Μαθηματικϊ. Β' Ενιαύου Λυκεύου. (μϊθημα κοινού κορμού) Υιλοςοφύα - κοπού

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μαθηματικϊ. Β' Ενιαύου Λυκεύου. (μϊθημα κοινού κορμού) Υιλοςοφύα - κοπού"

Transcript

1 Μαθηματικϊ Β' Ενιαύου Λυκεύου (μϊθημα κοινού κορμού) Υιλοςοφύα - κοπού Η διδαςκαλύα των Μαθηματικών Κοινού Κορμού επιδιώκει να δώςει ςτο μαθητό τα εφόδια για την αντιμετώπιςη καθημερινών αναγκών ςε αριθμητικϋσ και γεωμετρικϋσ διαδικαςύεσ καθώσ επύςησ και τη δυνατότητα να κϊνει ςτοιχειώδεισ ςυλλογιςμούσ και να αντιμετωπύζει με ορθολογιςτικό τρόπο καταςτϊςεισ και προβλόματα τησ καθημερινόσ ζωόσ. Ειδικότερα επιδιώκει να αναπτύξουν οι μαθητϋσ τϋτοιεσ δεξιότητεσ ώςτε να μπορούν: 1. Να ερμηνεύουν και να χρηςιμοποιούν τα δεδομϋνα, τα ςύμβολα και την ορολογύα των Μαθηματικών.. Να οργανώνουν τα δεδομϋνα και να χρηςιμοποιούν τισ κατϊλληλεσ προςεγγύςεισ και εκτιμόςεισ. 3. Να κατανοούν τισ αλγεβρικϋσ και γεωμετρικϋσ (ςτο επύπεδο και το χώρο) ϋννοιεσ και ςχϋςεισ. 4. Να γνωρύζουν την κατϊλληλη μαθηματικό διαδικαςύα για τη διαπραγμϊτευςη μιασ κατϊςταςησ. 5. Να μεταφρϊζουν τα προβλόματα ςτη μαθηματικό γλώςςα και να επιλϋγουν - εφαρμόζουν τισ κατϊλληλεσ τεχνικϋσ και αλγορύθμουσ. 6. Να ανακαλούν από τη μνόμη τουσ και να κϊνουν ςωςτό χρόςη των αλγοριθμικών διαδικαςιών. 7. Να αναπτύςςουν επιχειρόματα και να κϊνουν λογικϋσ ςυνεπαγωγϋσ. 8. Να εκφρϊζουν την επύλυςη ενόσ προβλόματοσ με λογικό και ςαφό τρόπο και να ερμηνεύουν τα ςυμπερϊςματα τουσ. 9. Να επιλύουν προβλόματα που απαιτούν εκτεταμϋνη εργαςύα μϋςα ςε ϋνα ςυγκεκριμϋνο χρονικό διϊςτημα. 10. Να διαβϊζουν και να κατανοούν μαθηματικϊ κεύμενα. 11. Να κϊνουν κριτικό ςε μαθηματικϊ επιχειρόματα.

2 ΕΠΑΝΑΛΗΧΗ ΤΛΗ Α' ΛΤΚΕΙΟΤ Γραφικό παρϊςταςη ευθεύασ Καταςκευϊζουν τη γραφικό παρϊςταςη τησ ευθεύασ με εξύςωςη x y 0. Βρύςκουν την κλύςη τησ ευθεύασ με δεδομϋνο τύπο Διατυπώνουν τη ςχϋςη που ϋχουν οι τύποι δύο παραλλόλων ευθειών Διατυπώνουν τη ςχϋςη που ϋχουν οι τύποι δύο κϊθετων ευθειών. Η ύλη να προςφϋρεται μϋςα από προβλόματα που ςχετύζονται με την καθημερινό ζωό και με τα ενδιαφϋροντα των μαθητών Λύςη εξύςωςησ β' βαθμού Λύνουν εξύςωςη β' βαθμού με τον τύπο. Βρύςκουν το ϊθροιςμα και γινόμενο των ριζών εξύςωςησ β' βαθμού χωρύσ να τη λύςουν. Βρύςκουν το εύδοσ των ριζών εξύςωςησ β' βαθμού χωρύσ να τη λύςουν. Καταςκευϊζουν εξύςωςη β' βαθμού που να ϋχει δεδομϋνεσ λύςεισ. Λύνουν προβλόματα με τη χρόςη εξύςωςησ β' βαθμού. Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα

3 1.3 Γραφικό παρϊςταςη τησ ςυνϊρτηςησ y x x Βρύςκουν τον ϊξονα ςυμμετρύασ τησ γραφικόσ παρϊςταςησ τησ ςυνϊρτηςησ y x x. Διακρύνουν αν η ςυνϊρτηςη γ = αχ + βχ + γ ϋχει μϋγιςτη ό ελϊχιςτη τιμό και να την υπολογύζουν. Καταςκευϊζουν τη γραφικό παρϊςταςη τησ ςυνϊρτηςησ y x x. 1.4 Πυθαγόρειο Θεώρημα διατυπώνουν το πυθαγόρειο θεώρημα εφαρμόζουν το πυθαγόρειο θεώρημα ςτην επύλυςη τριγώνου ΠΡΟΟΔΟΙ 13.1 Αριθμητικό πρόοδοσ (Α.Π.) Δύνουν τον οριςμό τησ Α.Π. Δύνουν τουσ οριςμούσ για αύξουςα και φθύνουςα Α.Π. Δύνουν τη ςχϋςη που πρϋπει να υπϊρχει ανϊμεςα ςε τρεισ αριθμούσ για να εύναι διαδοχικού όροι Α.Π. Τπολογύζουν τον αριθμητικό μϋςο δύο αριθμών. Τπολογύζουν τον νι-οςτό όρο Α.Π. με τον τύπο 1 1. Τπολογύζουν το ϊθροιςμα των ν πρώτων όρων Α.Π. με τουσ τύπουσ 1 και 1 1 Η ειςαγωγό ςτο κεφϊλαιο να γύνει μϋςω προβλημϊτων και να δοθεύ ϋμφαςη ςτισ ςτρατηγικϋσ λύςεισ των προβλημϊτων. Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα 3

4 . Γεωμετρικό Πρόοδοσ (Γ.Π.) Δύνουν τον οριςμό τησ Γ.Π. Δύνουν τουσ οριςμούσ για αύξουςα, απόλυτα αύξουςα, φθύνουςα και απόλυτα φθύνουςα Γ.Π. Δύνουν τη ςχϋςη που πρϋπει να υπϊρχει ανϊμεςα ςε τρεισ αριθμούσ για να εύναι διαδοχικού όροι Γ.Π. Τπολογύζουν το γεωμετρικό μϋςο δύο αριθμών Τπολογύζουν τον νι-οςτό όρο Γ.Π. με τον τύπο 1 1 Τπολογύζουν το ϊθροιςμα των ν πρώτων όρων Γ.Π με τον τύπο Τπολογύζουν το ϊθροιςμα των ϊπειρων όρων φθύνουςασ Γ.Π. με τον τύπο 1, Επύλυςη και ςτρατηγικϋσ προβλημϊτων ςτισ προόδουσ Να δοθούν προβλόματα εφαρμογών των προόδων όπωσ η μετατροπό ςε κλαςματικό ενόσ δεκαδικού αριθμού με επαναλαμβανόμενα δεκαδικϊ ψηφύα. Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα 4

5 3. ΛΟΓΑΡΙΘΜΟΙ ΛΟΓΑΡΙΘΜΙΚΕ ΚΑΙ ΕΚΘΕΣΙΚΕ ΕΞΙΨΕΙ Οριςμόσ λογαρύθμου με βϊςη το α ορύζουν το λογϊριθμο αριθμού με βϊςη το α Να δοθεύ ιδιαύτερη ϋμφαςη ςε λογαρύθμουσ με βϊςη, 10 και e. 3. Ιδιότητεσ λογαρύθμων δύνουν τισ ιδιότητεσ log A B log A log B log A log B A log log A log A log 1 A log 3.3 Λογαριθμικϋσ εξιςώςεισ λύνουν λογαριθμικϋσ εξιςώςεισ A (α) που καταλόγουν ςτη μορφό log f x log g x (β) που λύνονται με την αντικατϊςταςη log x y B Οι μαθητϋσ να εξαςκηθούν ςτην εύρεςη λογαρύθμων με υπολογιςτικό μηχανό Να δοθούν και εξιςώςεισ όπωσ: x log log x8 0, 3 x x x 81, log x x Εκθετικϋσ εξιςώςεισ λύνουν εκθετικϋσ εξιςώςεισ (α) τησ μορφόσ fx x (β) τησ μορφόσ f 0. (γ) που λύνονται λογαριθμύζοντασ και τα δύο μϋρη (απλόσ μορφόσ μόνο) Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα 5

