ΝΑΟΥΣΑ ΚΑΛΟΚΑΙΡΙ 2009 ΘΑΛΗΣ ΚΑΙ ΦΙΛΟΙ ΕΡΓΑΣΤΗΡΙ ΤΟΥ ΒΙΒΛΙΟΥ «ΚΑΤΑΡΑΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ» του Κάρλο Φραµπέτι, Εκδόσεις opera, 2000

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΝΑΟΥΣΑ ΚΑΛΟΚΑΙΡΙ 2009 ΘΑΛΗΣ ΚΑΙ ΦΙΛΟΙ ΕΡΓΑΣΤΗΡΙ ΤΟΥ ΒΙΒΛΙΟΥ «ΚΑΤΑΡΑΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ» του Κάρλο Φραµπέτι, Εκδόσεις opera, 2000"

Transcript

1 ΝΑΟΥΣΑ ΚΑΛΟΚΑΙΡΙ 2009 ΘΑΛΗΣ ΚΑΙ ΦΙΛΟΙ ΕΡΓΑΣΤΗΡΙ ΤΟΥ ΒΙΒΛΙΟΥ «ΚΑΤΑΡΑΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ» του Κάρλο Φραµπέτι, Εκδόσεις opera, 2000 (Οι θεωρητικές θέσεις που αναφέρονται παρακάτω είναι γραµµένες αποκλειστικά για να βοηθήσουν στο να γίνει συζήτηση µεταξύ των συµµετεχόντων του εργαστηρίου και για τον λόγο αυτό δεν αναφέρω την βιβλιογραφία που χρησιµοποίησα) - Παιδιά, ποιος θα µας αφηγηθεί το παραµύθι του βοσκού; - Πως σας φάνηκε αυτή η ιστορία; - Εµένα µου άρεσε που έχει µια ενότητα. Έχει αρχή µέση και τέλος και µου δίνει µια ερµηνεία για το πώς δηµιουργήθηκε το δεκαδικό σύστηµα. Μου άρεσε επίσης που συνδέει τα µαθηµατικά µε καθηµερινές καταστάσεις που συµµετέχει και το µυαλό και το σώµα µας. Βέβαια θα ήθελα να µάθω και όλη την πραγµατική ιστορία. - µαθητής: γιατί να µην είναι αυτή η πραγµατική ιστορία; - Σίγουρα κάπως έτσι εξελίχτηκαν τα πράγµατα αλλά για να τελειοποιηθεί το µετρικό σύστηµα έτσι όπως έχει επικρατήσει σήµερα, έπρεπε να «εφευρεθεί» η κατάλληλη µαθηµατική γλώσσα και ο κατάλληλος µαθηµατικός συµβολισµός. Όπως καταλαβαίνεται αυτά δεν µπορούν να γίνουν από την µια µέρα στην άλλη. Παρεµβαίνουν πολλοί άνθρωποι από διάφορες εποχές σε διάφορους πολιτισµούς. Το δεκαδικό σύστηµα ουσιαστικά είναι πολύ νέο. Δεν ήταν πάντα έτσι. Και όταν πρωτοεµφανίστηκε στην σηµερινή µορφή δεν έγινε από την αρχή αποδεκτό από όλους. Πέρασαν πολλά χρόνια µέχρι τελικά να καθιερωθεί. Και µπορεί να έρθει µια µέρα (που µάλλον εµείς δεν θα την προλάβουµε) και να αλλάξει! - (Μαθητής:) Ναι όταν θα έχουµε 15 δάκτυλα στα χέρια! - ή όταν θα γίνουµε άνθρωποι κοµπιούτερ. Τότε θα «δουλεύουµε» στο δυαδικό σύστηµα.

2 Τελικά ήταν «καλό» το παραµύθι του βοσκού; Επιχειρήµατα ενός καθηγητή (;) Επιχειρήµατα «ενός παιδιού» - διαστρεβλώνει την πραγµατική - είπαµε ότι ήταν παραµύθι και ήταν ιστορία και µαζί της την πραγµατική ωραίο παραµύθι φύση των µαθηµατικών δίνοντας - µου άρεσε που συνέδεε αυτά τα µαθητές µια επιβλαβή άποψη για αφηρηµένα σύµβολα (τους αριθµούς) χρησιµοθηρικά µαθηµατικά µε το σώµα µου και µε συγκεκριµένα - Σαφώς τα µαθηµατικά πράγµατα ενδιαφέρθηκαν αρχικά για τις φυσικές - είναι πιο κοντά στο πως σκέφτοµαι ποσότητες µέτρηση κοπαδιών ή εγώ τους αριθµούς. Θέλω να αγρών αλλά η εποχή αυτή καταλαβαίνω και να νιώθω τα πέρασε Τα µαθηµατικά είναι µαθηµατικά µε τον δικό µου τρόπο και αφηρηµένες έννοιες. Αυτά τα όχι µε τον αφηρηµένο δικό σας τρόπο µαθηµατικά έχει αξία να µάθουν οι - Δηλαδή οι αφηρηµένες έννοιες που µαθητές στο Γυµνάσιο και στο Λύκειο µου λέτε, πως δηµιουργήθηκαν; (δες και το αναλυτικό πρόγραµµα) ξαφνικά; Δεν κατασκευάστηκαν µε - Θα τρίζουν τα κόκαλα του κάποιο τρόπο που περνούσε και Πυθαγόρα και του Πλάτωνα: κατά µία µέσα από το ανθρώπινο σώµα ή άποψη, όλο το (φιλοσοφικό) έργο του γενικά από συγκεκριµένες Πλάτωνα αποσκοπούσε στο να ορίσει καταστάσεις; την µονάδα. Ακόµα, ο Ράσελ µε τον - Πως µπορείς να αποκόψεις τα Ουάιτχεντ αφιέρωσαν 362 σελίδες δηµιουργήµατα από τους τρόπους στο βιβλίο τους Πριγκίπια Ματεµάτικα που δηµιουργήθηκαν;

3 για να αποδείξουν ότι = 2 (Logicomix σελ. 203) Τα µαθηµατικά, είναι ένα αντικειµενικό, απόλυτο, αναµφισβήτητο και µη επιδεχόµενο διορθώσεις σώµα γνώσεων, το οποίο θεµελιώνεται στην ακλόνητη βάση της παραγωγικής λογικής. (Λογικισµός Φορµαλισµός ). Τα µαθηµατικά υπάρχουν ανεξάρτητα από την ανθρώπινη γνώση και ανακαλύπτονται. Αποτελούν µέρος της φύσης και παραµένουν αµετάβλητα στο χρόνο. Για κάθε ερώτηµα στα µαθηµατικά υπάρχει µια προκαθορισµένη από τους βασικούς µαθηµατικούς κανόνες απάντηση. Αν κάποια ερωτήµατα παραµένουν Τι είναι τα µαθηµατικά; Προέρχονται από τον ανθρώπινο πολιτισµό και την ιστορία. Πολλές από τις σηµαντικότερες ιδέες των µαθηµατικών γεννιούνται από τις γενικές πτυχές του πολιτισµού παρά από τα µαθηµατικά τα ίδια, τα οποία είναι µέρος του µεγαλύτερου πολιτιστικού περιβάλλοντος «Τα µαθηµατικά γενικά δεν υπάρχουν κάπου εκεί έξω, αλλά δηµιουργούνται ή εφευρίσκονται από τον άνθρωπο κατά την ενασχόλησή του µε καθηµερινά προβλήµατα ή µε νοητικές ιδέες, προς εξυπηρέτηση υλικών και πνευµατικών στόχων» Τα µαθηµατικά είναι ένα µοναδικό πράγµα. Οι Πλατωνικές, φορµαλιστικές και κονστρουκτιβιστικές όψεις τους είναι πιστευτές επειδή η καθεµιά αντιστοιχεί σε µια ορισµένη σκοπιά, µια σκοπιά από µια ορισµένη γωνία ή µια εξέταση µε ένα ιδιαίτερο όργανο. Το πρόβληµά µας είναι να οδηγηθούµε σε µια κατανόηση του ίδιου του πράγµατος, να ταιριάξουµε τις επιµέρους όψεις καθεµιά από τις οποίες είναι εσφαλµένη αν την πάρουµε µόνη της, απλά και µόνο επειδή είναι ατελής και µονόπλευρη. Από την στιγµή που είναι εικόνες του ίδιου πράγµατος, είναι συµβατές. Η φαινοµενική τους

4 αναπάντητα είναι µόνο και µόνο γιατί δεν έχουν ανακαλυφθεί ακόµα οι κατάλληλες διαδικασίες για τη λύση τους. (Πλατωνισµός) ασυµβατότητα δηµιουργείται επειδή τις κοιτάζουµε µε αταίριαστη προκατάληψη" Davis & Hersh (1981) Αφήγηση: Ο Δοξιάδη (Δεκέµβριος 2003): - Διαχωρίζει την παλιότερη ερµηνεία της αφήγηση (ως έχουσα µοναδικό προορισµό την µεταφορά συναισθηµάτων κυρίως µέσα από την λογοτεχνία) από την έννοια της αφήγησης ως επικοινωνιακή λειτουργία που περιλαµβάνει και την µετάδοση γνώσης που µπορεί να είναι απλά πραγµατολογική, θεωρητική, ιδεολογική, µάθηµα περί µεθόδου, τρόπου ζωής, σχεδόν οτιδήποτε. - Ισχυρίζεται ότι η αφήγηση συνιστά έναν άλλον νόµιµο γνωστικό τρόπο, ισχυρό όσο και η ταξινοµική-αναλυτική µατιά της επιστήµης, άποψη που µόλις το 1986 «νοµιµοποιήθηκε» µε το άρθρο του εκπαιδευτικού και γνωστικού ψυχολόγου Jerome Bruner Two modes of thinking ο οποίος είναι ο πρώτος που έθεσε το θέµα στη γενικότητά του, τονίζοντας ότι ο ανθρώπινος νους έχει δύο εντελώς διαφορετικούς τρόπους να γνωρίζει την πραγµατικότητα: αυτόν που αποκαλεί παραδειγµατικό (paradigmatic) δηλαδή τον ταξινοµικό, επαγωγικό (inductive) ή παραγωγικό (deductive) της επιστήµης, και δεύτερο τον αφηγηµατικό (narrative), που είναι διάφορος του πρώτου σε µορφή, πρόθεση και λειτουργία - και οι δυο τρόποι, ενώ µπορούν να συνεργαστούν, δεν µπορούν να υποκαταστήσουν ο ένας τον άλλον.

