Περίληψη. Εισαγωγή. Λέξεις κλειδιά: Cabri Geometry, μονάδες μέτρησης, εμβαδόν, γεωμετρικοί μετασχηματισμοί

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περίληψη. Εισαγωγή. Λέξεις κλειδιά: Cabri Geometry, μονάδες μέτρησης, εμβαδόν, γεωμετρικοί μετασχηματισμοί"

Transcript

1 Τα δυναμικά περιβάλλοντα γεωμετρίας και οι γεωμετρικοί μετασχηματισμοί, ως μαθησιακό δίπολο αναχαίτισης μαθητικών ολισθημάτων, κατά την πραγμάτευση μέτρησης εμβαδών και των μονάδων τους Αλέξιος Μαστρογιάννης 1, Αντιγόνη Τρύπα 2 1 Διευθυντής 16 ου Δημοτικού Σχολείου Αγρινίου 2 16 ο Δημοτικό Σχολείο Αγρινίου Περίληψη Η καθημερινή εφαρμογή και χρήση και οι πλούσιες μαθηματικές της προεκτάσεις καθιστούν τη μέτρηση του εμβαδού έννοια θεμελιώδους σημασίας. Έρευνες έχουν καταδείξει, όμως, μια σειρά από προβλήματα, δυσκολίες και παρανοήσεις, κατά τη μάθησή της. Ο αλγόριθμος εφαρμογής, η σύγχυση με την περίμετρο, η επιλογή και οι επαναλήψεις των μονάδων μέτρησης, η έλλειψη κατανόησης των εννοιών που το συνθέτουν και ο παραδοσιακός, συμπεριφοριστικός τρόπος μάθησης του σχετικού αλγόριθμου, προβάλλουν ως τα κυριότερα μαθησιακά προσκόμματα. Η παρούσα πρόταση με τη «δυναμική» ενίσχυση του Cabri Geometry και του μετασχηματισμού της μεταφοράς-μετατόπισης και μέσω δραστηριοτήτων «βιωματικού τύπου» πλακόστρωσης μιας αυλής, αποπειράται να υπερφαλαγγίσει τις παραπάνω δυσκολίες. Λέξεις κλειδιά: Cabri Geometry, μονάδες μέτρησης, εμβαδόν, γεωμετρικοί μετασχηματισμοί Εισαγωγή Η μέτρηση του εμβαδού είναι σημαντική μαθηματική έννοια στα σχολικά μαθηματικά και γι αυτό, δικαιολογημένα καλύπτει, σχετικά, μεγάλο μέρος στην ύλη των Αναλυτικών Προγραμμάτων Σπουδών της Υποχρεωτικής Εκπαίδευσης. Γενικά η μέτρηση είναι οικουμενική και κεφαλαιώδης δραστηριότητα, με οριζόντια πολιτισμική διάχυση, σε όλους ανεξαιρέτως τους λαούς και σε πολλές κοινωνικές εκφάνσεις, όπως στην επιστήμη, στην τεχνολογία αλλά και στην απλή καθημερινότητα (Κορδάκη, 1999). Πολλές και ποικίλες, καθημερινές εφαρμογές συνηγορούν υπέρ και της σπουδαιότητας της μάθησης του εμβαδού και της μέτρησής του. Η ζωγραφική, η κηπουρική, οι επιστρώσεις και οι επικαλύψεις επιφανειών είναι κάποιες, ενδεικτικές περιπτώσεις (Cavanagh, 2008). Η μέτρηση των επιφανειών καταχωρίζεται ως μία, λίαν σημαντική και θεμελιακή μαθηματική έννοια, εξαιτίας των πολλών διασυνδέσεων και αρωγών της σε πλείστες άλλες μαθηματικές έννοιες και περιοχές. Η έννοια του αριθμού, η κατανόηση των πολλαπλασιαστικών δομών μεταξύ ακεραίων αλλά και (πολύ περισσότερο) μεταξύ κλασμάτων, η ομοιότητα, οι μεγεθύνσεις, η αντιμεταθετική ιδιότητα του πολλαπλασιασμού, η κατανόηση του