6 3.5 Γραφικό παρϊςταςη λογαριθμικόσ και εκθετικόσ ςυνϊρτηςησ Κϊνουν, με τη χρόςη πύνακα τιμών, τισ γραφικϋσ παραςτϊςεισ των ςυναρτόςεων 10 y log x και y 10 x 4 ΠΡΟΒΛΗΜΑΣΑ ΚΑΣΑΝΑΛΨΣΗ 4.1 Επανϊληψη ιδιοτότων των αναλογιών και προβλημϊτων ποςοςτών, μεριςμού, απλού τόκου 9 4. Προβλόματα φόρου ειςοδόματοσ Υ.Π.Α. 4.3 Προβλόματα ςύνθετου τόκου 5 ΣΡΙΓΨΝΟΜΕΣΡΙΑ Επανϊληψη τησ ύλησ τησ τριγωνομετρύασ τησ Α' Λυκεύου Δύνουν τον οριςμό των ςυναρτόςεων y x y x, y x., Βρύςκουν τουσ τριγωνομετρικούσ αριθμούσ οξεύασ γωνύασ με τη βοόθεια πινϊκων ό υπολογιςτό Διατυπώνουν τισ ςχϋςεισ μεταξύ των τριγωνομετρικών αριθμών οξεύασ γωνύασ και τισ εφαρμόζουν ςτην απόδειξη απλών τριγωνομετρικών ταυτοτότων 5. Σριγωνομετρικού αριθμού οποιαςδόποτε γωνύασ 5.3 Νόμοσ ημύτονων, Νόμοσ ςυνημύτονων, Εμβαδόν τριγώνου Βρύςκουν τουσ τριγωνομετρικούσ αριθμούσ οποιαςδόποτε γωνύασ με αναγωγό ςτο α' τεταρτημόριο Διατυπώνουν τουσ τύπουσ για τον νόμο των ημύτονων, τον νόμο των ςυνημύτονων και τον τύπο εμβαδόν τριγώνου E 1 A για το Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα 6

7 5.4 Επύλυςη τριγώνου εφαρμόζουν τριγωνομετρικούσ τύπουσ για την επύλυςη τριγώνου 6 ΓΕΨΜΕΣΡΙΑ Επανϊληψη εμβαδών λύνουν προβλόματα εμβαδών ευθύγραμμων ςχημϊτων ςτην περύπτωςη που εμπλϋκονται τρύγωνα, παραλληλόγραμμα, ειδικϊ παραλληλόγραμμα, τραπϋζια 6. Όμοια χόματα δύνουν τον οριςμό των όμοιων ςχημϊτων δύνουν τη ςχϋςη των εμβαδών ομούων πολυγώνων λύνουν προβλόματα που αναφϋρονται ςε κλύμακα ςχεδύου και χϊρτη 6.3 Κανονικϊ Πολύγωνα δύνουν τον οριςμό κανονικού πολυγώνου και των όρων γωνύα, κεντρικό γωνύα, ακτύνα, πλευρϊ και απόςτημα κανονικού πολυγώνου υπολογύζουν τη γωνύα και την κεντρικό γωνύα κανονικού πολυγώνου υπολογύζουν την πλευρϊ, το απόςτημα και το εμβαδόν κανονικού πολυγώνου ςυναρτόςει τησ ακτύνασ του Να δοθεύ ϋμφαςη ςτη διαδικαςύα εύρεςησ των τύπων και να αποφεύγεται η υπερβολικό τυποπούηςη. Οι υπολογιςμού μπορούν να γύνονται με τη χρόςη γεωμετρύασ ό τριγωνομετρύασ Μεταξύ ϊλλων, να καλυφθούν και οι περιπτώςεισ των: (α) τετραγώνου (β) ιςόπλευρου τριγώνου (γ) κανονικού εξαγώνου 6.4 Κύκλοσ υπολογύζουν το μόκοσ τησ περιφϋρειασ και το μόκοσ τόξου κύκλου υπολογύζουν το εμβαδόν κύκλου, κυκλικού τομϋα και κυκλικού τμόματοσ 6.5 Εμβαδόν μεικτόγραμμου ςχόματοσ υπολογύζουν το εμβαδόν μεικτόγραμμου ςχόματοσ Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα 7

8 A/A ΔΙΔΑΚΣΕΑ ΤΛΗ ΣΟΦΟΙ ΔΡΑΣΗΡΙΟΣΗΣΕ ΠΕΡ. ΓΕΝΙΚΗ ΕΠΑΝΑΛΗΧΗ Να γύνει επύλυςη αςκόςεων και προβλημϊτων για εμπϋδωςη και κατανόηςη των εννοιών τησ κϊθε ενότητασ. Να γύνει επύλυςη αςκόςεων και προβλημϊτων που ςυνδϋουν ϋννοιεσ και γνώςεισ από διαφορετικϋσ ενότητεσ και περιοχϋσ. 6 Β ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΜΑΘΗΜΑΣΙΚΑ ΚΟΙΝΟΤ ΚΟΡΜΟΤ ελύδα 8

ΜΑΘΗΜΑΤΙΚΑ Α ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ. Β ΓΥΜΝΑΣΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ Σελίδα 1

ΜΑΘΗΜΑΤΙΚΑ Α ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ. Β ΓΥΜΝΑΣΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ Σελίδα 1 ΜΑΘΗΜΑΤΙΚΑ Α ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ Β ΓΥΜΝΑΣΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ Σελίδα 1 ΑΠΟ ΣΟ ΔΗΜΟΣΙΚΟ ΣΟ ΓΤΜΝΑΙΟ 4 Διϊγνωςη των γνώςεων και ικανοτότων των παιδιών που ϋρχονται από το Δημοτικό ςτο Γυμνϊςιο. Ο καθηγητόσ με διαγνωςτικϊ

Διαβάστε περισσότερα

Μαθηματικϊ Γ' Ενιαύου Λυκεύου (μϊθημα κατεύθυνςησ)

Μαθηματικϊ Γ' Ενιαύου Λυκεύου (μϊθημα κατεύθυνςησ) Μαθηματικϊ Γ' Ενιαύου Λυκεύου (μϊθημα κατεύθυνςησ) : 1. ΤΝΑΡΣΗΕΙ Ορύζουν και να αναγνωρύζουν μια ςύνθετη ςυνϊρτηςη 2 1.1 Επανϊληψη Εκφρϊζουν μια ςύνθετη ςυνϊρτηςη ωσ ςύνθεςη ϊλλων ςυναρτόςεων Ορύζουν και

Διαβάστε περισσότερα

ΚΟΙΛΑ-ΚΤΡΣΑ-ΗΜΕΙΑ ΚΑΜΠΗ

ΚΟΙΛΑ-ΚΤΡΣΑ-ΗΜΕΙΑ ΚΑΜΠΗ Πληκτρολογόςτε την εξύςωςη εδώ. ΚΤΡΣΟΣΗΣΑ ΗΜΕΙΑ ΚΑΜΠΗ ΟΡΙΣΜΟΣ Έςτω ςυνϊρτηςη f ςυνεχόσ ςε ϋνα διϊςτημα Δ και παραγωγύςιμη ςτο εςωτερικό του Δ. Θα λϋμε ότι : Η ςυνϊρτηςη f εύναι κυρτό ό ςτρϋφει τα κούλα

Διαβάστε περισσότερα

Εγχειρίδιο Χρήσης των Εργαλείων Αναγνώρισης Χαρισματικών Μαθητών στα Μαθηματικά

Εγχειρίδιο Χρήσης των Εργαλείων Αναγνώρισης Χαρισματικών Μαθητών στα Μαθηματικά Εγχειρίδιο Χρήσης των Εργαλείων Αναγνώρισης Χαρισματικών Μαθητών στα Μαθηματικά ΕΓΦΕΙΡΙΔΙΟ ΦΡΗΗ ΕΡΓΑΛΕΙΨΝ ΑΝΑΓΝΨΡΙΗ ΕΙΑΓΨΓΗ Η ύπαρξη ϋγκυρων και αξιόπιςτων εργαλεύων αναγνώριςησ χαριςματικών μαθητών κρύνεται

