Μαρία Λουκά. Εργαστήριο Matlab. Αριθμητικός υπολογισμός ιδιοτιμών και ιδιοδιανυσμάτων. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μαρία Λουκά. Εργαστήριο Matlab. Αριθμητικός υπολογισμός ιδιοτιμών και ιδιοδιανυσμάτων. Τμήμα Πληροφορικής και Τηλεπικοινωνιών."

Transcript

1 Μαρία Λουκά Εργαστήριο Matlab Αριθμητικός υπολογισμός ιδιοτιμών και ιδιοδιανυσμάτων Τμήμα Πληροφορικής και Τηλεπικοινωνιών.

2 Βασικές Συναρτήσεις της Matlab Γραμμικοί δείκτες (Linear indices) Ένας γραμμικός δείκτης επιτρέπει τη μετατροπή του απλού δείκτη (subscript) Α(i,j) σε δείκτη A(k). Αυτό συμβαίνει γιατί η MATLAB μπορεί να χειριστεί έναν πίνακα σαν ένα απλό διάνυσμα στήλη αφού κάθε στήλη μπορεί να εκχωρηθεί στο τέλος της προηγούμενης στήλης. Λέγοντας, linear indexing numbers εννοούμε την αρίθμηση των στοιχείων σε κάθε στήλη του πίνακα από πάνω προς τα κάτω και από αριστερά προς τα δεξιά. Για παράδειγμα, θεωρούμε ένα 3x3 πίνακα. Μπορούμε λοιπόν αντί να αναφερθούμε στο στοιχείο A(2,2) να αναφερθούμε στο A(5), και αντί του A(2,3) στοιχείου να αναφερθούμε στο A(8). Ο γραμμικός δείκτης αλλάζει και εξαρτάται από το μέγεθος του πίνακα. Για παράδειγμα το A(5) θα επιστρέψει διαφορετικό στοιχείο σε έναν 3x3 πίνακα σε σχέση με αυτό που θα επιστρέψει σε έναν 4x4 πίνακα. Οι συναρτήσεις sub2ind και ind2sub είναι χρήσιμες για τις μετατροπές μεταξύ subscripts και linear indices.

3 Βασικές Συναρτήσεις της Matlab find: Βρίσκει τους δείκτες και τις τιμές των μη μηδενικών στοιχείων. k = find(x) επιστρέφει ένα διάνυσμα το οποίο περιέχει τους γραμμικούς δείκτες κάθε μη μηδενικού στοιχείου του πίνακα X. Παράδειγμα 1: Να βρεθούν οι θέσεις των μη μηδενικών 1 2 στοιχείων του διπλανού πίνακα Χ = 1 1 Απάντηση: 4 k1 = find(x)= [ ] Παράδειγμα 2: Να χρησιμοποιηθεί ο λογικός τελεστής not στον X ώστε η συνάρτηση να μας επιστρέψει τις θέσεις των μηδενικών στοιχείων Απάντηση: k2 = find(~x)=[ ]

4 Βασικές Συναρτήσεις της Matlab Αν το X είναι ένα διάνυσμα, τότε η find επιστρέφει ένα διάνυσμα ίδιου προσανατολισμού όπως το X. Αν το X είναι ένας πολυδιάστατος πίνακας, τότε η find επιστρέφει ένα διάνυσμα στήλη με τις θέσεις του αποτελέσματος. Αν το X περιέχει μόνο μη μηδενικά στοιχεία ή είναι κενό, τότε η find επιστρέφει έναν κενό πίνακα. Στοιχεία που ικανοποιούν μια συνθήκη Παράδειγμα: Να βρεθούν τα 5 πρώτα στοιχεία τα οποία είναι μικρότερα του 1 στον διπλανό πίνακα Απάντηση: k = find(x<1,5)=[ ] και X(k)=[ ] Χ =

5 Βασικές Συναρτήσεις της Matlab Στοιχεία ίσα με συγκεκριμένες τιμές Προκειμένου να βρούμε μια συγκεκριμένη ακέραια τιμή χρησιμοποιούμε τον τελεστή == Παράδειγμα: Να βρεθεί η θέση του στοιχείου 13 στο ακόλουθο 1x1 διάνυσμα περιττών ακεραίων x = 1:2:2=[ ] Απάντηση: k = find(x==13)=7 Προκειμένου όμως να βρεθεί μια μη ακέραια τιμή, θα πρέπει να χρησιμοποιηθεί μια τιμή ανεκτικότητας βασισμένη στα δεδομένα μας. Διαφορετικά το αποτέλεσμα μπορεί να είναι ένας κενός πίνακας λόγω των σφαλμάτων στρογγύλευσης. Παράδειγμα: y = :.1:1=[ ] Απάντηση: Αν γράψουμε k = find(y==.3) θα πάρουμε έναν κενό πίνακα, ενώ αν γράψουμε k = find(abs(y-.3) <.1) το αποτέλεσμα θα είναι 4.

