικροκανονική- Kανονική κατανομή (Boltzmann) Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Δώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή

Διαβάστε περισσότερα

9. Γενικευμένα Στατιστικά Σύνολα

9. Γενικευμένα Στατιστικά Σύνολα 9. Γενικευμένα Στατιστικά Σύνολα Περίληψη Γενικεύεται η κατασκευή στατιστικών συνόλων για κάθε θερμοδυναμικό σύστημα με οποιεσδήποτε χαρακτηριστικές μακροσκοπικές μεταβλητές. Παράγεται η πιθανότητα μιας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Μοντέλα Στατιστικής Μηχανικής, Κινητικότητα & Ισορροπία Αλυσίδες Markov: Καταστάσεις, Εξισώσεις Μεταβάσεων καθ. Βασίλης Μάγκλαρης

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve

Διαβάστε περισσότερα

Κλασική και στατιστική Θερμοδυναμική

Κλασική και στατιστική Θερμοδυναμική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική και στατιστική Θερμοδυναμική Κανονική Κατανομή oltzma- Μεγαλοκανονική Κατανομή Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ

ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ 1 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ Σκοπός της θερμοδυναμικής χημικής μηχανικής είναι η παροχή των κατάλληλων θεωρητικών γνώσεων και των

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 8 ΝΟΕΜΒΡΙΟΥ 2016 ΜΕΣΟΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Έστω η συνάρτηση συνολικής ζήτησης: p = D(q) = 50 2q

Διαβάστε περισσότερα

Γενικευμένος Ορισμός Εντροπίας

Γενικευμένος Ορισμός Εντροπίας Γενικευμένος Ορισμός Εντροπίας Σε μονωμένα συστήματα θεωρήσαμε ότι «όλες οι μικροκαταστάσεις που είναι συμβιβαστές με την δεδομένη Μακροκατάσταση έχουν ίσες πιθανότητες». Συμβολίσαμε με Ω τον αριθμό των

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Η τυχαία µεταβλητή X έχει αθροιστική

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n) ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) Θέμα ο (Παρ..3.4, Παρ..4.3, Παρ..4.8.) Εάν = ( ) τυχαίο δείγμα από την ομοιόμορφη ( 0, ) X X,, X. Δείξτε ότι η στατιστική συνάρτηση T = X = το δειγματικό

Διαβάστε περισσότερα

KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Στατιστικές Συλλογές. Κατανομή Gibbs 3. Από την Κατανομή Gibbs στις Κατανομές Maxwell

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηματισμοί Legendre. διπλανό σχήμα ότι η αντίστροφη συνάρτηση dg. λέγεται μετασχηματισμός Legendre της f (x)

Μηχανική ΙI. Μετασχηματισμοί Legendre. διπλανό σχήμα ότι η αντίστροφη συνάρτηση dg. λέγεται μετασχηματισμός Legendre της f (x) Τμήμα Π Ιωάννου & Θ Αποστολάτου 7/5/000 Μηχανική ΙI Μετασχηματισμοί Legendre Έστω μια πραγματική συνάρτηση f (x) Ορίζουμε την παράγωγο συνάρτηση df (x) της f (x) : ( x) (η γραφική της παράσταση δίνεται

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 5: Κυματομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η ερμηνεία της κυματοσυνάρτησης, δηλαδή της λύσης της εξίσωσης

Διαβάστε περισσότερα

Συνεχείς Τυχαίες Μεταβλητές

Συνεχείς Τυχαίες Μεταβλητές Συνεχείς Τυχαίες Μεταβλητές Η σ.κ.π. F() είναι παντού συνεχής F PX t dt H σ.π.π. df d Ισχύει ότι d F Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 () Πιθανότητες & Στατιστική

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 8 ΟΛΟΚΛΗΡΩΜΑΤΑ α

Μαθηματικά ΜΕΡΟΣ 8 ΟΛΟΚΛΗΡΩΜΑΤΑ α Μαθηματικά ΜΕΡΟΣ 8 ΟΛΟΚΛΗΡΩΜΑΤΑ α β xdx Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΝΤΙΠΑΡΑΓΩΓΟΙ Έστω συνάρτηση y=f(x) Ορίζουμε την παράγωγο της f(x)

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

P A B P(A) P(B) P(A. , όπου l 1

P A B P(A) P(B) P(A. , όπου l 1 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ, ΜΑΡΤΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο ενδεχόμενα

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 4 ου κεφαλαίου Ελεγχοσυναρτήσεις Γενικευμένου Λόγου Πιθανοφανειών Σταύρος Χατζόπουλος 27/03/2017, 03/04/2017, 24/04/2017 1 Εισαγωγή Έστω το τ.δ. X,,, από την κατανομή