Διαβάστε περισσότερα

Σ.Ε.Ι. ΑΘΗΝΩΝ - ΣΜΗΜΑ ΠΟΛΙΣΙΚΩΝ ΜΗΦΑΝΙΚΩΝ Σ.Ε. ΑΝΣΟΦΗ ΤΛΙΚΩΝ Ι

Σ.Ε.Ι. ΑΘΗΝΩΝ - ΣΜΗΜΑ ΠΟΛΙΣΙΚΩΝ ΜΗΦΑΝΙΚΩΝ Σ.Ε. ΑΝΣΟΦΗ ΤΛΙΚΩΝ Ι 1 Σ.Ε.Ι. ΑΘΗΝΩΝ - ΣΜΗΜΑ ΠΟΛΙΣΙΚΩΝ ΜΗΦΑΝΙΚΩΝ Σ.Ε. ΑΝΣΟΦΗ ΤΛΙΚΩΝ Ι 03/07/2013 ΘΕΜΑ Η δοκόσ του ςχόματοσ α ϋχει τη διατομό του ςχόματοσ β. Ζητούνται: a) Σα διαγρϊμματα Q και M. b) Σο απαιτούμενο πϊχοσ t του

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα για την Εκπαίδευςη Χαριςματικών Μαθητών Δ -Στ τάξεων Δημοτικού Σχολείου

Αναλυτικό Πρόγραμμα για την Εκπαίδευςη Χαριςματικών Μαθητών Δ -Στ τάξεων Δημοτικού Σχολείου Αναλυτικό Πρόγραμμα για την Εκπαίδευςη Χαριςματικών Μαθητών Δ -Στ τάξεων Δημοτικού Σχολείου ΑΝΑΛΤΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΧΑΡΙΜΑΣΙΚΩΝ ΜΑΘΗΣΩΝ ΕΙΑΓΩΓΗ το πλαύςιο του ερευνητικού προγρϊμματοσ, ϋγινε ςυγγραφό αναλυτικού

Διαβάστε περισσότερα

Τεχνικόσ Μαγειρικόσ Τϋχνησ Αρχιμϊγειρασ (Chef) Β Εξϊμηνο

Τεχνικόσ Μαγειρικόσ Τϋχνησ Αρχιμϊγειρασ (Chef) Β Εξϊμηνο Τεχνικόσ Μαγειρικόσ Τϋχνησ Αρχιμϊγειρασ (Chef) Β Εξϊμηνο 1 Οριςμοί Ζννοια τησ Λογιςτικήσ Εύναι μϋςο παροχόσ οικονομικών πληροφοριών προσ διϊφορεσ ομϊδεσ ενδιαφερομϋνων για την πορεύα μιασ επιχεύρηςησ που

Διαβάστε περισσότερα

Πίνακασ τεχνικών και λειτουργικών προδιαγραφών. Πλόρεσ ελληνικό περιβϊλλον (interface) για Διαχειριςτϋσ, Εκπαιδευτϋσ, Εκπαιδευόμενουσ

Πίνακασ τεχνικών και λειτουργικών προδιαγραφών. Πλόρεσ ελληνικό περιβϊλλον (interface) για Διαχειριςτϋσ, Εκπαιδευτϋσ, Εκπαιδευόμενουσ Τλοποίηςη προγραμμάτων με την μέθοδο τησ τηλεκατάρτιςησ 1 Τλοπούηςη προγραμμϊτων με την μϋθοδο τησ τηλεκατϊρτιςησ δύναται να λϊβει χώρα μετϊ από πλόρωσ αιτιολογημϋνο αύτημα του Κλαδικού Υορϋα (Αναδόχου),

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ

ΣΤΟΧΟΙ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ [1] ΣΤΟΧΟΙ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Η διδαςκαλύα των Μαθηματικών, ενταγμϋνη ςτουσ γενικότερουσ ςκοπούσ τησ Εκπαύδευςησ, ςτοχεύει ςτην ολοκλόρωςη του μαθητό ςε επύπεδο προςωπικότητασ και κοινωνικόσ του ϋνταξησ.

Διαβάστε περισσότερα

ERIC DE CORTE & LIEVEN VERSCHAFFEL Katholieke Universiteit Leuven - Belgium

ERIC DE CORTE & LIEVEN VERSCHAFFEL Katholieke Universiteit Leuven - Belgium ERIC DE CORTE & LIEVEN VERSCHAFFEL Katholieke Universiteit Leuven - Belgium Ερευνητικό Πρόγραμμα Ανϊπτυξη δεξιοτότων Διαδικαςύεσ ΣΧΗΜΑ ΤΑΞΙΝΟΜΗΣΗΣ Σ.Λ.Π ( +, - ) Σημαςιολογικών Σχζςεων (Heller & Greeno1978,

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

Οδηγόσ πουδών 2014-2015

Οδηγόσ πουδών 2014-2015 Οδηγόσ πουδών 2014-2015 ΕΞ ΑΠΟΣΑΕΨ ΕΠΙΜΟΡΥΨΣΙΚΟ ΠΡΟΓΡΑΜΜΑ «Νεοελληνικό Λογοτεχνύα & Χηφιακϋσ Σεχνολογύεσ» ΚΕΝΣΡΟ ΔΙΑ ΒΙΟΤ ΜΑΘΗΗ ΕΡΓΑΣΗΡΙΟ ΝΕΑ ΕΛΛΗΝΙΚΗ ΥΙΛΟΛΟΓΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΙΨΑΝΝΙΝΨΝ Ειςαγωγικϊ τοιχεύα

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

1. ΕΙΑΓΩΓΗ ~ 1 ~ τυλιανού. 1 Σο ςχϋδιο μαθόματοσ ςυζητόθηκε με το ςύμβουλο του μαθόματοσ τησ Νϋασ Ελληνικόσ Γλώςςασ κ. Μϊριο

1. ΕΙΑΓΩΓΗ ~ 1 ~ τυλιανού. 1 Σο ςχϋδιο μαθόματοσ ςυζητόθηκε με το ςύμβουλο του μαθόματοσ τησ Νϋασ Ελληνικόσ Γλώςςασ κ. Μϊριο ΔΙΚΣΤΟ ΤΝΕΡΓΑΙΑ ΧΟΛΕΙΩΝ ΔΗΜΟΣΙΚΗ ΕΚΠΑΙΔΕΤΗ Οικείοσ επιθεωρητήσ: Δρ Ανδρέασ Κυθραιώτησ Α' ΔΗΜΟΣΙΚΟ ΧΟΛΕΙΟ ΓΕΡΙΟΤ ΕΚΠΑΙΔΕΤΣΙΚΗ ΤΝΑΝΣΗΗ ΔΙΕΤΘΤΝΣΩΝ ΚΑΙ ΕΚΠΑΙΔΕΤΣΙΚΩΝ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΓΛΩΣΣΑ ΚΑΙ ΠΟΛΙΤΙΣΜΟΣ

Διαβάστε περισσότερα

Θεωρύεσ Μϊθηςησ και ΤΠΕ Εποικοδομιςμόσ

Θεωρύεσ Μϊθηςησ και ΤΠΕ Εποικοδομιςμόσ Θεωρύεσ Μϊθηςησ και ΤΠΕ Εποικοδομιςμόσ 3 ο Κεφϊλαιο - 4 ο Κεφϊλαιο Κόμησ, Β. (2004), Ειςαγωγό ςτισ Εφαρμογϋσ των ΤΠΕ ςτην Εκπαύδευςη, Αθόνα, Εκδόςεισ Νϋων Τεχνολογιών Σκοπόσ Η ςυνοπτικό παρουςύαςη των

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

NetMasterII ςύςτημα μόνιμησ εγκατϊςταςησ επιτόρηςη και καταγραφό ςημϊτων από αιςθητόρια και μετατροπεύσ κϊθε εύδουσ ςύςτημα ειδοπούηςησ βλϊβη