6 Βασικές Συναρτήσεις της Matlab Εύρεση κάποιων τελευταίων μη μηδενικών στοιχείων Παράδειγμα: Να δημιουργηθεί ένας 6x6 μαγικός τετραγωνικός πίνακας με όλα τα στοιχεία του, που βρίσκονται σε περιττές γραμμές, μηδενικά. Άρα, για X = magic(6); και X(1:2:end) = έχουμε το διπλανό πίνακα: Να βρεθεί η θέση των τελευταίων 4 μη μηδενικών στοιχείων. Απάντηση: k = find(x,4,'last')=[ ] 3 Χ =

7 Βασικές Συναρτήσεις της Matlab Εύρεση στοιχείων που ικανοποιούν πολλαπλές συνθήκες Παράδειγμα: Να βρεθούν τα πρώτα τρία στοιχεία ενός 4x4 πίνακα τα οποία είναι μεγαλύτερα του και μικρότερα του 1. Να οριστούν δύο έξοδοι για την επιστροφή των κατά γραμμές και κατά στήλες δεικτών στα στοιχεία, δηλ. των i,j. Έστω Χ = Απάντηση: Γράφοντας [row,col] = find(x> & X<1,3), το αποτέλεσμα είναι: row =[2 3 4] και col=[1 1 1] Το πρώτο στοιχείο είναι το X(2,1), δηλαδή το 8.

8 Βασικές Συναρτήσεις της Matlab Η C = dot(a,b) επιστρέφει το εσωτερικό γινόμενο των Α και B. Αν A και B είναι διανύσματα, τότε αυτά θα πρέπει να έχουν το ίδιο μήκος. Αν A και B είναι πίνακες τότε αυτοί θα πρέπει να έχουν το ίδιο μέγεθος. Σε αυτή τη περίπτωση, η συνάρτηση dot χειρίζεται τους A και B σαν συλλογές διανυσμάτων. Η συνάρτηση υπολογίζει το εσωτερικό γινόμενο των αντίστοιχων διανυσμάτων κατά μήκος της πρώτης διάστασης του πίνακα του οποίου το μέγεθος δεν είναι ίσο με 1. Παράδειγμα 1: Αν A = [4-1 2]; B = [2-2 -1]; τότε C = dot(a,b)=8=a(1)*b(1) + A(2)*B(2) + A(3)*B(3)

9 Βασικές Συναρτήσεις της Matlab Παράδειγμα 2: A = [1 2 3;4 5 6;7 8 9]; B = [9 8 7;6 5 4;3 2 1]; C = dot(a,b)= Το αποτέλεσμα, C, περιέχει τρία διαφορετικά εσωτερικά γινόμενα. Η συνάρτηση dot χειρίζεται τις στήλες των A και B σαν διανύσματα και υπολογίζει το εσωτερικό γινόμενο των αντίστοιχων στηλών. Έτσι, για παράδειγμα, C(1) = 54 είναι το εσωτερικό γινόμενο της A(:,1) με την B(:,1).

10 Βασικές Συναρτήσεις της Matlab Η C = dot(a,b,dim) εκτιμά το εσωτερικό γινόμενο των A και B κατά μήκος της διάστασης dim. Η dim είσοδος είναι ένας θετικός βαθμωτός ακέραιος. Θεωρούμε δύο πίνακας A και B διάστασης 2: Η dot(a,b,1) χειρίζεται τις στήλες των A και B σαν διανύσματα και επιστρέφει το εσωτερικό γινόμενο των αντίστοιχων στηλών. Η dot(a,b,2) χειρίζεται τις στήλες των A και B σαν διανύσματα και επιστρέφει το εσωτερικό γινόμενο των αντίστοιχων γραμμών.

11 Βασικές Συναρτήσεις της Matlab Παράδειγμα: A = [1 2 3;4 5 6;7 8 9]; B = [9 8 7;6 5 4;3 2 1]; D = dot(a,b,2)= Σε αυτή την περίπτωση, D(1) = 46 είναι το εσωτερικό γινόμενο του A(1,:) με το B(1,:).