5 - Αναδεικνύει και έναν άλλο ρόλο της αφήγησης: αυτόν της ερµηνείας «Ερµηνεία και αφήγηση είναι έννοιες αλληλένδετες: είτε το θέλουµε είτε όχι, αφηγούµενοι ερµηνεύουµε γεγονότα και πρόσωπα, που πάει να πει τα εντάσσουµε σε ένα σύστηµα που αναδεικνύει τις αιτιακές αλληλουχίες που τα διέπουν». - Υποστηρίζει ότι η αντίληψη δεν είναι παθητική-αναλυτική αλλά βουλητική-συνθετική λειτουργία. Ο νους ψάχνει ενεργά να συνδέσει γεγονότα και πρόσωπα γύρω του µε σχέσεις αιτιότητας, αντικειµενικά υπαρκτές ή και µη. - Τελικά, µια σειρά αιτιακών συνδέσεων, όταν έχει ικανό µήκος, γίνεται εξ ορισµού αφήγηση, ιστορία. Η προκατάληψη της νόησης υπέρ της αφηγηµατικής - αιτιακής διαδοχής είναι προκατάληψη υπέρ της τάξης σε έναν χαοτικό κόσµο. ( Η αξία λοιπόν της αφήγησης είναι ότι τοποθετεί το υπό εξέταση θέµα σε κάποια πλαίσια και εξηγεί τα όριά του. Προσφέρει δηλαδή ενότητα. Βέβαια, το τι αποτελεί αφήγηση και τι όχι, νοµίζω ότι έχει σε µεγάλο βαθµό να κάνει µε τις προθέσεις αυτού που αφηγείται και πάνω από όλα αν στις προθέσεις του είναι πρώτα από όλα η επικοινωνία µε τους ακροατές του. Αυτό νοµίζω ότι µια σηµαντική διαφορά της αφήγησης από την διάλεξη που ίσως δικαίως έχει πλέον θεωρηθεί µάλλον ακατάλληλη για την διδασκαλία). Ο Δοξιάδης (Ιανουάριος, 2003) σχετικά µε την ανάγκη να εισαχθεί η αφήγηση στην σχολική τάξη των µαθηµατικών, καταλήγει στους παρακάτω λόγους: - Ο στόχος είναι: α) να αυξήσει την γοητεία του αντικειµένου των µαθηµατικών, β) να του προσδώσει µια αίσθηση πνευµατικότητας, ιστορική και κοινωνική σχετικότητα και µια θέση στον πολιτισµό µας, γ) να δώσει στους µαθητές µια καλύτερη αίσθηση του σκοπού των µαθηµατικών, πέρα από τα όρια των, αναγκαστικά περιορισµένων, τεχνικών µαθηµατικών που µπορούν να διδαχτούν µέσα στα όρια του σχολικού συστήµατος. - Η αφήγηση των µαθηµατικών µπορεί να συµπληρώσει και να αλληλεπιδράσει µε την διδασκαλία των τεχνικών των µαθηµατικών. Δίνοντας χρόνο στην αφήγηση, τα µαθηµατικά µπορούν να ενσωµατωθούν στην ψυχή των µαθητών, ενώ διδάσκοντας µόνο τεχνικές, στους πιο πολλούς τελικά δεν θα µείνει τίποτα. - Ιδιαίτερα για τους µικρούς µαθητές, η αφήγηση µπορεί να διευκολύνει

6 την µετάβαση στην µαθηµατική αφαίρεση. Το να δηµιουργήσεις ιστορίες, πιθανόν και µε αναγνωρίσιµους ήρωες και καταστάσεις, αλλά µέσα σε πλούσια εννοιολογικά περιβάλλοντα, (χωρίς απαραίτητα να περιέχουν αριθµούς ή µαθηµατικό φορµαλισµό αλλά να είναι πλούσιες τόσο σε πλοκή όσο και σε θέµατα στρατηγικών λύσης προβλήµατος), οι µαθητές θα «ταυτιστούν» µε τον ήρωα και θα προχωρήσουν να κάνουν µαθηµατικά προσπαθώντας να βοηθήσουν τις σκέψεις του. - Στους µαθητές µεγαλύτερης ηλικία κυριαρχεί, στο σχολείο, η µηχανική (σχεδόν καταναγκαστική) λύση ασκήσεων. Για να ξεφύγουµε από την απλή εκµάθηση τεχνικών χωρίς νόηµα µπορούµε να εισάγουµε στο σχολικό πρόγραµµα την βιογραφία και την ιστορία. Μπορούµε να µιλάµε για τους µεγάλους µαθηµατικούς και την εποχή τους, έστω και αν δεν µπορούµε να εξηγήσουµε στους µαθητές πλήρως το µαθηµατικό τους έργο (ακόµα και µε έναν παραµαθηµατικό τρόπο). Έτσι οι µαθητές µπορούν: α) να αναγνωρίσουν το ανθρώπινο πρόσωπο της µαθηµατικής έρευνας και έτσι να κινητοποιηθούν καλύτερα για µάθηση, β) ανάλογα µε τον µαθηµατικό ή την ιστορική περίοδο ή το πρόβληµα που διδάσκεται, µεγάλο µέρος από τις σχετικές µαθηµατικές τεχνικές µπορούν να ενσωµατωθούν µε τρόπους που να απαλύνουν και να παρακινούν τις µεταβάσεις από το άτοµο στην ιδέα στο πρόβληµα στο άτοµο. γ) βοηθά τους µαθητές να βρουν ένα πλαίσιο για τα µαθηµατικά και µέσω αυτού µια αίσθηση του πραγµατικού σκοπού αυτού που µέχρι τώρα είναι συνήθως ένα χωρίς νόηµα παιχνίδι µε αφηρηµένα σύµβολα (που µερικοί από αυτούς θεωρούν απλά ότι είναι κάτι χρήσιµο). Στις σελίδες του βιβλίου Καταραµένα µαθηµατικά αναφέρεται στο άθροισµα των ν πρώτων όρων γεωµετρικής προόδου µε λόγο 2: «Τσάρλι: Πρόσεξε καλά, η µάλλον παρατήρησε µε συστηµατικό τρόπο, αρχίζοντας από την αρχή. Οι δύο αριθµοί στην αρχή έχουν άθροισµα 3 και ο τρίτος είναι το 4. Οι τρεις αριθµοί έχουν άθροισµα 7 και ο τέταρτος είναι το 8. Οι τέσσερις αριθµοί έχουν άθροισµα 15 και ο πέµπτος είναι το 16 Αλίκη: Το βρήκα! Κάθε αριθµός είναι το άθροισµα όλων των προηγουµένων συν ένα. Τσάρλι: Σωστά, τότε το άθροισµα όλων των αριθµών θα είναι το διπλάσιο του τελευταίου πλην ένα. Μπορούµε να προτείνουµε µαθητές να απαντήσουν στις παρακάτω ερωτήσεις: - ισχύει ο ίδιος κανόνας αν βάζαµε στην σκακιέρα σε κάθε τετραγωνάκι το 3- πλάσιο αριθµό σπόρων από αυτό που έχει το προηγούµενο τετραγωνάκι; - µπορούµε τότε να βρούµε έναν άλλο κανόνα για αυτήν την περίπτωση; (να δοκιµάσουν µε τρεις όρους, µετά µε τέσσερις όρους ή και µε πέντε ώστε να βρουν τον κανόνα) - αν ήταν επί τέσσερα; - µπορούµε να εκφράσουµε µε λόγια έναν γενικό κανόνα;