NetMasterII ςύςτημα μόνιμησ εγκατϊςταςησ επιτόρηςη και καταγραφό ςημϊτων από αιςθητόρια και μετατροπεύσ κϊθε εύδουσ ςύςτημα ειδοπούηςησ βλϊβη NetMasterII Το NetMasterII εύναι ϋνα ςύςτημα μόνιμησ εγκατϊςταςησ (μό φορητό) για την επιτόρηςη και καταγραφό ςημϊτων από αιςθητόρια και μετατροπεύσ φυςικών μεγεθών κϊθε εύδουσ, καθώσ και γεγονότων που

Διαβάστε περισσότερα

Θεςμική Αναμόρφωςη τησ Προ-πτωχευτικήσ Διαδικαςίασ Εξυγίανςησ Επιχειρήςεων

Θεςμική Αναμόρφωςη τησ Προ-πτωχευτικήσ Διαδικαςίασ Εξυγίανςησ Επιχειρήςεων Ενημερωτικό ημείωμα Θεςμική Αναμόρφωςη τησ Προ-πτωχευτικήσ Διαδικαςίασ Εξυγίανςησ Επιχειρήςεων -Σι προβλέπει η νομοθετική ρύθμιςη για την προ-πτωχευτική διαδικαςία εξυγίανςησ επιχειρήςεων; Με την προτεινόμενη

Διαβάστε περισσότερα

Ο ΟΓΙΚΟΣ ΦΑΡΤΗΣ ΤΟΥ ΣΑΚΦΑΡΩΓΗ ΓΙΑΒΗΤΗ ΣΤΗΝ ΔΛΛΑΓΑ

Ο ΟΓΙΚΟΣ ΦΑΡΤΗΣ ΤΟΥ ΣΑΚΦΑΡΩΓΗ ΓΙΑΒΗΤΗ ΣΤΗΝ ΔΛΛΑΓΑ Ο ΟΓΙΚΟΣ ΦΑΡΤΗΣ ΤΟΥ ΣΑΚΦΑΡΩΓΗ ΓΙΑΒΗΤΗ ΣΤΗΝ ΔΛΛΑΓΑ 1 Ο Σακχαρώδησ Διαβότησ (ΣΔ) εύναι μια μεταβολικό διαταραχό και αποτελεύ ϋνα από τα ςυχνότερα χρόνια νοςόματα και μια από τισ ςημαντικότερεσ αιτύεσ πρόωρησ

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

Η κατανομή των ηπείρων και των θαλασσών Ωκεανοί και θάλασσες

Η κατανομή των ηπείρων και των θαλασσών Ωκεανοί και θάλασσες Η κατανομή των ηπείρων και των θαλασσών Ωκεανοί και θάλασσες ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Ράλια Θωμά, ΠΕ 70 ΣΧΟΛΕΙΟ Γημοηικό σολείο Βαζιλικών αλαμίναρ Σαλαμίνα, 20 Απριλίοσ 2015 1. ςνοπηική πεπιγπαθή ηηρ ανοισηήρ εκπαιδεςηικήρ

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Ενημερωτικό Σημεύωμα για το Ειδικό Καθεςτώσ τησ Επιχειρηματικότητασ των Νϋων του Επενδυτικού Νόμου 3908/2011, για το ϋτοσ 2011

Ενημερωτικό Σημεύωμα για το Ειδικό Καθεςτώσ τησ Επιχειρηματικότητασ των Νϋων του Επενδυτικού Νόμου 3908/2011, για το ϋτοσ 2011 Ενημερωτικό Σημεύωμα για το Ειδικό Καθεςτώσ τησ Επιχειρηματικότητασ των Νϋων του Επενδυτικού Νόμου 3908/2011, για το ϋτοσ 2011 Με το ειδικό καθεςτώσ ενιςχύςεων τησ Επιχειρηματικότητασ των Νϋων ενιςχύονται

Διαβάστε περισσότερα

Άνοιξε το λογιςμικό «Βιολογία Α & Γ Γυμναςίου» ςτην αρχική οθόνη επέλεξε για να εμφανιςτούν τα περιεχόμενα, και ςτη ςυνέχεια επέλεξε «ΚΤΣΣΑΡΟ».

Άνοιξε το λογιςμικό «Βιολογία Α & Γ Γυμναςίου» ςτην αρχική οθόνη επέλεξε για να εμφανιςτούν τα περιεχόμενα, και ςτη ςυνέχεια επέλεξε «ΚΤΣΣΑΡΟ». 1Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΤΟ ΚΥΤΤΑΡΟ Από τι είναι φτιαγμένο το ςώμα των μικροοργανιςμών, των φυτών, των ζώων και του ανθρώπου; υζήτηςε με τουσ ςυμμαθητέσ ςου και ςημείωςε την απάντηςή ςου. 21. ΔΡΑΣΗΡΙΟΣΗΣΑ 1η

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΟΤΔΩΝ ΝΗΠΙΑΓΩΓΕΙΟΤ

ΠΡΟΓΡΑΜΜΑ ΠΟΤΔΩΝ ΝΗΠΙΑΓΩΓΕΙΟΤ 2011 ΠΡΟΓΡΑΜΜΑ ΠΟΤΔΩΝ ΝΗΠΙΑΓΩΓΕΙΟΤ Σο παρόν ϋργο ϋχει παραχθεύ από το Παιδαγωγικό Ινςτιτούτο ςτο πλαύςιο υλοπούηςησ τησ Πρϊξησ «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολεύο 21ου αιώνα) Νϋο πρόγραμμα ςπουδών, ςτουσ Άξονεσ Προτεραιότητασ

Διαβάστε περισσότερα

Πωσ αλλάζει τη Μεςόγειο το ενεργειακό παζλ

Πωσ αλλάζει τη Μεςόγειο το ενεργειακό παζλ Πωσ αλλάζει τη Μεςόγειο το ενεργειακό παζλ Τουσ τελευταύουσ μόνεσ κυοφορούνται εξελύξεισ προσ την κατεύθυνςη επύλυςησ διαφόρων ζητημϊτων που ταλανύζουν την ανατολικό Μεςόγειο και τη Μϋςη Ανατολό. Η παρατεταμϋνη

Διαβάστε περισσότερα

Οριςμόσ προβλήματοσ. Θεωρία Γράφων 2

Οριςμόσ προβλήματοσ. Θεωρία Γράφων 2 Θεωρία Γράφων 1 Οριςμόσ προβλήματοσ Οποιοδόποτε επιφϊνεια που χωρύζεται ςε περιοχϋσ, όπωσ ϋνασ πολιτικόσ χϊρτησ των νομών ενόσ κρϊτουσ, μπορούν να χρωματιςτούν χρηςιμοποιώντασ λιγότερα από τϋςςερα χρώματα

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

Το Νέο Εκπαιδευηικό Σύζηημα

Το Νέο Εκπαιδευηικό Σύζηημα ελύδα1 Το Νέο Εκπαιδευηικό Σύζηημα Από το ςχολικό ϋτοσ 2013-2014 και για τουσ μαθητϋσ που φοιτούν ςτην Α Λυκεύου ϋχει τεθεύ ςε ιςχύ το νϋο αναλυτικό πρόγραμμα. τόχοσ των αλλαγών εύναι να ενδυναμωθούν τα

Διαβάστε περισσότερα

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΥΝΕΦΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ-ΘΕΩΡΙΑ Έζηω ζσλάρηεζε θαη ποσ αλήθεη ζηο πεδίο ορηζκού ηες. Θα ιέκε όηη ε είλαη ζσλετής ζηο αλ θαη κόλο αλ Αςυνεόσ θα εύναι μύα ςυνϊρτηςη αν δεν υπϊρει το Αν υπϊρει το όριο αλλϊ δεν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

Δίκτυα Η/Υ ςτην Επιχείρηςη

Δίκτυα Η/Υ ςτην Επιχείρηςη Δίκτυα Η/Υ ςτην Επιχείρηςη Βαςικϊ θϋματα δικτύων Γκϊμασ Βαςύλειοσ, Εργαςτηριακόσ υνεργϊτησ Δίκτυο Υπολογιςτών Δύκτυο: ςύςτημα επικοινωνύασ δεδομϋνων που ςυνδϋει δύο ό περιςςότερουσ αυτόνομουσ και ανεξϊρτητουσ