αναπτύγματος των διωνύμων αλλά και ο ολοκληρωτικός λογισμός είναι μαθηματικές ενότητες, άρρηκτα συνδεδεμένες με τη μέτρηση του εμβαδού επιφανειών και έπονται, στις περισσότερες των περιπτώσεων, της μελέτης του (Κορδάκη, 1999; Cavanagh, 2008). Μάλιστα, η έννοια του εμβαδού γεφυρώνει το σύμπαν των συγκεκριμένων και απτών, φυσικών αντικειμένων με τον αφηρημένο κόσμο των αριθμών. Α. Τζιμογιάννης (επιμ.), Πρακτικά Εργασιών 7 ου Πανελλήνιου Συνεδρίου με Διεθνή Συμμετοχή «Οι ΤΠΕ στην Εκπαίδευση», τόμος ΙΙ, σ Πανεπιστήμιο Πελοποννήσου, Κόρινθος, Σεπτεμβρίου 2010

2 454 7 ο Πανελλήνιο Συνέδριο με Διεθνή Συμμετοχή Η εύρεση του εμβαδού μιας επιφάνειας μπορεί να θεωρηθεί ως η «επίστρωση» (ή διαχωρισμός) μιας περιοχής με μια δισδιάστατη μονάδα μέτρησης, λαμβανομένων υπόψη ότι οι επιφάνειες δεν επικαλύπτονται και το εμβαδό της ένωσης δυο επιφανειών είναι το άθροισμα των επιμέρους εμβαδών (Clements & Stephan, 2004). Υπάρχουν, τουλάχιστον, πέντε θεμελιώδεις έννοιες που περιλαμβάνονται στην εκμάθηση της μέτρησης επιφανειών: α) Διαχωρισμός, β) Επανάληψη μονάδων, γ) Διατήρηση, δ) Γραμμική μέτρηση και ε) Δόμηση σειρών. Ο διαχωρισμός είναι η διανοητική πράξη της τμήσης μιας επιφάνειας δυο διαστάσεων, μέσω μιας δισδιάστατης μονάδας. Οι μαθητές, καθώς καλύπτουν επιφάνειες, δίχως κενά και επικαλύψεις, μπορούν επίσης να αναπτύξουν την έννοια της επανάληψης μονάδων. Η στρατηγική δε, της (επι)κάλυψης είναι η κύρια μέθοδος της ευκλείδειας γεωμετρίας, κατά τον προσδιορισμό ισεμβαδικών σχημάτων (Zacharos, 2005). Ακόμα, μια καλή υποδομή στη μέτρηση μηκών είναι απαραίτητη προϋπόθεση κατά τη μέτρηση επιφανειών, αφού, προφανώς, η μέτρηση του εμβαδού είναι προϊόν 2 μετρήσεων (Clements & Stephan, 2004). Μαθησιακά προβλήματα κατά την εκμάθηση του εμβαδού Πολλές έρευνες τονίζουν τα προβλήματα, που αντιμετωπίζουν οι μαθητές σε σχέση με την κατανόηση της διαδικασίας μέτρησης επιφανειών (όπως παρατίθενται στο Μαστρογιάννης & Αλπάς, 2008). Ο αλγόριθμος εφαρμογής, η σύγχυση με την περίμετρο, η επιλογή και οι επαναλήψεις των μονάδων μέτρησης αλλά και η έλλειψη κατανόησης των εννοιών που το συνθέτουν αναφέρονται ως σημαντικά μαθησιακά προσκόμματα και ως οι κυριότερες δυσκολίες των μαθητών. Ο παραδοσιακός τρόπος της διδασκαλίας, ο οποίος βασίζεται στην «μπιχεβιοριστική» μάθηση του αλγόριθμου, κρατά τη μερίδα του λέοντος στις επικριτικές αναφορές. Ενώ το μήκος μετριέται άμεσα, το εμβαδόν υπολογίζεται έμμεσα με τη χρησιμοποίηση των μηκών των στοιχείων, τα οποία εμφανίζονται στον τύπο του εμβαδού (Zacharos, 2005). Τα παιδιά μαθαίνουν, συχνά έναν κανόνα, όπως ο πολλαπλασιασμός δύο αποστάσεων, χωρίς