12 Η τροποποιημένη μέθοδος των δυνάμεων Η μέθοδος αυτή υπολογίζει τη μεγαλύτερη κατά μέτρο ιδιοτιμή nxn ενός τετραγωνικού πίνακα Α C και το αντίστοιχο ιδιοδιάνυσμα. Στη συνέχεια δίνεται η συνάρτηση eig_power.m που υλοποιεί τη μέθοδο των δυνάμεων για την προσέγγιση της μεγαλύτερης κατά μέτρο ιδιοτιμής και του αντίστοιχου ιδιοδιανύσματος ενός πίνακα Α.

13 Η τροποποιημένη μέθοδος των δυνάμεων function [lambda,znew] = eig_power(a,y,tol,maxiter) % Συνάρτηση για την προσέγγιση της μεγαλύτερης κατά μέτρο ιδιοτιμής και του αντίστοιχου ιδιοδιανύσματος ενός πίνακα Α. lambda=; % Εύρεση ακέραιου p τέτοιου ώστε yp =max yi, i=1,...,n p=min(find (abs(y)==max(abs(y)))); % Βρίσκει τη θέση ji disp('p'); disp(p); pp=norm(y, Inf);% Βρίσκει τη norm του άπειρον. disp('pp'); disp(pp); z=y/y(p); % Το ιδιοδιάνυσμα disp('z'); disp(z); znew=z;

14 Η τροποποιημένη μέθοδος των δυνάμεων for i=1:maxiter disp( Επανάληψη:'); disp(i); ynew=a*znew; disp('ynew'); disp(ynew); %Βήμα 5.1 pp=norm(ynew, Inf); disp('pp'); disp(pp); % Εύρεση norm του άπειρον lambda=ynew(p); disp('lambda'); disp(lambda); % Βήμα 5.2 p=min(find (abs(ynew)==max(abs(ynew)))); disp('p'); disp(p); % Βήμα 5.4 znew=ynew/ynew(p); disp('znew');disp(znew); %Βήμα 5.5 disp(' lambda-lambda '); disp(abs(lambda-lambda)); if abs(lambda-lambda)<tol disp('lambda');disp(lambda); disp('z(znew)');disp(znew); return; end; lambda=lambda; disp('lambda'); disp(lambda); end;%for if abs(lambda-lambda)>=tol s=sprintf( Όχι σύγκλιση μετά από %d, επαναλήψεις', maxiter); disp(s); end;

15 Η τροποποιημένη μέθοδος των δυνάμεων Στη συνέχεια δίνεται το script σε MATLAB που καλεί τη συνάρτηση που υλοποιεί τη μέθοδο των δυνάμεων για την εύρεση της μεγαλύτερης κατά μέτρο ιδιοτιμής και του αντίστοιχου ιδιοδιανύσματος του πίνακα Α (main_power_method.m): A=[-2-2 3; ; ]; disp('a'); disp(a); n=3;nn=3; [n nn]=size(a); y=[1 ]'; disp('y'); disp(y); nz=1;n1=3; [n1 nz]=size(y); maxiter=1; tol=.13; %1e-8;

16 Η τροποποιημένη μέθοδος των δυνάμεων if (n~=nn) disp( Λάθος της μεθόδου δυνάμεων: Ο πίνακας Α πρέπει να είναι τετραγωνικός');return; elseif (n~=n1) disp( Λάθος της μεθόδου δυνάμεων: Οι διαστάσεις του πίνακα Α και του διανύσματος y δεν είναι συμβατές');return; end; %Εύρεση ιδιοτιμών του Α με χρήση της eig idiotimes=eig(a); disp('idiotimes tou A'); disp(idiotimes); % προσέγγιση της μεγαλύτερης κατά μέτρο ιδιοτιμής και του αντίστοιχου ιδιοδιανύσματος. [lambda_max,zmax] = eig_power(a,y,tol,maxiter)

17 Η τροποποιημένη μέθοδος των δυνάμεων Αποτελέσματα από την εκτέλεση του προγράμματος. A Επανάληψη: p=1 %Εύρεση ακέραιου p pp=1=max{ 1,, } y 1 lambda= tol=.13 Ιδιοτιμές του A z=[1 ] =z () ynew=[-2 1 1] =y (1) pp=1=max{ -2, -1, 1 } lambda=-2=λ 1 lambda-lambda =2>tol znew=[.2 1-1] =z (1)