Διαβάστε περισσότερα

ΑΝΑΛΤΕΙ / 12. Οικονομικό κρύςη και μϋθοδοι αναζότηςησ εργαςύασ

ΑΝΑΛΤΕΙ / 12. Οικονομικό κρύςη και μϋθοδοι αναζότηςησ εργαςύασ ΑΠΡΙΛΙΟ 2012 ΑΝΑΛΤΕΙ / 12 Οικονομικό κρύςη και μϋθοδοι αναζότηςησ εργαςύασ ΑΓΓΕΛΟ ΕΤΣΡΑΣΟΓΛΟΤ ΕΡΕΤΝΗΣΙΚΗ ΜΟΝΑΔΑ ΑΠΑΧΟΛΗΗ ΚΑΙ ΕΡΓΑΙΑΚΩΝ ΧΕΕΩΝ Περιεχόμενα 1. Ειςαγωγό... 2 2. Η θεωρητικό τεκμηρύωςη των μεθόδων

Διαβάστε περισσότερα

ΠΡΑΚΣΙΚΑ. 13 ο ΠΑΓΚΤΠΡΙΟ ΤΝΕΔΡΙΟ ΜΑΘΗΜΑΣΙΚΗ ΠΑΙΔΕΙΑ ΚΑΙ ΕΠΙΣΗΜΗ

ΠΡΑΚΣΙΚΑ. 13 ο ΠΑΓΚΤΠΡΙΟ ΤΝΕΔΡΙΟ ΜΑΘΗΜΑΣΙΚΗ ΠΑΙΔΕΙΑ ΚΑΙ ΕΠΙΣΗΜΗ ΠΡΑΚΣΙΚΑ 13 ο ΠΑΓΚΤΠΡΙΟ ΤΝΕΔΡΙΟ ΜΑΘΗΜΑΣΙΚΗ ΠΑΙΔΕΙΑ ΚΑΙ ΕΠΙΣΗΜΗ 04 06 Υεβρουαρύου 2011 Πϊφοσ ΟΡΓΑΝΩΣΗ 28 Χρόνια Προςφοράσ και Δημιουργίασ ςτη Μαθηματική Παιδεία και Επιςτήμη τησ Κφπρου 1983-2011 ε συνεργασία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

A1. Να γρϊψετε την περύληψη του κειμϋνου που ςασ δόθηκε (100-120 λϋξεισ). Μονάδεσ 25

A1. Να γρϊψετε την περύληψη του κειμϋνου που ςασ δόθηκε (100-120 λϋξεισ). Μονάδεσ 25 ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΚΑΙ Δ ΣΑΞΗ ΕΠΕΡΙΝΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΤΣΕΡΑ 18 ΜΑΪΟΤ 2015 ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΚΕΙΜΕΝΟ: Εμείσ και οι αρχαίοι χώροι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

1. Εισαγωγή ΜΑΘΗΜΑΤΙΚΑ

1. Εισαγωγή ΜΑΘΗΜΑΤΙΚΑ . Εισαγωγή Κύριος στόχος του Προγράμματος Σπουδών των Μαθηματικών είναι να προετοιμάσει τους μαθητές με τον καλύτερο δυνατό τρόπο ώστε να αγαπήσουν τα Μαθηματικά και να κεντρίσει το ενδιαφέρον και την

Διαβάστε περισσότερα

Γ. Κρεκούκιασ Στοιχεύα τησ υποκειμενικόσ και κλινικόσ αξιολόγηςησ Επεξόγηςη και αναζότηςη του τελικού αιςθόματοσ Αξιολόγηςη ενεργητικού και παθητικού εύρουσ τροχιϊσ Γωνιομϋτρηςη Από τη φόρμα υποκειμενικόσ

Διαβάστε περισσότερα

Ένασ άνθρωποσ που δεν ςτοχάζεται για τον εαυτό του δεν ςτοχάζεται καθόλου». Oscar Wilde

Ένασ άνθρωποσ που δεν ςτοχάζεται για τον εαυτό του δεν ςτοχάζεται καθόλου». Oscar Wilde Ένασ άνθρωποσ που δεν ςτοχάζεται για τον εαυτό του δεν ςτοχάζεται καθόλου». Oscar Wilde Σπανάκη Βιργινία Αναπληρώτρια Προϊςταμένη ΚΕ.Δ.Δ.Υ. Ν. Ηρακλείου Τι είναι το θμερολόγιο αναςτοχαςμοφ; Ο όροσ ημερολόγιο

Διαβάστε περισσότερα

ΘΕΜΑΣΙΚΗ ΕΝΟΣΗΣΑ: ΠΑΘΟΛΟΓΙΚΗ ΝΟΗΛΕΤΣΙΚΗ

ΘΕΜΑΣΙΚΗ ΕΝΟΣΗΣΑ: ΠΑΘΟΛΟΓΙΚΗ ΝΟΗΛΕΤΣΙΚΗ ΘΕΜΑΣΙΚΗ ΕΝΟΣΗΣΑ: ΠΑΘΟΛΟΓΙΚΗ ΝΟΗΛΕΤΣΙΚΗ 3/3/2015 : Διαταραχές στη λήψη τροφής (Γούλα Αγγελικό, Μακρό οφύα, Αμαραντύδη Γεωργύα, Καραλό Μαρύα). ΝΟΗΛΕΤΣΙΚΗ ΤΠΗΡΕΙΑ Γ.Ν. ΑΜΥΙΑ Ψυχογενόσ διατροφικϋσ διαταραχϋσ

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

υλλογικέσ διαπραγματεύςεισ και προςδιοριςτικοί παράγοντεσ τησ ανταγωνιςτικότητασ

υλλογικέσ διαπραγματεύςεισ και προςδιοριςτικοί παράγοντεσ τησ ανταγωνιςτικότητασ ΕΠΣΕΜΒΡΙΟ 2011 ΑΝΑΛΤΕΙ / 7 υλλογικέσ διαπραγματεύςεισ και προςδιοριςτικοί παράγοντεσ τησ ανταγωνιςτικότητασ ΓΕΩΡΓΙΟ ΑΡΓΕΙΣΗ ΕΡΕΤΝΗΣΙΚΗ ΜΟΝΑΔΑ ΜΑΚΡΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΤΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΟΤ ΜΕΣΑΧΗΜΑΣΙΜΟΤ Ειςήγηςη

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

1. Άλγεβρα Α τάξης Ημερησίου Επαγγελματικού Λυκείου

1. Άλγεβρα Α τάξης Ημερησίου Επαγγελματικού Λυκείου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β Μαρούσι, 6-11-01 Αρ.

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE. ηελ νπνία ηζρύνπλ: ηζρύνπλ: παξαγωγίζηκε ζην (α,β) α μ β

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE. ηελ νπνία ηζρύνπλ: ηζρύνπλ: παξαγωγίζηκε ζην (α,β) α μ β ΘΕΩΡΗΜΑ ROLLE Έζηω Έζηω ζπλάξηεζε ζπλάξηεζε f ζπλερήο f γηα γηα ηελ ηελ νπνία νπνία ηζρύνπλ: ηζρύνπλ: ςυνεόσ είλαη ζπλερήο ςτο [α,β] ζην [α,β] f(α)=f(β) παξαγωγίζηκε ζην (α,β) f(α)=f(β) Σόηε ππάξρεη έλα

Διαβάστε περισσότερα

EETT Δημόςια Διαβούλευςη ςχετικά με την εκχώρηςη δικαιώματων χρήςησ ραδιοςυχνοτήτων ςτη Ζώνη 27,5 29,5 GHz

EETT Δημόςια Διαβούλευςη ςχετικά με την εκχώρηςη δικαιώματων χρήςησ ραδιοςυχνοτήτων ςτη Ζώνη 27,5 29,5 GHz EETT Δημόςια Διαβούλευςη ςχετικά με την εκχώρηςη δικαιώματων χρήςησ ραδιοςυχνοτήτων ςτη Ζώνη 27,5 29,5 GHz 1. Περί των Τύπων των Υπηρεςιών και των Δικτύων Η οικονομικώσ αποτελεςματικό χρόςη του φϊςματοσ

Διαβάστε περισσότερα

Θεωρύεσ Μϊθηςησ και ΤΠΕ Συμπεριφοριςμόσ

Θεωρύεσ Μϊθηςησ και ΤΠΕ Συμπεριφοριςμόσ Θεωρύεσ Μϊθηςησ και ΤΠΕ Συμπεριφοριςμόσ 3 ο Κεφϊλαιο 5 ο Κεφϊλαιο Κόμησ, Β. (2004), Ειςαγωγή ςτισ Εφαρμογέσ των ΤΠΕ ςτην Εκπαίδευςη, Αθόνα, Εκδόςεισ Νϋων Τεχνολογιών Σκοπόσ Η ςυνοπτικό παρουςύαςη των βαςικών

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Στισ παρακϊτω ερωτήςεισ -4 να γρϊψετε ςτο τετρϊδιό ςασ τον αριθμό τησ ερώτηςησ και δίπλα το γρϊμμα που αντιςτοιχεί ςτην ςωςτή απϊντηςη..