καμιά σημασία για αυτά. Οι προσπάθειες ώστε να διδαχτεί ο σύντομος αλγοριθμικός υπολογισμός, πριν την δομική εισαγωγή των σειρών και γραμμών αποβαίνουν θνησιγενείς, μαθησιακά (Reynolds & Wheatley, 1996). Ακόμα έχουν παρατηρηθεί μερικές κοινές παρερμηνείες και παρανοήσεις, όσον αφορά, πάντα, στην κατανόηση του εμβαδού, δεδομένου ότι, μερικές φορές, οι μαθητές (Cavanagh, 2008) εξετάζουν το μήκος μόνο μιας από τις πλευρές του ορθογωνίου, υπολογίζουν τις μονάδες γύρω από τη γωνία ενός ορθογωνίου διπλά, ενώ μετρούν τα σημάδια επισήμανσης, παρά υπολογίζουν τις μονάδες. Ακόμα, προσθέτουν τα μήκη των πλευρών, αντί να τα πολλαπλασιάσουν, υπεργενικεύουν τους τύπους των εμβαδών και, τέλος, συγχέουν την περίμετρο με το εμβαδό. Εστιάζοντας, τώρα στη σχολική πραγματικότητα, μπορεί εύκολα και αβίαστα να παρατηρηθεί ότι πολλά εγχειρίδια παρουσιάζουν περιοχές που είναι ήδη διαχωρισμένες. Οι μαθητές, μετρούν τις μονάδες μία-μία, διαδικασία, όμως, που αποκρύπτει τη δομή της σειράς, αφού η προσοχή δεν επικεντρώνεται σε αυτή (Cavanagh, 2008). Επιπλέον, η τάση να προκρίνονται πολύ γρήγορα οι διαδικασίες πολλαπλασιασμού, μέσω της χρήσης των τύπων, στερεί τους μαθητές από την ευκαιρία να μελετηθεί το σχέδιο και η δομή της σειράς (Kordaki & Potari, 2002; Clements & Stephan, 2003). Ο αλγόριθμος του υπολογισμού των εμβαδών προσφέρεται, παιδαγωγικά, να παρουσιασθεί ως μια τελική τεχνική και μέθοδος, που αποσκοπεί στην αποφυγή της χρονοβόρας, επίπονης και, πολλές φορές, σφαλερής διαδικασίας μέτρησης των μονάδων, οι οποίες καλύπτουν την εξεταζόμενη επιφάνεια.

3 Οι ΤΠΕ στην Εκπαίδευση 455 Η διδακτική «εικονική» πρόταση Οι ευκλείδειοι μετασχηματισμοί (μεταφορά, ανάκλαση και περιστροφή) είναι οι πλέον συνηθέστεροι στη Γεωμετρία, όπου το σχήμα των αντικειμένων δε μεταβάλλεται, αφού διατηρούνται τα μήκη και τα μέτρα των γωνιών. Μόνο η θέση και ο προσανατολισμός των αντικειμένων αλλάζουν. Ως ο πλέον πρωταγωνιστικός μετασχηματισμός θεωρείται η παράλληλη μεταφορά, με εικόνα ένα αντικείμενο που ολισθαίνει-μετατοπίζεται, κατά ένα συγκεκριμένο διάνυσμα. Ο μετασχηματισμός αυτός είναι ισομετρία, αφού διατηρούνται οι αποστάσεις των σημείων και αποτελεί ειδική περίπτωση ομοιομορφισμού στα Μαθηματικά. Οι φυσικοί τρόποι μετατόπισης ενός αντικειμένου, μέσω μεταφοράς, (αλλά και ανάκλασης ή περιστροφής), εύκολα ορίζονται με ακραιφνώς μαθηματικούς όρους, γεγονός που ευνοεί, γενικότερα, τη συνολική μελέτη των γεωμετρικών μετασχηματισμών (Kelly, 1971). Η μελέτη αυτή, που αναφέρεται στη διεθνή βιβλιογραφία ως Γεωμετρία της Κίνησης (Motion Geometry), έχει πολλά ελκυστικά παιδαγωγικά χαρακτηριστικά, αφού