18 Η τροποποιημένη μέθοδος των δυνάμεων Επανάληψη: 2 p=2 %Εύρεση ακέραιου p ynew=[ ] =y (2) pp=9=max{ -5.4, -9, 9 } lambda=-9=λ 2 lambda-lambda =7>tol znew=[.6 1-1] =z (2) Επανάληψη: 3 p=2 %Εύρεση ακέραιου p ynew=[ ] =y (3) pp=13=max{ -6.2, -13, 13 } lambda=-13=λ 3 lambda-lambda =4>tol znew=[ ] =z (3)

19 Η τροποποιημένη μέθοδος των δυνάμεων Επανάληψη: 4 p=2 %Εύρεση ακέραιου p ynew=[ ] =y (4) pp= =max{ , , } lambda= =λ 4 lambda-lambda =1.238>tol znew=[ ] =z (4) Επανάληψη:5 p=2 %Εύρεση ακέραιου p ynew=[ ] =y (5) pp= =max{ , , } lambda= =λ 4 lambda-lambda =.2896>tol znew=[ ] =z (5)

20 Η τροποποιημένη μέθοδος των δυνάμεων Επανάληψη: 6 p=2 %Εύρεση ακέραιου p ynew=[ ] =y (6) pp= =max{ , , } lambda= =λ 5 lambda-lambda =.735<tol znew=[ ] =z (6) Συμπέρασμα Η προσέγγιση της μεγαλύτερης ιδιοτιμής είναι η: lambda= Και το αντίστοιχο ιδιοδιάνυσμα είναι το: znew=[ ]

21 Η μέθοδος των πηλίκων του Rayleigh Στην περίπτωση που ο πίνακας Α είναι πραγματικός και συμμετρικός, τότε είναι δυνατόν να επιταχυνθεί η σύγκλιση προς τη μεγαλύτερη κατά απόλυτη τιμή ιδιοτιμή χρησιμοποιώντας τη μέθοδο των πηλίκων του Rayleigh. Στη συνέχεια δίνεται η συνάρτηση rayleigh.m που υλοποιεί τη μέθοδο των πηλίκων του Rayleigh για την προσέγγιση της μεγαλύτερης κατά μέτρο ιδιοτιμής και του αντίστοιχου ιδιοδιανύσματος ενός πίνακα Α.

22 Η μέθοδος των πηλίκων του Rayleigh function [lambda,znew] = rayleigh(a,y,tol,maxiter) % Συνάρτηση για τον υπολογισμό της μεγαλύτερης κατά % μέτρο ιδιοτιμής και του αντίστοιχου ιδιοδιανύσματος με % τη μέθοδο των πηλίκων του Rayleigh lambda=; z=y/norm(y); disp('z'); disp(z); znew=z; for i=1:maxiter disp( Επανάληψη');disp(i); ynew=a*znew; disp('ynew');disp(ynew); lambda=dot(znew, ynew); disp('lambda'); disp(lambda);

23 Η μέθοδος των πηλίκων του Rayleigh if (norm(ynew)==) disp( Ο A έχει ιδιοτιμή, επίλεξε νέο αρχικό διάνυσμα και άρχισε πάλι τη διαδικασία); return; end; znew=ynew/norm(ynew); disp('znew'); disp(znew); disp(' lambda-lambda '); disp(abs(lambda-lambda)); if abs(lambda-lambda)<tol disp('lambda');disp(lambda); disp('z(znew)');disp(znew); return; end; lambda=lambda; disp('lambda'); disp(lambda); end; %for if abs(lambda-lambda)>=tol s=sprintf( Όχι σύγκλιση μετά από %d, επαναλήψεις', maxiter); disp(s); end;

24 Η μέθοδος των πηλίκων του Rayleigh Στη συνέχεια δίνεται το script σε MATLAB που καλεί τη συνάρτηση που υλοποιεί τη μέθοδο των πηλίκων του Rayleigh για την εύρεση της μεγαλύτερης κατά μέτρο ιδιοτιμής και του αντίστοιχου ιδιοδιανύσματος του πίνακα Α (main_rayleigh.m): A=[3-1 ; ; -1 3]; disp('a'); disp(a); n=3; nn=3; [n nn]=size(a); y=[1 1 1]'; disp('y');disp(y); nz=1; n1=3; [n1 nz]=size(y); maxiter=2;% 1; tol=.13;