Διαβάστε περισσότερα

Δομή και ςτρατηγική των ελαιοκομικών ςυνεταιριςμών τησ Περιφέρειασ Κρήτησ. 1

Δομή και ςτρατηγική των ελαιοκομικών ςυνεταιριςμών τησ Περιφέρειασ Κρήτησ. 1 Δομή και ςτρατηγική των ελαιοκομικών ςυνεταιριςμών τησ Περιφέρειασ Κρήτησ. 1 Σχετικά με την Μελέτη H Ευρωπαώκό Επιτροπό, ςε μια προςπϊθεια να ενιςχύςει την ανταγωνιςτικότητα των επιχειρόςεων που ςυμμετϋχουν

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΑΚΑΗΜΙΑ ΚΥΒΟΣ ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΘΗΜΑΤΙΚΑ 100% www.kivosacademy.gr

ΑΚΑΗΜΙΑ ΚΥΒΟΣ ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΘΗΜΑΤΙΚΑ 100% www.kivosacademy.gr 11 ΟΗΓΙΕΣ 1. Το ebook περιέχει εργασίες δραστηριότητες για µαθητές που θα πάνε στη Γ Λυκείου και θα επιλέξουν µαθηµατικά κατεύθυνσης ή γενικής παιδείας.. Για την επίλυση θα χρειαστούν όλα τα βιβλία µαθηµατικών

Διαβάστε περισσότερα

ΠΡΟΚΛΗΗ ΕΚΔΗΛΩΗ ΕΝΔΙΑΥΕΡΟΝΣΟ ΓΙΑ ΤΠΟΒΟΛΗ ΠΡΟΣΑΕΩΝ ΠΡΟ ΤΝΑΨΗ EΩ ΠΕΝΣΕ (5) ΤΜΒΑΕΩΝ ΜΙΘΩΗ ΕΡΓΟΤ ΙΔΙΩΣΙΚΟΤ ΔΙΚΑΙΟΤ (κωδ.: 62Τ)

ΠΡΟΚΛΗΗ ΕΚΔΗΛΩΗ ΕΝΔΙΑΥΕΡΟΝΣΟ ΓΙΑ ΤΠΟΒΟΛΗ ΠΡΟΣΑΕΩΝ ΠΡΟ ΤΝΑΨΗ EΩ ΠΕΝΣΕ (5) ΤΜΒΑΕΩΝ ΜΙΘΩΗ ΕΡΓΟΤ ΙΔΙΩΣΙΚΟΤ ΔΙΚΑΙΟΤ (κωδ.: 62Τ) 1 ΤΠΟΤΡΓΕΙΟ ΠΟΛΙΣΙΜΟΤ, ΠΑΙΔΕΙΑ ΚΑΙ ΘΡΗΚΕΤΜΑΣΩΝ ΚΕΝΣΡΟ ΕΛΛΗΝΙΚΗ ΓΛΩΑ Καραμαούνα 1, Πλατεύα κρα 55132 Καλαμαριϊ Θεςςαλονύκησ Σηλ.: +30 2313331 500 Υαξ: +30 2313331 502 e-mail: centre@komvos.edu.gr Θεςςαλονύκη,

Διαβάστε περισσότερα

Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"

Ταυτότητες. α 2 β 2 = (α β)(α + β) διαφορά τετραγώνων α 3 β 3 = (α β)(α 2 + αβ + β 2 ) διαφορά κύβων Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

Επαγγελματικϋσ Δυνατότητεσ

Επαγγελματικϋσ Δυνατότητεσ Επαγγελματικϋσ Δυνατότητεσ Σχολή Θεηικών Επιζηημών Απόθοιηοι Τμήμαηος Μηχανικών Η/Υ και Πληροθορικής πουδϊζοντασ ςτο Σμόμα Μηχανικών Ηλεκτρονικών Τπολογιςτών & Πληροφορικόσ οι φοιτητϋσ αποκτούν γνώςεισ

Διαβάστε περισσότερα

Η ΕΛΕΤΙΝΑ ΠΟΛΙΣΙΣΙΚΗ ΠΡΩΣΕΤΟΤΑ ΣΗ ΕΤΡΩΠΗ 2021

Η ΕΛΕΤΙΝΑ ΠΟΛΙΣΙΣΙΚΗ ΠΡΩΣΕΤΟΤΑ ΣΗ ΕΤΡΩΠΗ 2021 Η ΕΛΕΤΙΝΑ ΠΟΛΙΣΙΣΙΚΗ ΠΡΩΣΕΤΟΤΑ ΣΗ ΕΤΡΩΠΗ 2021 Πριν από τρεισ δεκαετύεσ, με εφαλτόριο την πρωτοβουλύα τησ ηθοποιού Μελύνασ Μερκούρη, που εκεύνη την εποχό όταν η Ελληνύδα Τπουργόσ Πολιτιςμού, η Ευρωπαώκό

Διαβάστε περισσότερα

210-344 3306 E-mail: t09tee07@minedu.gov.gr

210-344 3306 E-mail: t09tee07@minedu.gov.gr ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β' Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ.-Πόλη: 15180 Μαρούσι ΠΡΟΣ:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ

Διαβάστε περισσότερα

Παθήςεισ του θυροειδή ςε άτομα με ςύνδρομο Down: Πληροφορίεσ για γονείσ και δαςκάλουσ. Τι είναι ο θυροειδήσ αδένασ;

Παθήςεισ του θυροειδή ςε άτομα με ςύνδρομο Down: Πληροφορίεσ για γονείσ και δαςκάλουσ. Τι είναι ο θυροειδήσ αδένασ; Παθήςεισ του θυροειδή ςε άτομα με ςύνδρομο Down: Πληροφορίεσ για γονείσ και δαςκάλουσ Τι είναι ο θυροειδήσ αδένασ; Dr. jennifer Dennis, Ιατρική Σύμβουλοσ του Συλλόγου για το Σύνδρομο Down (1993) Ο αδϋνασ

Διαβάστε περισσότερα

ΠΕΡΙΕΦΟΜΕΝΑ 1. ΕΙΑΓΩΓΙΚΕ ΕΝΝΟΙΕ 2. ΣΟΙΦΕΙΑ ΗΛΕΚΣΡΙΚΩΝ ΚΤΚΛΩΜΑΣΩΝ

ΠΕΡΙΕΦΟΜΕΝΑ 1. ΕΙΑΓΩΓΙΚΕ ΕΝΝΟΙΕ 2. ΣΟΙΦΕΙΑ ΗΛΕΚΣΡΙΚΩΝ ΚΤΚΛΩΜΑΣΩΝ ΠΕΡΙΕΦΟΜΕΝΑ 1. ΕΙΑΓΩΓΙΚΕ ΕΝΝΟΙΕ 1.1 Ειςαγωγό 1.1 1.2 υμβολιςμού και μονϊδεσ 1.3 1.3 Υορτύο, τϊςη και ενϋργεια 1.5 1.4 Γραμμικότητα 1.7 1.5 Φρονικό αμεταβλητότητα 1.11 1.6 Αιτιότητα 1.11 1.7 υγκεντρωμϋνα

Διαβάστε περισσότερα

ΔΙΑΣΡΟΦΗ ΚΑΣΑ ΣΗ ΔΙΑΡΚΕΙΑ ΣΟΤ ΘΗΛΑΜΟΤ ΣΖΕΛΑΛΗ ΑΝΑΣΑΙΑ ΜΑΙΑ ΙΠΠΟΚΡΑΣΕΙΟ Γ.Π.Ν.Θ.