7 - Ένα παλιό αγγλικό νανούρισµα (Τριγωνοµετρικά λουκούµια σελ. 34) έλεγε: Στο δρόµο για το Σαιντ Άιβς, Συνάντησα έναν άντρα που γυναίκες είχε εφτά - Η κάθε του γυναίκα είχε εφτά σακιά, Κάθε σακί τους γάτες είχε µέσα εφτά, Κι η κάθε γάτα είχε εφτά γατιά, Γάτες, γατιά, γυναίκες και σακιά, Πόσοι όλοι µαζί τραβούσανε, παιδιά, Στο δρόµο για το Σαιντ Άιβς; Μπορούµε να το απαντήσουµε; ΓΙΑ ΤΗΝ ΜΕΤΑΞΥ ΜΑΣ ΣΥΖΗΤΗΣΗ ΓΙΑΤΙ ΝΑ ΚΑΝΟΥΜΕ ΑΥΤΗ ΤΗΝ ΔΡΑΣΤΗΡΙΟΤΗΤΑ; - Σε αντίθεση µε πολλές χώρες του εξωτερικού (αγγλοσαξονικές, Ευρώπη) στην χώρα µας δεν δίνουµε µεγάλο βάρος στην επίλυση (αυθεντικού) προβλήµατος. Ένα µαθηµατικό πρόβληµα αποτελεί µια πρόκληση, λόγω της αβεβαιότητας που περιέχει, η οποία µπορεί να προκαλέσει την ενεργητική συµµετοχή των µαθητών. Η διαπραγµάτευση της αβεβαιότητας αυτής ανάµεσα στους µαθητές ή ανάµεσα στους µαθητές και τον καθηγητή αποτελεί και το νόηµα της δραστηριότητας. Κατά την επίλυση προβλήµατος οι µαθητές οικοδοµούν εκείνο το σύνολο της µαθηµατικής γνώσης που θα τους επιτρέπει να διατυπώνουν, να κατασκευάζουν, να ερευνούν, να επιλύουν και να δικαιολογούν µαθηµατικά προβλήµατα και έννοιες (και µάλιστα στα πλαίσια µιας κοινότητας µαθητών). Στην συγκεκριµένη δραστηριότητα οι µαθητές θα αναζητήσουν την ύπαρξη ενός αριθµητικού µοτίβου. Στην διαδικασία αυτή, θα υποθέτουν, θα δοκιµάζουν, θα ελέγχουν, θα εκφράζουν µε λόγια και θα γενικεύουν. Έτσι µαθαίνουν να ανακαλύπτουν έννοιες και σχέσεις, αναπτύσσουν την µαθηµατική γλώσσα, και κάνουν συγκρίσεις µε άλλα πρότυπα που έχουν µελετήσει. Η φιλοσοφική άποψη για τα µαθηµατικά που υποκρύπτεται (και είναι διάχυτη στο βιβλίο) είναι ότι τα µαθηµατικά είναι µια (ηµί-εµπειρική) επιστήµη αντικειµένων που χαρακτηρίζονται από πρότυπο κανονικότητας και µια λογική τάξη (σε αντίθεση µε την άποψη ότι η µαθηµατική γνώση είναι το σώµα των δεδοµένων και των διαδικασιών που εξετάζουν τις ποσότητες, τα µεγέθη και τις µεταξύ τους σχέσεις και γνώση των µαθηµατικών σηµαίνει να µπορεί κανείς να χειρίζεται και να κατέχει πλήρως τα δεδοµένα και τις διαδικασίες). Βρίσκοντας και διερευνώντας αυτή την κανονικότητα ή την τάξη και κατόπιν κατανοώντας της, είναι το επιστέγασµα αυτού που λέµε «κάνω µαθηµατικά». Οι µαθητές συνειδητοποιούν ότι «κάνω µαθηµατικά» σηµαίνει πρώτα από όλα «διερευνώ» και όχι απλά εφαρµόζω, µε έναν τελετουργικό πολλές φορές τρόπο, κάποιους δεδοµένους κανόνες. - Για να ενδυναµώσουµε την (µαθηµατική ) επικοινωνία των µελών της λέσχης. Ο κύριος στόχος µας δεν είναι απλά να αλλάξουν στάση απέναντι στα µαθηµατικά οι µαθητές. Αυτό από µόνο του δεν αρκεί για την µαθηµατική επικοινωνία (και συνεπώς και για να µάθουν µαθηµατικά). Πρέπει να τους

8 δώσουµε την ευκαιρία να δουν τα µαθηµατικά και από άλλες οπτικές γωνίες ώστε να κατανοήσουν καλύτερα την φύση τους και παράλληλα να κάνουν µαθηµατικά. ΓΙΑΤΙ ΝΑ ΠΡΟΣΘΕΣΟΥΜΕ ΤΟ ΝΑΝΟΥΡΙΣΜΑ; Η προσθήκη του νανουρίσµατος δίνει ένα πιο ανθρώπινο νόηµα στα µαθηµατικά. Δείχνει ότι τα µαθηµατικά βρίσκονται παντού στην ζωή µας µε διάφορους τρόπους που µπορεί να συνδυάζονται µε πράγµατα που δεν είναι απαραίτητα «χρήσιµα» ή «υπολογιστικά». Μπορεί να είναι και πράγµατα που συνδέονται µε το συναίσθηµα ή την οµορφιά. Όπως όταν χρησιµοποιούνται στην τέχνη ή για την κατασκευή ενός πλακόστρωτου ή ακόµα και σε ένα νανούρισµα. Μερικοί µαθητές µπορεί σε αυτό, στην καλλιτεχνική ή γενικά στην πιο ανθρώπινη, πτυχή των µαθηµατικών, να βρουν ένα λόγο για να ενεργοποιηθούν στα µαθηµατικά. ΘΑ ΣΥΜΜΕΤΑΣΧΟΥΝ ΟΙ ΜΑΘΗΤΕΣ; Αυτό που προσπαθεί να µας δείξει ο συγγραφέας είναι ότι σε µια τέτοια δηµιουργική όψη των µαθηµατικών, όλοι µπορούν να συµµετάσχουν. Ο ΡΟΛΟΣ ΜΑΣ ΚΑΘΩΣ ΘΑ ΓΙΝΕΤΑΙ Η ΔΡΑΣΤΗΡΙΟΤΗΤΑ Γυρνάµε ανάµεσα στις οµάδες και ακούµε τις απορίες που µας απευθύνουν οι µαθητές. Προσπαθούµε να καταλαβαίνουµε, µε ερωτήσεις, τις απορίες τους αλλά να µην τους δίνουµε έτοιµες απαντήσεις αλλά να λειτουργούµε ως σκαλωσιά για να τις βρουν µόνοι τους (νοµίζω κάπως έτσι λειτουργεί και ο συγγραφέας του βιβλίου απέναντι στην Αλίκη). ΝΑ ΑΝΑΦΕΡΟΥΜΕ ΟΤΙ ΠΡΟΚΕΙΤΑΙ ΓΙΑ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟ ΚΑΙ ΤΟΝ ΤΥΠΙΚΟ ΦΟΡΜΑΛΙΣΜΟ; Ο συγγραφέας το αναφέρει παρακάτω (σελ. 115). Κάνει καλά; Πως γινόταν ο πολλαπλασιασµός σε άλλους πολιτισµούς; Α. Με αφορµή το σχήµα της σελίδας 80: Κινέζικος πολλαπλασιασµός (χωρίς την προπαίδεια)

9 Οι µαθητές να παρατηρήσουν τους παραπάνω πολλαπλασιασµούς και να κάνουν δικούς τους. ΣΚΟΠΙΜΟΤΗΤΑ: Ανάµεσα σε άλλα: να συνειδητοποιήσουν ότι τα µαθηµατικά εξαρτώνται από την εποχή αλλά και την κοινωνία στην οποία αναπτύσσονται. Β. Με αφορµή την παρατήρηση σελ. 163 ότι «κάθε αριθµός είναι δύναµη του 2 ή µπορεί να εκφραστεί µε µοναδικό τρόπο ως άθροισµα δυνάµεων του 2» («και αυτό είναι τόσο σπουδαίο;»: Πρόκειται για την δυνατότητα µετατροπής κάθε αριθµού στο δυαδικό σύστηµα. Σηµαντικό για τους υπολογιστές. Μπορούµε να µιλήσουµε µε τους µαθητές για το δυαδικό σύστηµα και να αναλάβουν να βρουν πληροφορίες για την σηµασία του στους υπολογιστές) Η χρήση της παραπάνω ιδιότητας για να κάνουν πολλαπλασιασµό οι Αρχαίοι αιγύπτιοι όπως φαίνεται από τον Πάπυρο του Rhind. Σύνδεση µε το πρόβληµα µε το νανούρισµα. Το Πρόβληµα 79 του Παπύρου Rhind (Από το βιβλίο Τριγωνοµετρικά Λουκούµια) Τι κρύβεται πίσω από αυτούς τους µυστηριώδεις στίχους; Είναι φανερό ότι πρόκειται για µια γεωµετρική πρόοδο που τόσο ο πρώτος όρος της όσο και ο λόγος της είναι 7. Ο γραφέας µάς υποδεικνύει πώς να αθροίζουµε τους όρους της. Όπως όµως θα έκανε κάθε καλός δάσκαλος για να σπάσει την καθηµερινή µονοτονία ενός µαθήµατος µαθηµατικών, έτσι και ο Αχµές διανθίζει το πρόβληµα µε µια ιστορία που θα µπορούσαµε να τη διατυπώσουµε ως ακολούθως: Υπάρχουν επτά σπίτια. Κάθε σπίτι έχει επτά