25 Η μέθοδος των πηλίκων του Rayleigh if (n~=nn) disp( Λάθος της μεθόδου των πηλίκων Rayleigh. Ο πίνακας πρέπει να είναι τετραγωνικός');return; elseif (n~=n1) disp( Λάθος της μεθόδου των πηλίκων Rayleigh. Οι διαστάσεις του πίνακα Α και του διανύσματος y δεν είναι συμβατές');return; end; % Εύρεση ιδιοτιμών του Α με χρήση της eig idiotimes=eig(a); disp('idiotimes'); disp(idiotimes); % Υπολογισμός της μεγαλύτερης κατά μέτρο ιδιοτιμής και του αντίστοιχου ιδιοδιανύσματος. [lambda_max,zmax] = rayleigh(a,y,tol,maxiter)

26 Η μέθοδος των πηλίκων του Rayleigh Αποτελέσματα από την εκτέλεση του προγράμματος A y Ιδιοτιμές με χρήση της eig maxiter=1; tol=.13; lambda= Επανάληψη: 1 z=[ ] =z () ynew=[ ] =y (1) lambda=1.3333=λ 1 lambda-lambda =1.3333>tol znew=[ ] =z (1) Επανάληψη: 2 ynew=[ ] =y (2) lambda=3=λ 2 lambda-lambda =1.6667>tol znew=[ ] =z (2)

27 Η μέθοδος των πηλίκων του Rayleigh Επανάληψη: 3 ynew=[ ] =y (3) lambda=3.991=λ 3 lambda-lambda =.991>tol znew=[ ] =z (3) Επανάληψη: 4 ynew=[ ] =y (4) lambda=3.9942=λ 4 lambda-lambda =.851<tol znew=[ ] =z (4) Συμπέρασμα Η προσέγγιση της μεγαλύτερης ιδιοτιμής είναι η: lambda= Και το αντίστοιχο ιδιοδιάνυσμα είναι το: znew=[ ]

Μαρία Λουκά. Εργαστήριο Matlab Άμεσες Μέθοδοι. Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Μαρία Λουκά. Εργαστήριο Matlab Άμεσες Μέθοδοι. Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μαρία Λουκά Εργαστήριο Matlab Άμεσες Μέθοδοι. Τμήμα Πληροφορικής και Τηλεπικοινωνιών Βασικές συναρτήσεις του Matlab b = trace(a) : Είναι το άθροισμα των διαγωνίων στοιχείων του πίνακα Α. d = det(a) : επιστρέφει

Διαβάστε περισσότερα

Εργαστήρια Αριθμητικής Ανάλυσης Ι. 4 ο Εργαστήριο. Διανύσματα-Πίνακες 1 ο Μέρος

Εργαστήρια Αριθμητικής Ανάλυσης Ι. 4 ο Εργαστήριο. Διανύσματα-Πίνακες 1 ο Μέρος Εργαστήρια Αριθμητικής Ανάλυσης Ι 4 ο Εργαστήριο Διανύσματα-Πίνακες 1 ο Μέρος 2017 Εισαγωγή Όπως έχουμε προαναφέρει σε προηγούμενα εργαστήρια. Ο βασικός τύπος δεδομένων στο Matlab είναι οι πίνακες. Ένα

Διαβάστε περισσότερα

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

Μαρία Λουκά. Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.

Μαρία Λουκά. Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή. Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Μαρία Λουκά Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Στη MATLAB τα πολυώνυμα αναπαριστώνται από πίνακες που περιέχουν τους συντελεστές τους σε φθίνουσα διάταξη. Για

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y)

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y) Λογικά Διανύσματα Τα λογικά διανύσματα του Matlab είναι πολύ χρήσιμα εργαλεία. Για παράδειγμα ας υποθέσουμε ότι θέλουμε να κάνουμε την γραφική παράσταση της tan(x) στο διάστημα από -3π/2 μέχρι 3π/2. >>x

Διαβάστε περισσότερα

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50 Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205

Διαβάστε περισσότερα

1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75

1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 2. Έστω x = [2 5 1 6] α. Προσθέστε το 16 σε κάθε στοιχείο β. Προσθέστε το 3 σε κάθε στοιχείο που βρίσκεται σε μονή θέση.