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 6: Εντροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 6: Εντροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 6: Εντροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και των θεμελιωδών εννοιών και η

Διαβάστε περισσότερα

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων. ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ () ΠΑΡΑΣΚΕΥΗ, 24 ΜΑΡΤΙΟΥ 207 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Α. Να αποδείξετε

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2018 8/3/2018 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 22/3/2018 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 29/3/2018 1. Θεωρείστε

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Θέμα Απομονωμένο σύστημα περνάει από κατάσταση με εντροπία S σε κατάσταση με εντροπία S. Αποδείξτε και σχολιάστε ότι ισχύει S S. Για οποιαδήποτε μηχανή (σύστημα που εκτελεί

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙ ΟΡΙΣΜΟΙ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙ ΟΡΙΣΜΟΙ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙ ΟΡΙΣΜΟΙ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

Οργάνωση και Αλληλεπιδράσεις σε Μοριακό Επίπεδο

Οργάνωση και Αλληλεπιδράσεις σε Μοριακό Επίπεδο Οργάνωση και Αλληλεπιδράσεις σε Μοριακό Επίπεδο Αναδευτήρας Θερμόμετρο Μονωτικό κάλυμμα Μείγμα αντιδρώντων Συσκευή θερμιδομέτρου Δημήτριος Γαβριήλ Λέκτορας Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης Γεώργιος

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 3 η - Β ΜΕΡΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Όνομα καθηγητή: ΕΥΑΓΓΕΛΙΟΥ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1) Κατανόηση των εννοιών:

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2017 8/3/2017 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 17/3/2017 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 24/3/2017 1. Θεωρείστε

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ (ΧΗΜΙΚΗ) ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΛΑΣΙΚΗ (ΧΗΜΙΚΗ) ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΛΑΣΙΚΗ (ΧΗΜΙΚΗ) ΘΕΡΜΟ ΥΝΑΜΙΚΗ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο

Διαβάστε περισσότερα

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Μοντέλο υλικού σώματος 2. Ορισμοί μάζα γραμμομόριο 3. Η κατάσταση ενός υλικού 4. Τα βασικά γνωρίσματα των καταστάσεων 5. Το μοντέλο του ιδανικού

Διαβάστε περισσότερα

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Διδάσκοντες: Κώστας Περράκης, Δημοσθένης Γεωργίου http://eclass.upatras.gr/ p Βιβλιογραφία Advanced Thermodynamics for Engineers, Kenneth, Jr. Wark Advanced thermodynamics engineering

Διαβάστε περισσότερα

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B) Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς

Διαβάστε περισσότερα

X = = 81 9 = 9

X = = 81 9 = 9 Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Apì ton diakritì kôbo ston q ro tou Gauss

Apì ton diakritì kôbo ston q ro tou Gauss Apì ton diaritì Ôbo ston q ro tou Gauss 1 Isoperimetri anisìthta sto diaritì Ôbo Θεωρούμε την οικογένεια J των συναρτήσεων J : [0 1] [0 ) που ικανοποιούν τα εξής: J0) = J1) = 0. Για κάθε a b [0 1] a +

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών

Διαβάστε περισσότερα

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...

Διαβάστε περισσότερα

ΠΥΚΝΟΤΗΤΑ ΠΟΛΥΜΕΡΙΚΗΣ ΑΛΥΣΙΔΑΣ

ΠΥΚΝΟΤΗΤΑ ΠΟΛΥΜΕΡΙΚΗΣ ΑΛΥΣΙΔΑΣ ΠΥΚΝΟΤΗΤΑ ΠΟΛΥΜΕΡΙΚΗΣ ΑΛΥΣΙΔΑΣ Ποιά είναι η πυκνότητα μίας πολυμερικής αλυσίδας με μοριακό βάρος Μ και Ν μονομέρη; (η συγκέντρωση δηλαδή των μονομερών μέσα στον όγκο που καταλαμβάνει η αλυσίδα). Μέγεθος

Διαβάστε περισσότερα

2.60 ακαριαία. σιγά σιγά

2.60 ακαριαία. σιγά σιγά ΑΣΚΗΣΕΙΣ .60 Θερμικά μονωμένος κύλινδρος χωρίζεται σε δύο μέρη από αδιαβατικό, αβαρές έμβολο που κινείται χωρίς τριβή. Αρχικά το έμβολο συγκρατείται ακίνητο. Ο κύλινδρος περιέχει n mles ιδανικού αερίου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