10 γάτες. Κάθε γάτα τρώει επτά ποντίκια. Κάθε ποντίκι τρώει επτά στάχυα σιτάρι. Κάθε στάχυ δίνει επτά χεκάτ σπόρο. Να βρεθεί πόσα είναι όλα µαζί. Η δεξιά στήλη περιέχει σαφώς τους όρους της προόδου 7, 7 2, 7 3, 7 4, 7 5 ακολουθούµενους από το άθροισµα τους (δεν θα µάθουµε ποτέ αν η λανθασµένη τιµή για χο 7 4 είναι αντιγραφικό λάθος του Αχµές ή αν υπήρχε και στο πρωτότυπο). Τώρα, όµως, ο Αχµές παίζει το δεύτερο χαρτί του: Στην αριστερή στήλη µάς δείχνει πώς να βρούµε την απάντηση µε έναν συντοµότερο, πιο έξυπνο τρόπο. Παρακολουθώντας τον, θα δούµε την αιγυπτιακή µέθοδο πολλαπλασιασµού σε εφαρµογή. Οι Αιγύπτιοι γνώριζαν ότι κάθε ακέραιος µπορεί να παρασταθεί ως άθροισµα όρων της γεωµετρικής προόδου 1, 2, 4, 8,..., και ότι η παράσταση αυτή είναι µοναδική (πρόκειται για την παράσταση ενός αριθµού στο δυαδικό σύστηµα, όπου οι συντελεστές, ή «δυαδικά ψηφία» είναι 0 ή 1) [π.χ 13 στο δεκαδικό = 1101 στο δυαδικό σύστηµα ] Για να πολλαπλασιάσουν, ας πούµε, το 13 µε το 17, αρκούσε να γράψουν έναν από τους παράγοντες, έστω το 13, ως άθροισµα δυνάµεων του 2, δηλαδή 13 = , να πολλαπλασιάσουν κάθε δύναµη µε τον άλλο παράγοντα και να προσθέσουν τα αποτελέσµατα: 13 χ 17 = 1 χ χ χ 17 = = 221. Η εργασία διευκολύνεται αν εργασθούµε σε στήλες: 17 χ 1 = 17 * χ 2= 34 χ 4= 68 * χ 8 = 136 * Οι αστερίσκοι υποδεικνύουν ποιες δυνάµεις πρέπει να προστεθούν. Με αυτό τον τρόπο, οι Αιγύπτιοι µπορούσαν να κάνουν οποιονδήποτε πολλαπλασιασµό χρησιµοποιώντας µόνο διαδοχικούς διπλασιασµούς και προσθέσεις. Αυτή η µέθοδος εφαρµόζεται σε όλα τα γνωστά αιγυπτιακά κείµενα. Ήταν τόσο θεµελιώδης για τον αιγύπτιο γραφέα όσο οι πίνακες της προπαίδειας για τον σηµερινό µαθητή. Από πού λοιπόν προέρχεται το 2.801, ο πρώτος αριθµός της αριστερής στήλης του Προβλήµατος 79; Εδώ ο Αχµές χρησιµοποιεί µια ιδιότητα των γεωµετρικών προόδων που ήταν γνωστή στους Αιγυπτίους: το άθροισµα των ν πρώτων όρων µιας γεωµετρικής προόδου στην οποία ο πρώτος όρος και ο λόγος ταυτίζονται ισούται µε το λόγο πολλαπλασιασµένο επί το άθροισµα των (ν - 1) πρώτων όρων αυξηµένο κατά 1. Χρησιµοποιώντας σύγχρονο συµβολισµό, έχουµε: α + α 2 + α α ν = α(1 + α + α α ν-1 ). Αυτός ο «αναγωγικός τύπος» επέτρεπε στον αιγύπτιο γραφέα να ανάγει την άθροιση των όρων µιας γεωµετρικής προόδου στην άθροιση των όρων µιας άλλης µε λιγότερους (και µικρότερους) όρους. Αντί να υπολογίσει το άθροισµα ο Αχµές σκέφθηκε να το απλουστεύσει ως , 7 χ ( ). Αφού το άθροισµα των όρων µέσα στην παρένθεση είναι 2.801, το µόνο που χρειαζόταν να κάνει ήταν να πολλαπλασιάσει το µε το 7, αναλύοντας το 7 σε Αυτό µας δείχνει η αριστερή στήλη. Παρατηρούµε ότι η µέθοδος αυτής της στήλης απαιτεί µόνο τρία βήµατα ενώ η «προφανής» λύση της δεξιάς στήλης απαιτεί πέντε. Προφανώς, ο γραφέας συµπεριέλαβε τούτο το πρόβληµα ως άσκηση πάνω στη δηµιουργική σκέψη. Μπορεί κανείς να εξηγήσει γιατί ο Αχµές επέλεξε ως λόγο το 7; Στο εξαιρετικό βιβλίο του Mathematics in the times of Pharaohs ο R.J.Gillings απαντά στην ερώτηση ως ακολούθως: «Ο αριθµός 7 εµφανίζεται συχνά στα αιγυπτιακά µαθηµατικά, διότι µέσω διαδοχικών διπλασιασµών οι τρεις πρώτοι παράγοντες είναι πάντοτε 1, 2, 4, που έχουν άθροισµα 7.» Αυτή η επεξήγηση δεν είναι και πολύ πειστική, διότι θα

11 µπορούσε κάλλιστα να εφαρµοσθεί στο 3 (= 1 + 2), στο 15 (= ) και τελικά σε όλους τους ακεραίους της µορφής 2 ν - 1. Μια πιο αληθοφανής εξήγηση θα µπορούσε να είναι ότι το 7 επελέγη διότι κάποιος µεγαλύτερος αριθµός θα καθιστούσε τον υπολογισµό υπερβολικά εκτενή, ενώ ένας µικρότερος δεν θα έδειχνε καθαρά την ταχύτητα µε την οποία αυξάνει η πρόοδος: Αν ο Αχµές είχε χρησιµοποιήσει, ας πούµε, το 3, το τελικό αποτέλεσµα (363) δεν θα ήταν και τόσο «εντυπωσιακό» για τον αναγνώστη. ΣΚΟΠΙΜΟΤΗΤΑ: -Ανάλυση και κατανόηση ενός ιστορικού χειρόγραφου - Ο πολλαπλασιασµός σε έναν άλλο πολιτισµό - Σηµασία έχει επίσης το ότι ο συγγραφέας παρουσιάζει δύο τρόπους µε προφανείς διδακτικούς στόχους - Οι µαθητές θα αναγνωρίσουν την διπλή χρήση της επιµεριστικής ιδιότητας µε έναν ελκυστικό τρόπο. Μπορούµε να τους προκαλέσουµε να κάνουν µε τον ίδιο τρόπο και κάποιον άλλο πολλαπλασιασµό ή και να φτιάξουν ένα παρόµοιο πρόβληµα. Για παράδειγµα µε το 5: = 780. Αλλά: = 5( ) = Όµως: 5 = Έτσι (για το 5 156): = 156 * = = 624 * Άρα: = = 780

12 Moebius band II Μ. C. Escher Τι παρατηρείται στην παραπάνω ζωγραφιά; [Η ταινία Mobius είναι µια επιφάνεια που έχει µόνο µία πλευρά αλλά είναι δυνατόν να τη διατρέξει κανείς σε όλο της το µήκος έχοντας την αίσθηση ότι αλλάζει µεριά, κάτι που γίνεται εµφανές και στο σχέδιο του Escher (τα µυρµήγκια βοηθούν σε αυτό)]. [Δεν είναι τυχαίο που το σχήµα της ταινίας του Mobius θυµίζει το µαθηµατικό σύµβολο του απείρου. Τα µυρµήγκια της εικόνας θα µπορούσαν να προχωρούν για πάντα και να παρέµεναν µονίµως στην ίδια µεριά!] Τι σας θυµίζει; (Λούνα πάρκ) (το σύµβολο του απείρου) Ξέρετε άλλο σχήµα που να µην έχει εσωτερική και εξωτερική επιφάνεια; Μπορείτε να φτιάξετε µια ταινία Mobius; (Πρέπει να έχουν χαρτί, ψαλίδι και συραπτικό) Ξεκινήστε από ένα σηµείο µε το µολύβι σας και καταλήξτε στο ίδιο διατρέχοντας όλη την επιφάνια. Με το ψαλίδι κόψτε την ταινία στην µέση. Τι

13 παρατηρείται; Μπορείτε από µια ταινία Μέµπιους να φτιάξετε και το παρακάτω: [Μπορεί να ζητηθεί από τους µαθητές (από την προηγούµενη συνάντηση) να βρουν πληροφορίες για την τοπολογία (http://www.youtube.com/watch?v=r548mhlpchk&nr=1 µε απλό τρόπο µε σκίτσα) και την Ταινία του Mobius.] Η δραστηριότητα θα γίνει µε µια λωρίδα χαρτί όπως περιγράφεται στα βίντεο: και αν το και το Ας δούµε µερικούς κανόνες της λογικής, για παράδειγµα σε κύκλους (κυκλικούς δίσκους): - Κάθε αντικείµενο βρίσκεται είτε εντός του κύκλου είτε εκτός του κύκλου - Αν έχουµε δύο κύκλους Α και Β και ένα άλλο αντικείµενο Χ. Τότε Α βρίσκεται εντός του Β και το Χ βρίσκεται εντός του Α, τότε το Χ βρίσκεται εντός του Β. - Αν έχουµε τρεις κύκλους Α, Β, Γ, αν το Α βρίσκεται εντός του Β Β βρίσκεται εντός του Γ, τότε το Α βρίσκεται εντός του Γ.