Διαβάστε περισσότερα

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας Διαγωνοποίηση μητρών Στοιχεία Γραμμικής Άλγεβρας Όμοιες μήτρες Ορισμός: Οι τετραγωνικές μήτρες Α=[α ij ] nxn & B=[b ij ] nxn όμοιες (Α~Β): αν υπάρχει ομαλή μήτρα Ρ τ.ώ. Β = Ρ -1 Α Ρ A~B Β~ Α Ρ ομαλή μήτρα

Διαβάστε περισσότερα

1 ιαδικασία διαγωνιοποίησης

1 ιαδικασία διαγωνιοποίησης ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη

Διαβάστε περισσότερα

Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων. Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ

Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων. Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ 1. Υπενθύμιση έννοιας νόρμας και βασικών ιδιοτήτων της 2. Σπουδαιότητα των ιδιοτιμών και ιδιοδιανυσμάτων πινάκων

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4

ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση ονομάζεται ένα τμήμα κώδικα (ή υποπρόγραμμα) το

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα Γραμμική Άλγεβρα ΙΙ Διάλεξη 15 Αναλλοίωτοι Υπόχωροι, Ιδιόχωροι Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 2/5/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 15 2/5/2014 1 / 12 Μία απεικόνιση από ένα διανυσματικό

Διαβάστε περισσότερα

Χρονικές σειρές 4 o μάθημα: ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΝΥΣΜΑΤΑ

Χρονικές σειρές 4 o μάθημα: ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΝΥΣΜΑΤΑ Χρονικές σειρές 4 o μάθημα: ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΝΥΣΜΑΤΑ Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting)

3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting) Εργαστήριο 3: 3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting) Η C++, όπως όλες οι γλώσσες προγραμματισμού, χρησιμοποιεί τελεστές για να εκτελέσει τις αριθμητικές και λογικές λειτουργίες.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5

ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Πίνακες (Arrays) [1/2] Δομές δεδομένων για την αποθήκευση δεδομένων υπό

Διαβάστε περισσότερα

Σύντομες εισαγωγικές σημειώσεις για την. Matlab

Σύντομες εισαγωγικές σημειώσεις για την. Matlab Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και

Διαβάστε περισσότερα

12/3/2012. Εργαστήριο Αλγόριθμοι Γραμμικής Βελτιστοποίησης. Lab03 1. Διανυσματοποίηση Βρόχων. Αρχικοποίηση μητρών (preallocating)

12/3/2012. Εργαστήριο Αλγόριθμοι Γραμμικής Βελτιστοποίησης. Lab03 1. Διανυσματοποίηση Βρόχων. Αρχικοποίηση μητρών (preallocating) Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Βελτίωση Απόδοσης ιανυσματοποίηση βρόχων Αρχικοποίηση μητρών (preallocating) Χρήση κατάλληλων

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Εισαγωγή στην Αριθμητική Ανάλυση

Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον

Διαβάστε περισσότερα

Εργαστήριο Γραμμικής Άλγεβρας. H Matlab ως γλώσσα προγραμματισμού

Εργαστήριο Γραμμικής Άλγεβρας. H Matlab ως γλώσσα προγραμματισμού Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας H Matlab ως γλώσσα προγραμματισμού Προγραμματιστικές δομές Έλεγχος ροής if if

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι για την επίλυση γραμμικών συστημάτων. Μιχάλης Δρακόπουλος

Επαναληπτικές μέθοδοι για την επίλυση γραμμικών συστημάτων. Μιχάλης Δρακόπουλος Επαναληπτικές μέθοδοι για την επίλυση γραμμικών συστημάτων Μιχάλης Δρακόπουλος Σημειώσεις Αριθμητικής Γραμμικής Άλγεβρας 2012 2013 Εισαγωγή Στην αριθμητική επίλυση μαθηματικών εφαρμογών, όπως για παράδειγμα

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα

2 3x 5x x

2 3x 5x x ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ι ΙΩΑΝΝΗΣ Σ ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν.

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές

Διαβάστε περισσότερα

Μήτρες Ειδικές μήτρες. Στοιχεία Γραμμικής Άλγεβρας

Μήτρες Ειδικές μήτρες. Στοιχεία Γραμμικής Άλγεβρας Μήτρες Ειδικές μήτρες Στοιχεία Γραμμικής Άλγεβρας Το διάνυσμα ως μήτρα Είδαμε ότι ένα διάνυσμα u = (u 1, u 2, u 3 ) μπορεί να γραφεί και ως μήτρα 3x1, δηλ. μήτρα με 3 γραμμές x 1 στήλη: 1 η γραμμή 2 η

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

ημιουργία και διαχείριση πινάκων

ημιουργία και διαχείριση πινάκων ημιουργία και διαχείριση πινάκων Για να δημιουργήσουμε έναν πίνακα στο MATLAB μπορούμε να γράψουμε A = [ 2 3 ; 7 9 0 ; - 0 5; -2-3 9 -] βλέπουμε ότι αμέσως μας επιστρέφει τον πίνακα που ορίσαμε A = 2 3