ΔΙΑΣΡΟΦΗ ΚΑΣΑ ΣΗ ΔΙΑΡΚΕΙΑ ΣΟΤ ΘΗΛΑΜΟΤ ΣΖΕΛΑΛΗ ΑΝΑΣΑΙΑ ΜΑΙΑ ΙΠΠΟΚΡΑΣΕΙΟ Γ.Π.Ν.Θ. ΔΙΑΣΡΟΦΗ ΚΑΣΑ ΣΗ ΔΙΑΡΚΕΙΑ ΣΟΤ ΘΗΛΑΜΟΤ ΣΖΕΛΑΛΗ ΑΝΑΣΑΙΑ ΜΑΙΑ ΙΠΠΟΚΡΑΣΕΙΟ Γ.Π.Ν.Θ. Σϐςο κατϊ τη διϊρκεια τησ εγκυμοςϑνησ ϐςο και κατϊ τη διϊρκεια του θηλαςμοϑ οι γυναύκεσ δϋχονται πολλϋσ ςυμβουλϋσ για τη

Διαβάστε περισσότερα

1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου

1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β --- ΠΡΟΣ: Ταχ. /νση: Ανδρέα

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Παραμετρικι Ανάλυςθ και φγκριςθ Μοντζλων υςτθμάτων Κυψελϊν Καυςίμου

Παραμετρικι Ανάλυςθ και φγκριςθ Μοντζλων υςτθμάτων Κυψελϊν Καυςίμου Σ Σ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΠΟΛΤΣΕΦΝΙΚΗ ΦΟΛΗ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΦΑΝΙΚΩΝ ΚΑΙ ΜΗΦΑΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ ΣΟΜΕΑ ΗΛΕΚΣΡΙΚΗ ΕΝΕΡΓΕΙΑ Παραμετρικι Ανάλυςθ και φγκριςθ Μοντζλων υςτθμάτων Κυψελϊν Καυςίμου

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14 Βαθμός Ασφαλείας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

«ΤΣΗΜΑ ΕΝΣΟΠΙΜΟΤ ΘΕΗ ΑΤΣΟΚΙΝΗΣΟΤ» (06171ΕΜ)

«ΤΣΗΜΑ ΕΝΣΟΠΙΜΟΤ ΘΕΗ ΑΤΣΟΚΙΝΗΣΟΤ» (06171ΕΜ) ΑΛΕΞΑΝΔΡΕΙΟ ΣΕΦΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΘΕΑΛΟΝΙΚΗ ΦΟΛΗ ΣΕΦΝΟΛΟΓΙΚΨΝ ΕΥΑΡΜΟΓΨΝ - ΣΜΗΜΑ ΗΛΕΚΣΡΟΝΙΚΗ ΠΣΤΦΙΑΚΗ ΕΡΓΑΙΑ «ΤΣΗΜΑ ΕΝΣΟΠΙΜΟΤ ΘΕΗ ΑΤΣΟΚΙΝΗΣΟΤ» (06171ΕΜ) πουδαςτήσ: Κρομμύδασ Δημότριοσ (Κ.Α..:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΠΡΟΚΛΗΗ ΕΚΔΗΛΩΗ ΕΝΔΙΑΥΕΡΟΝΣΟ ΓΙΑ ΤΠΟΒΟΛΗ ΠΡΟΣΑΕΩΝ ΠΡΟ ΤΝΑΨΗ EΩ ΣΡΙΩΝ (3) ΤΜΒΑΕΩΝ ΜΙΘΩΗ ΕΡΓΟΤ ΙΔΙΩΣΙΚΟΤ ΔΙΚΑΙΟΤ

ΠΡΟΚΛΗΗ ΕΚΔΗΛΩΗ ΕΝΔΙΑΥΕΡΟΝΣΟ ΓΙΑ ΤΠΟΒΟΛΗ ΠΡΟΣΑΕΩΝ ΠΡΟ ΤΝΑΨΗ EΩ ΣΡΙΩΝ (3) ΤΜΒΑΕΩΝ ΜΙΘΩΗ ΕΡΓΟΤ ΙΔΙΩΣΙΚΟΤ ΔΙΚΑΙΟΤ 1 ΤΠΟΤΡΓΕΙΟ ΠΟΛΙΣΙΜΟΤ, ΠΑΙΔΕΙΑ ΚΑΙ ΘΡΗΚΕΤΜΑΣΩΝ ΚΕΝΣΡΟ ΕΛΛΗΝΙΚΗ ΓΛΩΑ Καραμαούνα 1, Πλατεύα κρα 55132 Καλαμαριϊ Θεςςαλονύκησ Σηλ.: +30 2313 331500 Υαξ: +30 2313 331502 e-mail: centre@komvos.edu.gr Θεςςαλονύκη,

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

ΤΜΒΑΗ ΔΙΑΝΟΜΗ ΤΛΙΚΟΤ ΣΟ ΔΙΚΣΤΟ ΠΡΑΚΣΟΡΩΝ ΣΗ ΟΠΑΠ

ΤΜΒΑΗ ΔΙΑΝΟΜΗ ΤΛΙΚΟΤ ΣΟ ΔΙΚΣΤΟ ΠΡΑΚΣΟΡΩΝ ΣΗ ΟΠΑΠ ΤΜΒΑΗ ΔΙΑΝΟΜΗ ΤΛΙΚΟΤ ΣΟ ΔΙΚΣΤΟ ΠΡΑΚΣΟΡΩΝ ΣΗ ΟΠΑΠ το Περιςτϋρι ςόμερα, την... μεταξύ των κϊτωθι ςυμβαλλομϋνων... ςυμφωνόθηκαν, ςυνομολογόθηκαν και ϋγιναν αμοιβαύα αποδεκτϊ τα εξόσ: ΠΡΟΟΙΜΙΟ Η Διεύθυνςη

Διαβάστε περισσότερα

Διαφορική Τοπολογία και Κβαντική Θεωρία Πεδίου

Διαφορική Τοπολογία και Κβαντική Θεωρία Πεδίου Σχολή Εφαρμοςμζνων Μαθηματικών και Φυςικών Επιςτημών Εθνικό Μετςόβιο Πολυτεχνείο Τμήμα Μαθηματικών Διαφορική Τοπολογία και Κβαντική Θεωρία Πεδίου Εκπόνηςη πτυχιακήσ εργαςίασ Κάρδαρησ Δημήτρησ Α.Μ 09104188

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΡΗΣΗ ΜΟΡΦΟΜΕΤΡΙΚΩΝ ΔΕΙΚΤΩΝ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΣΠΗΛΑΙΟΓΕΝΕΤΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΣΕ ΣΠΗΛΑΙΑ ΤΗΣ Β. ΕΛΛΑΔΟΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΡΗΣΗ ΜΟΡΦΟΜΕΤΡΙΚΩΝ ΔΕΙΚΤΩΝ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΣΠΗΛΑΙΟΓΕΝΕΤΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΣΕ ΣΠΗΛΑΙΑ ΤΗΣ Β. ΕΛΛΑΔΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Κ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΓΡΑΦΙΑΣ ΕΠΙΒΛΕΠΩΝ : ΚΑΘ. Κ. ΒΟΥΒΑΛΙΔΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΡΗΣΗ ΜΟΡΦΟΜΕΤΡΙΚΩΝ ΔΕΙΚΤΩΝ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΣΠΗΛΑΙΟΓΕΝΕΤΙΚΩΝ

Διαβάστε περισσότερα

Θϋμα: Άνιςη μεταχεύριςη των ανθρώπων με τετραπληγύα, απώλεια ακοόσ ό ϐραςησ ςτο νϋο νομοςχϋδιο ΕΑΕ.