14 - Αν έχουµε δύο κύκλους Α και Β και ένα άλλο αντικείµενο Υ, αν το Α βρίσκεται εντός του Β και το Υ βρίσκεται εκτός του Β, τότε το Υ βρίσκεται εκτός του Α. Εξετάστε αν ισχύουν οι παραπάνω προτάσεις σε σχήµατα Mobius ΣΚΟΠΙΜΟΤΗΤΑ: Μέσα από τα δηµοσιεύµατα των εφηµερίδων (π.χ. οι µαθητές θα δουν πως από απλές ιδέες, µέσω της µαθηµατικοποίησής τους (που δεν είναι πάντα εύκολη) παράγεται πολιτισµός (τεχνολογικός ή τέχνη π.χ Escher ή ψυχαγωγία π.χ λούνα πάρκ: ) Ακόµα: είναι µια πρώτη γνωριµία µε την ζωγραφική του Escher. Μετά από αυτήν την δραστηριότητα θα αποκτούσε επιπλέον νόηµα µια επίσκεψη στο Μουσείο Ηρακλειδών στο Θησείο (http://www.herakleidon-art.gr/el/index.cfm ). Εκεί µπορείτε να παρακολουθήσετε (δωρεάν) το εκπαιδευτικό πρόγραµµα «Τέχνη και Μαθηµατικά». Χρειάζεται πρώτα να κλείσετε ραντεβού. Ακόµα: µια πρώτη γνωριµία µε την µαθηµατική λογική. Επίσης: τα µαθηµατικά δεν είναι µόνο θεωρητικά ή αφηρηµένα Κατά την γνωσιακή επιστήµη η σκέψη (και ειδικότερα η µαθηµατική σκέψη) έχει τα παρακάτω χαρακτηριστικά: 1. Το ενσώµατο του νου. Η λεπτοµερής φύση και η δυναµική των σωµάτων µας, των εγκεφάλων µας και της καθηµερινής µας λειτουργίας στον κόσµο δοµούν τις ανθρώπινες έννοιες και την ανθρώπινη λογική. Αυτό περιλαµβάνει τις µαθηµατικές έννοιες και τη µαθηµατική λογική. 2. Το γνωσιακό ασυνείδητο. Οι περισσότερες γνωσιακές διαδικασίες είναι ασυνείδητες όχι κατασταλµένες κατά τη Φροϋδική έννοια, αλλά απλά απρόσβατες σε άµεση συνειδητή ενδοσκόπηση. Δεν µπορούµε µέσω της ενδοσκόπησης να κοιτάξουµε απ ευθείας τα εννοιολογικά µας συστήµατα και τις χαµηλού επιπέδου γνωσιακές διαδικασίες µας. Αυτό περιλαµβάνει το µεγαλύτερο µέρος της µαθηµατικής σκέψης. 3. Μεταφορική σκέψη. Κατά το µεγαλύτερο µέρος, τα ανθρώπινα όντα αντιλαµβάνονται τις αφηρηµένες έννοιες µε σαφή τρόπο, µε τη χρήση ακριβούς συµπερασµατικής δοµής και τρόπων συλλογισµού θεµελιωµένων στο αισθησιοκινητικό σύστηµα. Ο γνωσιακός µηχανισµός µέσω του οποίου το αφηρηµένο κατανοείται µέσω του σαφούς ονοµάζεται εννοιολογική µεταφορά (conceptual metaphor). Η µαθηµατική σκέψη επίσης χρησιµοποιεί την εννοιολογική µεταφορά, όπως όταν αντιλαµβανόµαστε τους αριθµούς ως σηµεία πάνω σε µια ευθεία: χωρίς αυτήν δεν θα υπήρχε η αναλυτική γεωµετρία. Εννοιολογική µεταφορά είναι ένας γνωστικός µηχανισµός που µας επιτρέπει να συµπεράνουµε ένα είδος πράγµατος σαν να ήταν κάτι άλλο. Είναι θεµελιωµένο συµπέρασµα ότι συντηρεί την εγκάρσια τοµή-περιοχή χαρτογράφησης- του νευρικού µηχανισµού που επιτρέπει σε µας να χρησιµοποιήσουµε την επαγωγική δοµή µιας αντιληπτικής περιοχής (πέστε, γεωµετρία) και να βγάλουµε συµπεράσµατα για κάποια άλλη (πέστε, αριθµητική).

15 (Στο βιβλίο Καταραµένα µαθηµατικά ένα τέτοιο παράδειγµα είναι η χρήση της ζυγαριάς για την κατανόηση της έννοιας της εξίσωσης). Το παρακάτω σχήµα παρουσιάζει την διαδικασία σχηµατισµού των αριθµών Fibonacci ως αριθµό ζευγαριών κουνελιών. Στο Καταραµένα µαθηµατικά, κακώς, απουσιάζει η έννοια του ζευγαριού. Λέει ότι κάθε κουνέλι γεννά ένα άλλο. Αυτό είναι παράλογο (ακόµα και για παιδιά δηµοτικού ) Το σωστό πρόβληµα είναι ότι ένα ζευγάρι κουνελιών γεννά (έστω) ένα ζευγάρι παιδιών. (Μια καλή περιγραφή της διαδικασίας θα βρείτε στο βιβλίο «Το πειραχτήρι των αριθµών» από όπου έχω πάρει και το παρακάτω σχήµα).

16 (Για τους αριθµούς γενικά µπορούµε να βρούµε πολλά και στο βιβλίο: «Ο Ταξιδευτής των Μαθηµατικών» Εκδόσεις Κέδρος. )

17 Οι µαθητές πρώτα θα δοκιµάσουν µε ένα απλό χαρτί α4 (διαστάσεις 21επί 28) να φτιάξουν (λυγίζοντας το χαρτί ) ένα τετράγωνο (γιατί είναι τετράγωνο;). Μετά στο ορθογώνιο που αποµένει να φτιάξουν ένα άλλο τετράγωνο κ.λ.π. Σε κάθε περίπτωση να βρίσκουν τον λόγο των πλευρών των ορθογωνίων. Θα παρατηρήσουν ότι ι λόγοι είναι διαφορετικοί. (την διαδικασία αυτή µπορούµε να τους την δείξουµε εµείς) Στην συνέχεια, να αποκόψουν από το α4 ένα ορθογώνιο µε διαστάσεις 21 επί 13 (που είναι αριθµοί ΦΙΜΠΟΝΑΤΣΙ). Αν κάνουν την ίδια διαδικασία µε πριν (όπως δείχνει το παραπάνω σχήµα) θα παρατηρούν ότι οι πλευρές των ορθογωνίων (που µπορούν να τις υπολογίζουν µε το µυαλό, χωρίς χάρακα) είναι πάντα διαδοχικοί όροι της σειράς ΦΙΜΠΟΝΑΤΣΙ και ότι ο λόγος τους είναι περίπου σταθερός ίσος µε 1,6. Μετά στο χαρτί που χρησιµοποίησαν µπορούν να φτιάξουν την σπείρα (τέτοιες σπείρες συναντάµε συχνά στην φύση π.χ σαλιγκάρι) και να φέρουν τις διαγώνιους όπως φαίνεται στο παραπάνω σχήµα. Μετά αρκεί να τους δείξουµε την παρακάτω εικόνα (χωρίς λόγια!)

18 Μπορούσε να δηµιουργηθεί η σπείρα στο αρχικό χαρτί α4; (όχι γιατί το σχήµα που παραµένει δεν είναι όµοιο µε το αρχικό) Βέβαια οι αριθµοί ΦΙΜΠΟΝΑΤΣΙ απλά προσεγγίζουν τον αριθµό φ. Ο λόγος κάθε αριθµού µε τον προηγούµενό του τείνει στον χρυσό αριθµό φ = 1,618 Η κουβέντα λοιπόν µπορεί να επεκταθεί προς διάφορες κατευθύνσεις ( π.χ χρυσή τοµή χωρισµός τµήµατος σε µέσο και άκρο λόγο = δύο ευθύγραµµα τµήµατα α, β µε α > β, βρίσκονται σε µέσο και άκρο λόγο αν: α/β = β/(α β). Τότε α/β = φ ) Δηλαδή το κοµµάτι ΒΓ είναι τόσο µικρότερο απ' το ΑΒ όσο το ΑΒ απ' το ΑΓ. ΑΒ / ΒΓ = ΑΓ / ΑΒ = Φ = Τα παρακάτω σχήµατα δείχνουν πως µπορούµε να φτιάξουµε (µε κανόνα και διαβήτη) ένα πραγµατικά «χρυσό ορθογώνιο». Ξεκινάµε από ένα τετράγωνο ΑΒΓM. Έστω Ζ το µέσο της ΑΒ. Με κέντρο το Ζ και ακτίνα τη ΓΖ κατασκευάζουµε ένα τόξο κύκλου που τέµνει τη προέκταση της ΑΒ στο Θ. Φέρουµε µετά τη ΘΗ κάθετη στην ΑΘ που τέµνει τη προέκταση της MΓ στο Η. Το σχηµατιζόµενο µε αυτό τον τρόπο ορθογώνιο ΑΘΗM είναι ένα χρυσό ορθογώνιο. Πράγµατι είναι ΑΘ=β=ΑΖ+ΖΘ=ΑΖ+ΖΓ= α/2+ = α/2+α /2 = α( +1)/2 = αφ

19 Έχει πολύ µεγάλο ενδιαφέρον να ασχοληθούν µε την βιογραφία του Ντα Βίντσι (ο οποίος ήταν και µαθηµατικός)

20 Το βιβλίο αναφέρεται σε πολλές σελίδες του στους πρώτους αριθµούς ΚΌΣΚΙΝΟ ΤΟΥ ΕΡΑΤΟΣΘΕΝΗ Να βρουν τους πρώτους µέχρι το 200. Σε ποιόν αριθµό πρέπει να σταµατήσουν να διαγράφουν πολλαπλάσια; (Το βιβλίο δίνει απάντηση σε αυτό το ερώτηµα για τον πίνακα έως το 100 στην σελίδα 54.) Ποιοι µαθηµατικοί ασχολήθηκαν µε τους πρώτους; Για την εικασία του Γκόλντµπαχ: Κάθε άρτιος θετικός ακέραιος µεγαλύτερος του 2 µπορεί να γραφεί ως άθροισµα δύο πρώτων αριθµών, (έτσι ώστε για κάθε n 2, 2n = p + q, όπου p, q πρώτοι αριθµοί). Στην παρακάτω σελίδα βάζεις έναν άρτιο αριθµό και στον αναλύει σε άθροισµα 2 πρώτων