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 4 1 / 48

Διαβάστε περισσότερα

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 4ο Aντώνης Σπυρόπουλος Διατεταγμένα σύνολα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Διανύσµατα στο επίπεδο

Διανύσµατα στο επίπεδο Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΠΡΩΤΟ - Διατύπωση προβλημάτων - Κατηγορίες εφαρμογών - Πράξεις με πίνακες ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ (in short) Που

Διαβάστε περισσότερα

Τυπικές χρήσεις της Matlab

Τυπικές χρήσεις της Matlab Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη

Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη Εργαστήρια Αριθμητικής Ανάλυσης Ι 9 ο Εργαστήριο Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη 2018 Απαλοιφή Gauss Με Μερική Οδήγηση Για την εύρεση του οδηγού στοιχείου στο k ο βήμα, αναζητούμε το μέγιστο

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2

ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Έλεγχος συνθηκών - if Ας μελετήσουμε το πρόβλημα του υπολογισμού του ελάχιστου

Διαβάστε περισσότερα

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2. Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13 Γραμμική Άλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/2014 1 / 13 Εισαγωγή Τι έχουμε μάθει; Στο πρώτο μάθημα Γραμμικής Άλγεβρας

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6)

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6) Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 6) Σεπτέμβριος 2015

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις:,, πίνακας,

Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις:,, πίνακας, Παράδειγμα 3.2(Επίλυση συστήματος Jordan) Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις: Όπου,, πίνακας, Να λυθεί το σύστημα με είσοδο τη συνάρτηση Επίλυση

Διαβάστε περισσότερα

διανύσματα - Πίνακες - Struct Στατικό διάνυσμα Είσοδος Έξοδος δεδομένων Συναρτήσεις Χειρισμός σφαλμάτων ΤΕΤΑΡΤΗ ΔΙΑΛΕΞΗ

διανύσματα - Πίνακες - Struct Στατικό διάνυσμα Είσοδος Έξοδος δεδομένων Συναρτήσεις Χειρισμός σφαλμάτων ΤΕΤΑΡΤΗ ΔΙΑΛΕΞΗ ΤΕΤΑΡΤΗ ΔΙΑΛΕΞΗ Σύνολο στοιχείων ίδιου τύπου (1/2) Ένα σύνολο στοιχείων ίδιου τύπου διακρίνεται σε δύο κατηγορίες με βάση τη διάσταση: Μονοδιάστατο Αν μπορούμε να θεωρούμε ότι τα στοιχεία είναι συνεχόμενα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.5) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/07 Διδάσκων: Ι. Λυχναρόπουλος Προσδιορίστε το c R ώστε το διάνυσμα (,, 6 ) να ανήκει στο

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων Πληροφορικής 2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών 3. Ο αλγόριθμος

Διαβάστε περισσότερα

όπου Η μήτρα ή πίνακας του συστήματος

όπου Η μήτρα ή πίνακας του συστήματος Έστω το γραμμικό σύστημα: Το ίδιο σύστημα σε μορφή πινάκων: 3 5 7 3 2 y x y x B X y x 3 7 5 3 2 όπου Η μήτρα ή πίνακας του συστήματος B Η μήτρα ή πίνακας των σταθερών όρων X Η μήτρα ή πίνακας των αγνώστων

Διαβάστε περισσότερα

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη) Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη) Ασχολoύνται με την κατασκευή μαθηματικών μοντέλων και με τεχνικές ποσοτικής ανάλυσης και τη χρήση υπολογιστών για την ανάλυση και την επίλυση επιστημονικών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 12 Οκτωβρίου

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4: Α. Λογικές εκφράσεις (Παραστάσεις και Δείκτες). Β. Δομές Προγραμματισμού. Κωνσταντίνος Καρατζάς Τμήμα Μηχανολόγων Μηχανικών

Πληροφορική. Ενότητα 4: Α. Λογικές εκφράσεις (Παραστάσεις και Δείκτες). Β. Δομές Προγραμματισμού. Κωνσταντίνος Καρατζάς Τμήμα Μηχανολόγων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πληροφορική Ενότητα 4: Α. Λογικές εκφράσεις (Παραστάσεις και Δείκτες). Β. Δομές Προγραμματισμού Κωνσταντίνος Καρατζάς Τμήμα Μηχανολόγων

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5)

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5) Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 5) Σεπτέμβριος 2015 1