Θϋμα: Άνιςη μεταχεύριςη των ανθρώπων με τετραπληγύα, απώλεια ακοόσ ό ϐραςησ ςτο νϋο νομοςχϋδιο ΕΑΕ. Αθόνα, 15 Μαύου 2014 Η παρακάτω επιςτολή, εςτάλη μέςω φαξ και μέςω email ςτον Προΰςτάμενο τησ Διεύθυνςησ Ειδικήσ Αγωγήσ κο Λολίτςα, την Τρίτη 14 Μααου 2014. Παρακαλούμε να ςτηρίξετε με την υπογραφή ςασ

Διαβάστε περισσότερα

Χωπικέρ Ανιζόηηηερ Ειζοδήμαηορ, Ανάπηςξηρ και Φηώσειαρ ζηην Ελλάδα

Χωπικέρ Ανιζόηηηερ Ειζοδήμαηορ, Ανάπηςξηρ και Φηώσειαρ ζηην Ελλάδα ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΗΜΟΝΙΚΩΝ ΜΕΛΕΣΩΝ 2011 Χωπικέρ Ανιζόηηηερ Ειζοδήμαηορ, Ανάπηςξηρ και Φηώσειαρ ζηην Ελλάδα Επιζηημονικά Τπεύθσνος Σηαμάηηρ Καλογήπος Λέκηορας, Υαροκόπειο Πανεπιζηήμιο Μέλη Ερεσνηηικής Ομάδας

Διαβάστε περισσότερα

ΚΕΥΑΛΑΙΟ Z ΜΕΣΡΑ ΓΙΑ ΣΗΝ ΟΛΙΚΗ ΑΠΑΓΟΡΕΤΗ ΣΟΤ ΚΑΠΝΙΜΑΣΟ ΣΟΤ ΔΗΜΟΙΟΤ ΦΩΡΟΤ ΣΡΟΠΟΠΟΙΗΗ ΣΩΝ ΝΟΜΩΝ 3730/2008 ΚΑΙ 3370/2005

ΚΕΥΑΛΑΙΟ Z ΜΕΣΡΑ ΓΙΑ ΣΗΝ ΟΛΙΚΗ ΑΠΑΓΟΡΕΤΗ ΣΟΤ ΚΑΠΝΙΜΑΣΟ ΣΟΤ ΔΗΜΟΙΟΤ ΦΩΡΟΤ ΣΡΟΠΟΠΟΙΗΗ ΣΩΝ ΝΟΜΩΝ 3730/2008 ΚΑΙ 3370/2005 ΚΕΥΑΛΑΙΟ Z ΜΕΣΡΑ ΓΙΑ ΣΗΝ ΟΛΙΚΗ ΑΠΑΓΟΡΕΤΗ ΣΟΤ ΚΑΠΝΙΜΑΣΟ ΣΟΤ ΔΗΜΟΙΟΤ ΦΩΡΟΤ ΣΡΟΠΟΠΟΙΗΗ ΣΩΝ ΝΟΜΩΝ 3730/2008 ΚΑΙ 3370/2005 Κωδικοπούηςη Άρθρο 17 Νόμου 3868/2010 (ΥΕΚ 129Α /3.8.2010): Όπωσ ιςχύει: Άρθρο 1 Προςταςύα

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

ΕΡΩΣΗΜΑΣΟΛΟΓΙΟ SAIL AHEAD

ΕΡΩΣΗΜΑΣΟΛΟΓΙΟ SAIL AHEAD ΕΡΩΣΗΜΑΣΟΛΟΓΙΟ SAIL AHEAD Ερωτηματολόγιο για αξιωματικούσ γέφυρας/ Πλοιάρχους Ειςαγωγό Σο πρϐγραμμα Sail Ahead θα δημιουργόςει ϋνα online εργαλεύο για επαγγελματικϐ προςανατολιςμϐ, το οπούο θα εύναι ειδικϊ

Διαβάστε περισσότερα

Σα Επτϊνηςα! Κϋρκυρα Έχει ςχόμα μακρόςτενο, πλατύτερο ςτο βόρειο τμόμα τησ, ενώ ςτενεύει προσ το νότο. Σα παρϊλιϊ τησ ϋχουν ςυνολικό μόκοσ 217 χιλιόμετρα και ςχηματύζουν αρκετούσ όρμουσ και ακρωτόρια.

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

Κυκλοφορία και Ποιότητα Αέρα ςτη Θεςςαλονίκη Ν. Μουςιόπουλοσ

Κυκλοφορία και Ποιότητα Αέρα ςτη Θεςςαλονίκη Ν. Μουςιόπουλοσ Κυκλοφορία και Ποιότητα Αέρα ςτη Θεςςαλονίκη Ν. Μουςιόπουλοσ Laboratory Profile: 3 Faculty Members 7 Senior Researchers 2 Technicians 12 PhD candidates 7 Other Co-workers 11 Pre-graduate Courses Research

Διαβάστε περισσότερα

Οδηγός Εκπαιδευτικού για το Πρόγραμμα Σπουδών του Νηπιαγωγείου

Οδηγός Εκπαιδευτικού για το Πρόγραμμα Σπουδών του Νηπιαγωγείου 2011 Οδηγός Εκπαιδευτικού για το Πρόγραμμα Σπουδών του Νηπιαγωγείου Το παρόν ϋργο ϋχει παραχθεύ από το Παιδαγωγικό Ινςτιτούτο ςτο πλαύςιο υλοπούηςησ τησ Πρϊξησ «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολεύο 21ου αιώνα) Νϋο πρόγραμμα

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012. 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π.

Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012. 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π. Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012 Πρόοδοι 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π. 2. Να σχηματίσετε την Α.Π. που έχει α 8 =30 και α 12 =46 3. Σε Α.Π.

Διαβάστε περισσότερα

ςτην περύπτωςη που η μόνη αλλαγό αφορϊ ςτη Δημόςια Φρηματοδότηςη ανϊ ϋτοσ (2013, 2014).

ςτην περύπτωςη που η μόνη αλλαγό αφορϊ ςτη Δημόςια Φρηματοδότηςη ανϊ ϋτοσ (2013, 2014). Ειςαγωγή Για την ολοκλόρωςη μιασ πρϊξησ κρατικών ενιςχύςεων απαιτεύται το ςύνολο των δαπανών τησ να ςυμφωνεύ με την εγκεκριμϋνη δημόςια δαπϊνη όπωσ προκύπτει από το ςε ιςχύ Σεχνικό Δελτύο Πρϊξησ. ε περύπτωςη

Διαβάστε περισσότερα

**************** Η ΤΓΧΡΟΝΗ ΜΟΤΙΚΗ ΠΑΙΔΕΙΑ ΣΗ ΔΕΤΣΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΤΗ:

**************** Η ΤΓΧΡΟΝΗ ΜΟΤΙΚΗ ΠΑΙΔΕΙΑ ΣΗ ΔΕΤΣΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΤΗ: Σελίδα1 ΚΑΝΕΛΛΑΣΟΤ ΒΙΒΗ Γ., 2009, «Η ςύγχρονη μουςικό παιδεύα ςτη δευτεροβϊθμια εκπαύδευςη, η περύπτωςη των μουςικών ςχολεύων», Πρακτικά 2 ου επιςτημονικού ςυνεδρίου «Μουςική Παιδεία & Μουςικά Σχολεία:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι

Διαβάστε περισσότερα

τηλεπικοινωνύεσ ΣΕΧΝΟΛΟΓΙΑ Β ΛΤΚΕΙΟΤ www.texnologia.org Αντρϋασ Ζαντόσ Τειεπνηθνηλσλίεο Β Λπθείνπ, Αληξεαο Ζαληεο 1 www.texnologia.

τηλεπικοινωνύεσ ΣΕΧΝΟΛΟΓΙΑ Β ΛΤΚΕΙΟΤ www.texnologia.org Αντρϋασ Ζαντόσ Τειεπνηθνηλσλίεο Β Λπθείνπ, Αληξεαο Ζαληεο 1 www.texnologia. τηλεπικοινωνύεσ ΣΕΧΝΟΛΟΓΙΑ Β ΛΤΚΕΙΟΤ Αντρϋασ Ζαντόσ Ζαληεο 1 τηλεπικοινωνύεσ O όροσ τηλεπικοινωνύεσ αναφϋρεται ςτην ανταλλαγό πληροφοριών και μηνυμϊτων μεταξύ δύο τόπων που βρύςκονται ςε απόςταςη, με τη

Διαβάστε περισσότερα

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS 246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:

Διαβάστε περισσότερα