21 Θα µπορούσε λοιπόν να γίνει µια δραστηριότητα στην οποία, υπό µορφής παιχνιδιού θα χωρίσουµε τους µαθητές σε οµάδες, θα δίνουµε έναν άρτιο και θα προσπαθούν οι οµάδες να τον αναλύσουν σε άθροισµα 2 πρώτων µε όσους πιο πολλούς τρόπους µπορούν. Κατόπιν θα ελέγχονται οι απαντήσεις από το κοµπιούτερ. (Καλό είναι πρώτα να έχουµε δείξει στους µαθητές µερικά παραδείγµατα) (Για να βρουν τους πρώτους θα χρησιµοποιήσουν το κόσκινο του Ερατοσθένη που θα έχουν φτιάξει όπως περιγράψαµε παραπάνω). Συζήτηση : Γιατί οι µαθηµατικοί ασχολήθηκαν µε τους πρώτους; «Οι πρώτοι αριθµοί είναι αυτό που αποµένει αφού αφαιρέσεις όλα τα στερεότυπα. Εγώ πιστεύω ότι οι πρώτοι αριθµοί είναι σαν τη ζωή: είναι πολύ λογικοί αλλά δεν θα µπορούσες ποτέ να επεξεργαστείς τους κανόνες τους, ακόµα και αν έτρωγες όλον σου τον καιρό να τους σκέφτεσαι». Κρίστοφερ Τζον Φράνσις Μπουν (Πρόκειται για τον µικρό ήρωα του βιβλίου «Ποιος σκότωσε τον σκύλο τα µεσάνυχτα» του Μάρκ Χάντον) «Για να κατανοήσουµε το Σύµπαν», έγραφε ο Γαλιλαίος τον 17ο αιώνα, «πρέπει να γνωρίσουµε τη γλώσσα στην οποία είναι γραµµένο. Και αυτή η γλώσσα είναι τα Μαθηµατικά». Επίσης, Πυθαγόρας: «Τα πάντα είναι αριθµοί»

22 Μήπως οι αριθµοί έχουν κάποια εσωτερική σχέση, µια απόκρυφη αρµονία και δεν είναι απλά σύµβολα που το ένα ακολουθεί το άλλο; Η εξιχνίαση αυτών των ιδιαίτερων σχέσεων των αριθµών έχει γοητεύσει τους ανθρώπους από την αυγή του πολιτισµού. Όταν αυτή η διανοητική πρόκληση για τα άλυτα προβλήµατα των αριθµών διαµορφώθηκε ως αποδεικτική επιστήµη από τον Πυθαγόρα, ξεκίνησαν τα µαθηµατικά. Η έρευνα των σχέσεων µεταξύ των αριθµών (η Θεωρία των Αριθµών ή Αριθµοθεωρία) ήταν πάντα ένας ιδιαίτερος κλάδος των µαθηµατικών, µια καθαρή επιστήµη που συχνά γέννησε νέους τοµείς στην έρευνα, αν και ως τα µέσα του 20ού αιώνα δεν διέθετε πρακτικές εφαρµογές τις απέκτησε αναπάντεχα µε την εξέλιξη της τεχνολογίας σε τόσο ετερογενείς τοµείς όπως η δηµιουργία κρυπτογραφικών αλγορίθµων, η έρευνα του DNA, η βελτιστοποίηση της χρήσης της µνήµης των υπολογιστών ή ο προγραµµατισµός περίπλοκων τουρνουά τένις. Ο µόνος στόχος της Αριθµοθεωρίας ωστόσο παρέµενε η λύση των γρίφων των αριθµών, επιδεικνύοντας παγερή αδιαφορία για την πρακτική χρησιµότητα των αινιγµάτων µε τα οποία καταπιανόταν. Βιβλίο: «Ο θείος Πέτρος και η Εικασία του Γκόλντµπαχ» του Απόστολου Δοξιάδη Να συνεχίσουν σε µια κόλλα χαρτί µέχρι τον γνώµονα 100. Σκοπός µας είναι να βρούµε µε ποιον τρόπο µπορούµε να βρούµε αν ένα νούµερο που θα µας δοθεί είναι στην πάνω δεξιά κορυφή του γνώµονα. Οι µαθητές θα κάνουν διάφορες υποθέσεις και δοκιµές. Εδώ θα χρειαστεί να τους βοηθάµε, καθώς δουλεύουν µε τις οµάδες τους, για να µην απογοητευτούν, γιατί είναι λίγο δύσκολο και το βιβλίο δεν δίνει πολλές πληροφορίες. Σιγά- σιγά θα παρατηρήσουν ότι : 3 = 2 2 1, 7 = 3 2-2, 13 = 4 2 3, γενικά κ = ν 2 (ν 1) ή κ = ν 2 ν + 1, όπου κ ο αριθµός της κορυφής και ν η σειρά του γνώµονα στον οποίο είναι κορυφή.

23 Για να βρουν, για παράδειγµα, ποια κορυφή έχει ο 5ος γνώµονας αρκεί να βάλλουν στην θέση του ν το 5: κ = = 21. Αν τώρα δοθεί ένα νούµερο, πως µπορούµε να ξέρουµε ότι είναι κορυφή ή όχι; Κανονικά πρέπει να λύσουµε την δευτεροβάθµια εξίσωση. Οι µικροί όµως µαθητές θα µπορούσαν να σκεφτούν εµπειρικά όπως για παράδειγµα: το 42 δεν µπορεί δεν µπορεί να είναι κορυφή γιατί τότε το ν θα ήταν 7 και τότε το κ βγαίνει 43. Επίσης βάση της σχέσης κ 1 = ν(ν -1), εµείς ξέρουµε ότι το κ είναι πάντα περιττός, αφού το ν(ν -1) είναι πάντα άρτιος. Με κάποιο τρόπο θα µπορούσαµε να τους οδηγήσουµε σε αυτήν την διαπίστωση. Κατά την γνώµη µου µε αυτή την αφορµή µας δίνεται η ευκαιρία να τους µιλήσουµε για τους Πυθαγόρειους Γνώµονες µε ένα τρόπο όπως παρακάτω: - «Για τους Πυθαγόρειους, µας λέει ο Αριστοτέλης ότι ήταν οι πρώτοι που ασχολήθηκαν συστηµατικά µε τα µαθηµατικά και τα προήγαγον, τα προήγαγαν. Και αφού έζησαν και µεγάλωσαν µέσα σε αυτά, πίστεψαν ότι οι αρχές όλων των όντων είναι οι αρχές των µαθηµατικών, ότι όλα δηλαδή στον κόσµο και στον ουρανό είναι αριθµοί. - Μπορούµε να δούµε κάποια σηµεία, πως δηλαδή συνέδεαν την φιλοσοφία µε τα µαθηµατικά και όπως µας λέει ο Αριστοτέλης υπήρχε αλληλεπίδραση σε αυτά. Δηλαδή αρχές της φιλοσοφίας αρχές της φιλοσοφίας, της κοσµοθεωρίας επηρέαζαν τις µαθηµατικές τους έρευνες και αντιθέτως η πρόοδος των µαθηµατικών ερευνών τους επηρέαζε στην φιλοσοφία τους. - Θα δούµε κάτι πολύ µικρό πάνω σε αυτό. - Οι Πυθαγόρειοι µας λέει και ο Αριστοτέλης είχαν δύο αρχές: Το Πέρας και το Άπειρο (γραφή στον πίνακα). Η µύξη αυτών µε κάποιο τρόπο δηµιουργούσε το Εν, την µονάδα και από κει δηµιουργόντουσαν όλοι οι αριθµοί και από κει όλα τα όντα. Αυτό βέβαια είναι αρκετά µεγάλο θέµα. Θα δούµε όµως µια σύνδεση αυτών των βασικών φιλοσοφικών τους αρχών µε τους αριθµούς. Συνέδεαν το Πέρας (το πεπερασµένο) µε τους περιττούς αριθµούς και το άπειρο µε τους άρτιους. Πολύ

24 σύντοµα να δούµε πως κάνανε µια τέτοια σύνδεση. Συνήθιζαν να παριστάνουν τους αριθµούς µε βότσαλα και να σχηµατίζουν διάφορα σχήµατα. Με κάποιον τέτοιον τρόπο που θα δείτε εδώ παρίσταναν τους περιττούς. Σχηµάτιζαν αυτούς τους γνώµονες όπως τους λέγανε, δηλαδή γνώµονας είναι κάτι που προστιθέµενο σε ένα σχήµα, προκύπτει ένα µεγαλύτερο σχήµα όµοιο µε το αρχικό. - Εδώ µπορείς να πεις ότι είναι ο γνώµονας πέντε ας πούµε εδώ ο γνώµονας τρία και πάει λέγοντας. Αυτοί είναι οι περιττοί αριθµοί. Αυτόµατα όπως βλέπετε οι αριθµοί αποκτούν και µια γεωµετρική σηµασία. Και έτσι κάπως έβλεπαν οι Πυθαγόρειοι τους αριθµούς: σαν µήκη (µήκος δύο µήκος τρία) και σαν εµβαδά: το ένα και τρία το έβλεπαν ως εµβαδόν τετραγώνου τέσσερα δύο επί δυο τέσσερα. Λίγο διαφορετικά από ότι τους βλέπουµε εµείς σήµερα. Για να δούµε και τους άρτιους τους αντίστοιχους γνώµονες των αρτίων τι σχήµα παίρνανε και να προσπαθήσουµε να δώσουµε µια εξήγηση γιατί βλέπανε τους περιττούς σαν πέρας και τους άρτιους σαν άπειρο. - (Δεν ξέρω τώρα αν έχει κάποιος κάποια έµπνευση πως τους ήρθε να πουν (τους άρτιους) τους περιττούς πέρας και τους άρτιους άπειρο; Να κάνουν µια τέτοια συσχέτιση;) Εδώ οι προστιθέµενοι περιττοί, οι άπειροι περιττοί, αφήνουν κάτι αναλλοίωτο. Αυτό που αφήνουν αναλλοίωτο είναι το τετράγωνο. Με ποια έννοια: ότι αν διαιρέσεις τις πλευρές του τετραγώνου ο λόγος που θα βρεις είναι πάντα ένα: 2/2 = ένα 3/3 = ένα. Είναι κάτι σταθερό, που µένει σταθερό. Εδώ αντιθέτως έχουµε µια απειρία λόγων. Αυτό είναι 2/3 εδώ 3/4, άλλος λόγος, 4/5 διαφορετικός λόγος. Έχουµε µια απειρία λόγων. Με αυτή την έννοια συνέδεαν αυτό µε το άπειρο και αυτό µε το πέρας.