Ο δεύτερος νόμος Παραδείγματα αυθόρμητων φαινομένων: Παραδείγματα μη αυθόρμητων φαινομένων: συγκεκριμένο χαρακτηριστικό

Ο δεύτερος νόμος Παραδείγματα αυθόρμητων φαινομένων: Παραδείγματα μη αυθόρμητων φαινομένων: συγκεκριμένο χαρακτηριστικό Ο δεύτερος νόμος Κάποια φαινόμενα στη φύση συμβαίνουν αυθόρμητα, ενώ κάποια άλλα όχι. Παραδείγματα αυθόρμητων φαινομένων: α) ένα αέριο εκτονώνεται για να καταλάβει όλο το διαθέσιμο όγκο, β) ένα θερμό σώμα

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΑΥΤΟΔΙΟΡΘΩΣΗΣ +ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΟΔΗΓΙΕΣ ΑΥΤΟΔΙΟΡΘΩΣΗΣ +ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Οδηγίες αυτοδιόρθωσης+λύσεις των θεμάτων προσοσμοίωσης στα Μαθηματικά και Στοιχεία Στατιστικής 05 ΟΔΗΓΙΕΣ ΑΥΤΟΔΙΟΡΘΩΣΗΣ +ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Στην πράξη βρίσκουμε το Ν Α [το P (A)] όχι με παρατηρήσεις, αλλά με τη χρήση της λογικής (π.χ. ζάρι) ή της Φυσικής (π.χ. όγκος)

Στην πράξη βρίσκουμε το Ν Α [το P (A)] όχι με παρατηρήσεις, αλλά με τη χρήση της λογικής (π.χ. ζάρι) ή της Φυσικής (π.χ. όγκος) Αν σε σύστημα που διατηρείται σε σταθερές συνθήκες κάνουμε Ν παρατηρήσεις και από αυτές στις Ν Α παρατηρήθηκε το γεγονός Α, τότε λέμε ότι η πιθανότητα να συμβεί αυτό το γεγονός δίνεται από τη σχέση: P

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2013 5/3/2013 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 3, 4, 5 * να παραδοθούν μέχρι τις 22/3/2013 Οι λύσεις των προβλημάτων 8 * και 20 να παραδοθούν μέχρι τις 28/3/2013 1. Για να κερδίσουμε

Διαβάστε περισσότερα

Α Θερμοδυναμικός Νόμος

Α Θερμοδυναμικός Νόμος Α Θερμοδυναμικός Νόμος Θερμότητα Έχουμε ήδη αναφέρει ότι πρόκειται για έναν τρόπο μεταφορά ενέργειας που βασίζεται στη διαφορά θερμοκρασιών μεταξύ των σωμάτων. Ορίζεται από τη σχέση: Έργο dw F dx F dx

Διαβάστε περισσότερα

Τμήμα Χημείας Πανεπιστήμιο Κρήτης. Εαρινό εξάμηνο 2009

Τμήμα Χημείας Πανεπιστήμιο Κρήτης. Εαρινό εξάμηνο 2009 Τμήμα Χημείας Πανεπιστήμιο Κρήτης Εργαστήριο Φυσικοχημείας Ι Στοιχεία Στατιστικής Θερμοδυναμικής Εαρινό εξάμηνο 9 Διδάσκων : Δ. Άγγλος Υπευθ. Εργαστηρίου : Ν. Στρατηγάκης Μεταπτυχιακοί : Ν. Διαμαντοπούλου,

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Κλασική και στατιστική Θερμοδυναμική

Κλασική και στατιστική Θερμοδυναμική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική και στατιστική Θερμοδυναμική Θεμελίωση της στατιστικής θερμοδυναμικής - μικροκανονική κατανομή Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες

Διαβάστε περισσότερα

Αλγόριθμος Metropolis. Γ. Θεοδώρου 1

Αλγόριθμος Metropolis. Γ. Θεοδώρου 1 Αλγόριθμος Metropols Γ. Θεοδώρου Γ. Θεοδώρου 1 Δειγματοληψία Οι δύο βασικές μέθοδοι δειγματοληψίας είναι, Κλασική δειγματοληψία (καλείται και: Monte Carlo), και Δειγματοληψία Metropols. Η βασική διαφορά

Διαβάστε περισσότερα

Κινητική Θεωρία πλάσµατος

Κινητική Θεωρία πλάσµατος Κινητική Θεωρία πλάσµατος Λουκάς Βλάχος Τµήµα Φυσικής ΑΠΘ *Οµιλία στο ο ΣΧΟΛΕΙΟ ΦΥΣΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΝΤΗΞΗΣ, Βόλος- /5/003 1 Θέµατα Τυχαίες διαδικασίες και η κατανοµή Gauss Η συνάρτηση κατανοµής ταχυτήτων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26

Διαβάστε περισσότερα

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k!