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Αριθμητική Γραμμική Άλγεβρα (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Αριθμητική Γραμμική Άλγεβρα (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Αριθμητική Γραμμική Άλγεβρα (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7 Επαναληπτικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων ίνεται το γραµµικό σύστηµα Ax = b όπου A R n n είναι µη ιδιάζων πίνακας

Διαβάστε περισσότερα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι Σημειώσεις MATLAB Ενότητα 4 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο

Διαβάστε περισσότερα

Θέματα Προγραμματισμού Η/Υ

Θέματα Προγραμματισμού Η/Υ Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 10: Θεματική Ενότητα: Λίστες (Lists) και Πλειάδες (Tuples) ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python

ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στη Python Νικόλαος Ζ. Ζάχαρης Αναπληρωτής

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ

ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ Η άλγεβρα πινάκων μας επιτρέπει: Να γράψουμε με περιεκτικό τρόπο ένα μεγάλο σύστημα γραμμικών εξισώσεων Να ελέγξουμε την ύπαρξη λύσης σε ένα σύστημα γραμμικών εξισώσεων με τη χρησιμοποίηση

Διαβάστε περισσότερα

Ένας πρώτος τρόπος εύρεσης των διαστάσεων ενός πίνακα στο. Matlab είναι με την εντολή size(όνομα πίνακα) και πατώντας. enter ( )

Ένας πρώτος τρόπος εύρεσης των διαστάσεων ενός πίνακα στο. Matlab είναι με την εντολή size(όνομα πίνακα) και πατώντας. enter ( ) Ένας πρώτος τρόπος εύρεσης των διαστάσεων ενός πίνακα στο Matlab είναι με την εντολή size(όνομα πίνακα) και πατώντας enter ( ) Απόδοση των διαστάσεων του προηγούμενου πίνακα σε άλλον πίνακα, τον Χ. Κάποια

Διαβάστε περισσότερα

A A A B A ΦΥΛΛΑ ΙΟ ΘΕΜΑΤΩΝ 1/2. Μέϱος A. Πολλαπλές επιλογές (20%) Σειριακός αριθµός : 100 Πληροφορική Ι Εξέταση Φεβρουαρίου 2019

A A A B A ΦΥΛΛΑ ΙΟ ΘΕΜΑΤΩΝ 1/2. Μέϱος A. Πολλαπλές επιλογές (20%) Σειριακός αριθµός : 100 Πληροφορική Ι Εξέταση Φεβρουαρίου 2019 Σειριακός αριθµός : 100 Πληροφορική Ι Εξέταση Φεβρουαρίου 2019 Απαντήσεις Πολλαπλής Επιλογής Ε Ω : 1 2 3 4 5 A A A B A ΦΥΛΛΑ ΙΟ ΘΕΜΑΤΩΝ 1/2 Τα ϑέµατα της εξέτασης δίνονται σε 2 ϕυλλάδια (ένα για κάϑε διδάσκοντα).

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης

Διαβάστε περισσότερα

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17 Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα) Επαναληπτικές µέθοδοι και Ηµι-Επαναληπτικές Μέθοδοι Πανεπιστήµιο Αθηνών 31 Μαρτίου 2017 Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 14: Τεχνικές Βελτίωσης Απόδοσης Κώδικα σε Matlab, Ανάπτυξη Κώδικα σε Matlab για την Τεχνική Κλιμάκωσης της Ισορρόπησης Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 2: Ανασκόπηση Στοιχείων Γραμμικής Άλγεβρας Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση/υπενθύμιση

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί

Διαβάστε περισσότερα

Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες).

Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες). Matlab Μάθημα Νέο υλικό www.cs.uoi.gr/~develeg Matlab.pdf - Παρουσίαση μαθήματος. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (3 σελίδες). Επαναληπτικές δομές Όταν εκτελείται μια πράξη σε ένα διάνυσμα,

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2016-2017 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

ΠΛΗ 12 - Ιδιοτιμές και ιδιοδιανύσματα

ΠΛΗ 12 - Ιδιοτιμές και ιδιοδιανύσματα 5 Ιδιοτιμές και ιδιοδιανύσματα Χαρακτηριστικό πολυώνυμο Έστω ο πίνακας Α: Αν από τα στοιχεία της κυρίας διαγωνίου α,α αφαιρέσουμε τον αριθμό λ, τότε προκύπτει ο πίνακας: του οποίου η ορίζουσα είναι η εξής:

Διαβάστε περισσότερα

Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός Ax μπορεί να ειδωθεί σαν μετασχηματισ

Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός Ax μπορεί να ειδωθεί σαν μετασχηματισ Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός

Διαβάστε περισσότερα