25 - Ας ασχοληθούµε και εµείς µε αυτά για να παρατηρήσουµε όπως και οι Πυθαγόρειοι, για αυτό κάναµε και αυτά τα σχήµατα, κάποιες ιδιότητες των αριθµών. Να βρούµε κάποιες ιδιότητες των αριθµών. Συµπληρώστε το παραπάνω σχήµα µε (τουλάχιστον) 2 ακόµα γνώµονες. Γράψτε τα αθροίσµατα που παρατηρείτε ξεκινώντας από: 1 = = 4 = = 9 = = ; Γενικά; Πότε το άθροισµα διαδοχικών περιττών είναι άρτιος και πότε περιττός αριθµός; Ελέγξτε αν ισχύει και για µη διαδοχικούς περιττούς. Τι αριθµός είναι το γινόµενο περιττού επί περιττού και τι το γινόµενο άρτιου επί περιττού; Τι αριθµός είναι το τετράγωνο ενός περιττού και τι ενός άρτιου; Προσπαθήστε να βρείτε αντίστοιχες σχέσεις και από τον γνώµονα µε τους αρτίους. Μπορούν να βρουν ότι: ν = ν(ν +1) Εξήγηση: = 12 = 3. 4 και το 3 είναι το µισό του 6 κλπ. Άθροισµα αρτίων = άρτιος Γινόµενο διαδοχικών = άρτιος

26 Το πραγµατικά ζητούµενο είναι να επιτύχουµε την µαθηµατική επικοινωνία. Σε αυτό θα συντελέσει το δουν οι µαθητές µας (αλλά και εµείς οι ίδιοι) µε διαφορετικό µάτι το τι είναι τα µαθηµατικά και το τι σηµαίνει κάνω µαθηµατικά. Σωτήρης Συριόπουλος

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ. Η δική µας Εικασία

1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ. Η δική µας Εικασία 1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ Η δική µας Εικασία Οι αρχαίοι Έλληνες γνώριζαν να διχοτοµούν µια τυχαία γωνία µε χρήση κανόνα και διαβήτη, και, κατά συνέπεια, µπορούσαν να διαιρέσουν

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ. Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω:

Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ. Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω: Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω: - «Όταν κανείς επιθυµεί να ξέρει να διαιρεί οποιονδήποτε

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007 2 ο Εργαστήρι Λεσχών Ανάγνωσης Πάρος 2-6 Ιουλίου 2007 Περίληψη Η Αλίκη µισεί τα µαθηµατικά και θεωρεί πως δε χρησιµεύουν σε τίποτα. Μια µέρα που κάθεται και διαβάζει στο πάρκο, ένα παράξενο άτοµο την προσκαλεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

Σταυρούλα Πατσιομίτου

Σταυρούλα Πατσιομίτου Αριστοτέλους Μεταφυσικά 1078 α 30 Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr Σ υνδέονται τα Μαθηματικά με την Αισθητική, με την Τέχνη, με την Τεχνολογία. Πόσο σημαντικό είναι να γνωρίζουμε την Ιστορία τους;

Διαβάστε περισσότερα

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του Ανδρέας Ιωάννου Κασσέτας ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του 1. Υπάρχει αριθµός τέτοιος ώστε εάν τον υψώσεις στο τετράγωνο να αυξηθεί

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2010 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2010 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού) Μιχάλης Λάµπρου Νίκος Κ. Σπανουδάκης Θέµατα Καγκουρό 2010 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Αν όπου είναι κάποιος συγκεκριµένος αριθµός, τότε ο αριθµός αυτός

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 26.02.14 Χ. Χαραλάμπους 14 ο πρόβλημα (βρίσκεται στο Μουσείο Καλών Τεχνών της Μόσχας από το 1893 μ.χ.) «μετάφραση των συμβόλων: Εάν σου πουν: μία κομμένη πυραμίδα με ύψος 6, με βάση

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή

Φίλη μαθήτρια, φίλε μαθητή Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά Ε. Κολέζα Α. Θεωρητικές αρχές σχεδιασµού µιας µαθηµατικής ενότητας: Βήµατα για τη συγγραφή του σχεδίου Β. Θεωρητικό υπόβαθρο της διδακτικής πρότασης

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΕΠΟ 22. ΘΕΜΑ: Οι βασικοί σταθµοί του νεώτερου Εµπειρισµού από τον Locke µέχρι και τον Hume. ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ Α.

2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΕΠΟ 22. ΘΕΜΑ: Οι βασικοί σταθµοί του νεώτερου Εµπειρισµού από τον Locke µέχρι και τον Hume. ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ Α. Θέµατα & Ασκήσεις από: www.arnos.gr 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΕΠΟ 22 ΘΕΜΑ: Οι βασικοί σταθµοί του νεώτερου Εµπειρισµού από τον Locke µέχρι και τον Hume. ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ Α. ΕΙΣΑΓΩΓΗ Σύµφωνα µε τη θεωρία του εµπειρισµού

Διαβάστε περισσότερα

Περί της «Αρχής ανεξαρτησίας των κινήσεων»

Περί της «Αρχής ανεξαρτησίας των κινήσεων» Περί της «Αρχής ανεξαρτησίας των κινήσεων» Παρακολουθώ στο δίκτυο τις τελευταίες µέρες να γίνεται συζήτηση για την «Αρχή ανεξαρτησίας των κινήσεων» ή την «επαλληλία εξισώσεων κίνησης». Προσπαθώ στο µέτρο

Διαβάστε περισσότερα

4. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ

4. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 4. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Με τις ερωτήσεις του τύπου αυτού καλείται ο εξεταζόµενος να επιλέξει την ορθή απάντηση από περιορισµένο αριθµό προτεινόµενων απαντήσεων ή να συσχετίσει µεταξύ

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Εκτελώντας το πρόγραμμα παίρνουμε ένα παράθυρο εργασίας Γεωμετρικών εφαρμογών. Τα βασικά κουμπιά και τα μενού έχουν την παρακάτω

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.)

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Ε.Κ.Π. (Ελάχιστο Κοινό Πολλαπλάσιο) Κοινό όταν δύο άτομα έχουν ένα κοινό

Διαβάστε περισσότερα

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν 1. Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών και να παραστήσετε σε ορθογώνιο σύστημα αξόνων τα αντίστοιχα σημεία. α. αν = 4ν + 3 β. αν = 2 + ( 1) ν γ. 1 1 1 1 αν = + + +... + 1 2 2

Διαβάστε περισσότερα

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Πρώτη νύχτα Μονάδα Όνειρα ( εργασία ) Η έννοια του απείρου Φρόυντ Κλάσματα Αριθμητικό σύστημα ( εργασία

Διαβάστε περισσότερα

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 29.02.12 Χ. Χαραλάμπους Ο πάπυρος του Rhind---Ahmes 81 από αυτά τα προβλήματα έχουν λύσεις που αναφέρονται σε κλασματικές ποσότητες Πρόβλημα 3, π. του Rhind: «να διαιρέσεις 6 φραντζόλες

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Πέρα όµως από την Γνωσιακή/Εννοιολογική ανάλυση της δοµής και του περιεχοµένου των σχολικών εγχειριδίων των Μαθηµατικών του Δηµοτικού ως προς τις έννοιες

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 10 ο, Τμήμα Α Ορθογώνιο παραλληλόγραμμο 3 cm 5 cm Ο τύπος όπως είναι γραμμένος δείχνει ότι μπορούμε να πολλαπλασιάσουμε δύο μήκη. Ε=3cm x 5cm=15cm 2. Πώς καταλαβαίνετε

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη Σχολείο Δεύτερης Ευκαιρίας Ιωαννίνων Αριθμητικός Γραμματισμός Εισηγήτρια : Σεντελέ Καίτη ΘΕΜΑ ΕΙΣΗΓΗΣΗΣ «Προγραμματισμός-Οργάνωση και υλοποίηση μιας διδακτικής ενότητας στον Αριθμητικό Γραμματισμό» ΠΡΟΣΘΕΣΗ

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών»)

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών») Πρώτοι αριθµοί: Τι µας λέει στο βιβλίο (σελ.25-26): 1. Μου αρέσουν οι πρώτοι αριθµοί, γι αυτό αρίθµησα µε πρώτους τα κεφάλαια. Οι πρώτοι αριθµοί είναι αυτό που αποµένει όταν αφαιρέσεις όλα τα στερεότυπα

Διαβάστε περισσότερα

Η προβληματική κατάσταση Χρήστος Πανούτσος

Η προβληματική κατάσταση Χρήστος Πανούτσος Η προβληματική κατάσταση Χρήστος Πανούτσος Η Τζούλι και η μαμά της έχουν βγει για να αγοράσουν ένα τζιν για το σχολείο. Παρατηρούν έναν πάγκο με την εξής ταμπέλα πάνω: 40% έκπτωση των τιμών στις ετικέτες

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

Θεωρια Αριθµων Προβληµατα

Θεωρια Αριθµων Προβληµατα Θεωρια Αριθµων Προβληµατα Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης Βούτες 700 3 Ηράκλειο 6 Απριλίου 205 Πολλές από τις παρακάτω ασκήσεις είναι από το ϐιβλίο

Διαβάστε περισσότερα

α) να βρείτε το άθροισµα των τεσσάρων πρώτων όρων της S 4 και β) το άθροισµα των άπειρων όρων της.