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k! Ασκήσεις Πιθανοτήτων - Στατιστικής Πρόβλημα 1 (Η Πολυωνυμική Κατανομή). Στο πρόβλημα αυτό θα μελετήσουμε μία γενίκευση της διωνυμικής κατανομής που συναντήσαμε στο μάθημα. Συγκεκριμένα, θα δούμε τί συμβαίνει

Διαβάστε περισσότερα

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov Γ. Κορίλη, Αλυσίδες Markov 3- http://www.seas.upe.edu/~tcom5/lectures/lecture3.pdf Αλυσίδες Markov Αλυσίδες Markov ιακριτού Χρόνου Υπολογισµός Στάσιµης Κατανοµής Εξισώσεις Ολικού Ισοζυγίου Εξισώσεις Λεπτοµερούς

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2019 14/3/2019 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 22/3/2019 Οι λύσεις των προβλημάτων 27 και 28 * να παραδοθούν μέχρι τις 28/3/2019 1. Θεωρείστε

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 7: Εντροπία - Ισοζύγια εντροπίας Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Διάλεξη 9: Στατιστική Φυσική

Διάλεξη 9: Στατιστική Φυσική Στατιστική Φυσική: Η μελέτη της θερμοδυναμικής συμπεριφοράς ενός συστήματος σωματίων σε σχέση με τις ιδιότητες των επί μέρους σωματίων. Αν και δεν μπορεί να προβλέψει με απόλυτη ακρίβεια την θερμοδυναμική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ Πειραιάς, 19-04-2016 Θέμα: Κατατάξεις Πτυχιούχων για το Ακαδημαϊκό Έτος 2016-2017

Διαβάστε περισσότερα

= (2)det (1)det ( 5)det 1 2. u

= (2)det (1)det ( 5)det 1 2. u www.maths.gr, Ενδεικτικές Λύσεις ης Εργασίας ΦΥΕ4 έτους -. Οι Λύσεις είναι για την βοήθεια των φοιτητών, σε ΘΕΜΑ ο 5 6 4 6 4 5 det 4 5 6 ()det ()det ()det 8 9 7 9 7 8 7 8 9 ()( ) ()( 6 ) ()( ) 5 4 4 det

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις

Συνήθεις Διαφορικές Εξισώσεις ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μεταπτυχιακό Μάθημα: Συνήθεις Διαφορικές Εξισώσεις Καθηγητές: Α Μπούντης - Σ Πνευματικός Ακαδημαϊκό έτος 11-1 ΕΞΕΤΑΣΗ ΙΟΥΝΙΟΥ ΤΟ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΤΥΠΟ ΤΩΝ LOKA-VOLERRA

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές (τ.µ.)

Τυχαίες Μεταβλητές (τ.µ.) Τυχαίες Μεταβλητές (τ.µ.) Τυχαία Μεταβλητή (τ.µ.) : συνάρτηση Χ (.) µε πεδίο ορισµού τον δειγµατικό χώρο Ω και πεδίο τιµών ένα σύνολο πραγµατικών αριθµών. X (.) : Ω D ιακριτές τ.µ. Συνεχείς τ.µ. Η πιθανοτική

Διαβάστε περισσότερα

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X

Διαβάστε περισσότερα

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό ο Φροντιστηριο ΗΥ7 - Επαναληπτικό Επιµέλεια : Γ. Καφεντζής 7 Ιανουαρίου 4 Ασκηση. Το σήµα s µεταδίδεται από ένα δορυφόρο αλλά λόγω της επίδρασης του ϑορύβου το λαµβανόµενο σήµα έχει τη µορφή X s + W. Οταν

Διαβάστε περισσότερα

Φυσική και Πληροφορία

Φυσική και Πληροφορία Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Tel.: +30 2310998051, Ιστοσελίδα: http://users.auth.gr/theodoru Φυσική και Πληροφορία

Διαβάστε περισσότερα

Στατιστική. Εκτιμητική

Στατιστική. Εκτιμητική Στατιστική Εκτιμητική Χατζόπουλος Σταύρος 28/2/2018 και 01 /03/2018 Εισαγωγή Το αντικείμενο της Στατιστικής είναι η εξαγωγή συμπερασμάτων που αφορούν τον πληθυσμό ή το φαινόμενο που μελετάμε, με τη βοήθεια

Διαβάστε περισσότερα