α) να βρείτε το άθροισµα των τεσσάρων πρώτων όρων της S 4 και β) το άθροισµα των άπειρων όρων της. Ερωτήσεις ανάπτυξης 1. * Να σχηµατίσετε τις γεωµετρικές προόδους µε: α) α 1 = 5 και λ = 3 2 1 β) α 1 = και λ = 3 1 γ) α 1 = - 20 και λ = 2 2. * Ποιον αριθµό πρέπει να προσθέσουµε στους αριθµούς 2, 16,

Διαβάστε περισσότερα

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με 5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ Και οι απαντήσεις τους Ποια είναι η διαφορά ανάμεσα στο «παλιό» και στο «σύγχρονο» μάθημα των Μαθηματικών; Στο μάθημα παλαιού τύπου η γνώση παρουσιάζεται στο μαθητή από τον διδάσκοντα

Διαβάστε περισσότερα

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται: 4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Ερωτήσεις Σωστό - Λάθος 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου αριθµού εντολών. 2. Η είσοδος σε έναν αλγόριθµο µπορεί να είναι έξοδος σε έναν άλλο αλγόριθµο. 3. Ένας αλγόριθµος

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΜΣ «ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΚΑΙ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ» Παραδείγματα Variation Μεταπτυχιακός Φοιτητής:

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

Άσκηση 1 Να βρεθούν οι συντεταγμένες του σημείου A(x, y), αν αυτές επαληθεύουν την ισότητα: x 2 6xy + 11y 2 8y + 8 = 0

Άσκηση 1 Να βρεθούν οι συντεταγμένες του σημείου A(x, y), αν αυτές επαληθεύουν την ισότητα: x 2 6xy + 11y 2 8y + 8 = 0 Άσκηση 1 Να βρεθούν οι συντεταγμένες του σημείου A(x, y), αν αυτές επαληθεύουν την ισότητα: x 6xy + 11y 8y + 8 = 0 Τι είναι αυτό που έχει δοθεί στην άσκηση; Μία ισότητα την οποία επαληθεύουν οι x, y. Τι

Διαβάστε περισσότερα

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας Κύκλου μέτρησις Ολοκληρωμένο διδακτικό σενάριο Δημιουργία: Τεύκρος Μιχαηλίδης Μαθηματικό Εργαστήρι Β Αθήνας Η ιστορία του π 2 Κυ κλου με τρησις Η μέθοδος του Αρχιμήδη για την προσέγγιση του π και ο ρόλος

Διαβάστε περισσότερα

Ποιος νοµίζετε ότι θα είναι ο αριθµός των διαγωνίων ενός πολυγώνου µε ν πλευρές; Να αποδειχθεί η σχέση που συµπεράνατε µε µαθηµατική επαγωγή.

Ποιος νοµίζετε ότι θα είναι ο αριθµός των διαγωνίων ενός πολυγώνου µε ν πλευρές; Να αποδειχθεί η σχέση που συµπεράνατε µε µαθηµατική επαγωγή. Ερωτήσεις ανάπτυξης 1. * Παρατηρούµε ότι: 1 11 ( + = 1 ) 1+ = ( + 1) 1 3 33 ( + + + = 1 ) Ποιο νοµίζετε ότι θα είναι το άθροισµα 1 + + 3 +... + ν; Αποδείξτε την ισότητα που συµπεράνατε µε επαγωγή.. * Μετράµε

Διαβάστε περισσότερα

Σχέδιο παρουσίασης των διδασκαλιών ή των project

Σχέδιο παρουσίασης των διδασκαλιών ή των project Σχέδιο παρουσίασης των διδασκαλιών ή των project Σην παρουσίαση των διδασκαλιών ή των project μπορούμε να ακολουθήσουμε την φόρμα που παρουσιάζεται παρακάτω. Μια παρουσίαση σύντομη και μια λεπτομερής.

Διαβάστε περισσότερα

Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση;

Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση; Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση; Ξεκινώντας θα ήθελα να θυµίσω κάποια στοιχεία που σχετίζονται µε τον ορισµό της συχνότητας σε ένα περιοδικό φαινόµενο, άρα και στην ΑΑΤ.

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

( ) Ερωτήσεις ανάπτυξης. 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + + + L + 2 ν

( ) Ερωτήσεις ανάπτυξης. 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + + + L + 2 ν Ερωτήσεις ανάπτυξης 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + 3 β) α = + ( 1) ν ν γ) α ν = 1 1 1 1 + + + L + 1 3 34 ν ν + 1 δ) α1 = 0, αν+ 1 = 3α + 1 ν ( ). ** Να

Διαβάστε περισσότερα

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής

Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Η µέθοδος άξονα-κύκλου: µια διδακτική πρόταση για την επίλυση εξισώσεων και ανισώσεων µε απόλυτες τιµές στην Άλγεβρα της Α Λυκείου ηµήτριος Ντρίζος

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται αριθµητική πρόοδος, αν και µόνο αν κάθε όρος της προκύπτει από τον προηγούµενο του µε πρόσθεση του ίδιου πάντοτε αριθµού.. Μαθηµατική έκφραση

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

Θέμα 1 ο. Λύση θέματος 1 ο Α.

Θέμα 1 ο. Λύση θέματος 1 ο Α. ΠΡΟΛΟΓΟΣ Τα πιο κάτω θέματα δόθηκαν στις εξετάσεις Ιουνίου 013 στο 17 ο ΓΕΛ από τους καθηγητές Ν.Κ, Κ.Μ, Δ.Α. Παρακάτω παρατίθενται τα θέματα και οι λύσεις ανεπτυγμένες σε κάποια σημεία, με σχόλια καθώς

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Οι μαθηματικές έννοιες και γενικότερα οι μαθηματικές διαδικασίες είναι αφηρημένες και, αρκετές φορές, ιδιαίτερα πολύπλοκες. Η κατανόηση

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Η έννοια πρόβληµα Ανάλυση προβλήµατος Με τον όρο πρόβληµα εννοούµε µια κατάσταση η οποία χρήζει αντιµετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή ούτε προφανής. Μερικά προβλήµατα είναι τα εξής:

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 014-015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 015 ΤΑΞΗ : Α ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ: ΗΜΕΡΟΜΗΝΙΑ : 05/06/015 ΔΙΑΡΚΕΙΑ : ώρες ΒΑΘΜΟΣ ΟΛΟΓΡΑΦΩΣ:. ΩΡΑ : 07:45 09:45 ΥΠΟΓΡΑΦΗ

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» 1 2.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ιδιότητες των πράξεων Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και με την οήθειά τους η αφαίρεση και η διαίρεση. Για

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Πειραματιζόμενοι με αριθμούς στο περιβάλλον του Microworlds Pro: διαθεματική προσέγγιση περί «πολλαπλασίων και διαιρετών»

Πειραματιζόμενοι με αριθμούς στο περιβάλλον του Microworlds Pro: διαθεματική προσέγγιση περί «πολλαπλασίων και διαιρετών» Πειραματιζόμενοι με αριθμούς στο περιβάλλον του Microworlds Pro: διαθεματική προσέγγιση περί «πολλαπλασίων και διαιρετών» μια Νίκος Δαπόντες Φυσικός Δευτεροβάθμιας Εκπαίδευσης Το περιβάλλον Microworlds

Διαβάστε περισσότερα

Διάρκεια: 2Χ80 Προτεινόμενη τάξη: Δ -Στ Εισηγήτρια: Χάρις Πολυκάρπου

Διάρκεια: 2Χ80 Προτεινόμενη τάξη: Δ -Στ Εισηγήτρια: Χάρις Πολυκάρπου ΘΕΑΤΡΙΚΗ ΑΓΩΓΗ Θεατρικό Εργαστήρι: Δημιουργία δραματικών πλαισίων με αφορμή μαθηματικές έννοιες. Ανάπτυξη ικανοτήτων για επικοινωνία μέσω του θεάτρου και του δράματος. Ειδικότερα αναφορικά με τις παρακάτω

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αριθμητικά συστήματα 123, 231, 312 Τι σημαίνουν; Τι δίνει αξία σε κάθε ίδιο ψηφίο; Ποια είναι η αξία του κάθε ψηφίου; Αριθμητικά

Διαβάστε περισσότερα

Ο ΦΙΜΠΟΝΑΤΣΙ (ΚΑΙ Ο ΣΥΛΒΕΣΤΕΡ) ΚΑΙ ΤΑ ΜΟΝΑΔΙΑΙΑ ΚΛΑΣΜΑΤΑ

Ο ΦΙΜΠΟΝΑΤΣΙ (ΚΑΙ Ο ΣΥΛΒΕΣΤΕΡ) ΚΑΙ ΤΑ ΜΟΝΑΔΙΑΙΑ ΚΛΑΣΜΑΤΑ Ο ΦΙΜΠΟΝΑΤΣΙ (ΚΑΙ Ο ΣΥΛΒΕΣΤΕΡ) ΚΑΙ ΤΑ ΜΟΝΑΔΙΑΙΑ ΚΛΑΣΜΑΤΑ [ Στην ιστοσελίδα http://www.goldenmuseum.com/1207fibdivis_engl.html διάβασα για την (τελικά υποτιθέµενη) «διαίρεση του Φιµπονάτσι». Για να επιβεβαιώσω

Διαβάστε περισσότερα