μπορεί να αυξήσει και να ρυθμίσει τις διαισθητικές εικασίες των μαθητών, με βάση τις πρότερες γνώσεις τους. Περιέχει ακόμα μερικές γνήσιες εκπλήξεις που προκύπτουν από την απλή εφαρμογή των βασικών ιδιοτήτων της Γεωμετρίας της κίνησης (Brieske & Lott, 1978). Το περιβάλλον Cabri-Geometry II παρέχει δυνατότητες κατασκευής και πραγματοποίησης μαθησιακών δραστηριοτήτων σύμφωνα με τις σύγχρονες κοινωνικές και εποικοδομιστικές θεωρήσεις για τη γνώση και τη μάθηση. Διαθέτει ένα πλούσιο περιβάλλον δραστηριοποίησης, κατά τη μελέτη της γεωμετρίας. Δημιουργεί ένα νέο τρόπο σκέψης όσον αφορά σε γεωμετρικές καταστάσεις, ενώ προσφέρει εντολές για τη δημιουργία σχημάτων αλλά και τρόπους, ώστε να μπορούν αυτά να μετακινηθούν άμεσα και αυτόματα. Μάλιστα, ολόκληρο μενού είναι αφιερωμένο στην εκτέλεση-κατασκευή μετασχηματισμών (Smith, 1999; Μαστρογιάννης, 2008). Η παρούσα εργασία επιχειρεί να αναδείξει τη μαθησιακή συνισταμένη, προσποριζόμενη οφέλη και «διδακτικό οπλισμό» κατά την αναχαίτιση μαθητικών ολισθημάτων, από τον, κυριολεκτικά, δυναμικό συνδυασμό δυο σημαντικών συνιστωσών α) των δυναμικών περιβαλλόντων Γεωμετρίας και β) του γεωμετρικού μετασχηματισμού της μεταφοράς, κατά τη μελέτη μονάδων μέτρησης εμβαδών, επιπέδων σχημάτων. Χρησιμοποιώντας το Cabri Geometry έχει σχεδιαστεί μονοκατοικία, με τις σχετικές εγκαταστάσεις. Ο αύλειος χώρος χρειάζεται να επιστρωθεί με πλακίδια, τα οποία μπορεί να θεωρηθούν ως μονάδες μέτρησης. Τα πλακίδια (2 τετραγωνικά και 2 ορθογώνια) είναι διαφόρων χρωμάτων και σχεδίων, μπορούν να μεταφερθούν και να τοποθετηθούν σε κατάλληλη θέση στην ορθογώνια αυλή. Ακολούθως, μέσω του μετασχηματισμού της μεταφοράς μετατόπισης, καλύπτουν την επιφάνεια, άλλοτε μετατοπιζόμενα οριζόντια και άλλοτε κάθετα (οι αρχικές εικόνεςπλακίδια παραμένουν). Τα διανύσματα (Σχήμα 1), κάθε φορά, (οριζόντιο ή κάθετο) είναι προσχεδιασμένα και τα μέτρα τους ισούνται με τη διάσταση του τετράγωνου πλακιδίου. Ανάλογη είναι και η κατασκευή, όσον αφορά στις 2 διαστάσεις των ορθογώνιων μονάδων. Όταν π.χ. το ορθογώνιο πλακίδιο, μετατοπίζεται κάθετα, το προσχεδιασμένο διάνυσμα έχει μέτρο, πάντοτε, ίσο με την αντίστοιχη διάσταση του πλακιδίου μονάδας μέτρησης. Οι μονάδες μπορούν να μετασχηματίζονται δυναμικά και να αυξομειώνουν το μέγεθός τους. Αντίστοιχη διαφοροποίηση υφίστανται, ταυτόχρονα, και οι εικόνες τους (επιστρωμένα πλακίδια) αλλά και τα προσχεδιασμένα, δηλωτικά διανύσματα της μετατόπισης. Στόχος της συγκεκριμένης πρότασης είναι να αναδειχθεί ότι η δομή των σειρών-στηλών είναι εξαιρετικά σημαντική και παράλληλα οι μαθητές να μάθουν να κατασκευάζουν σειρές και στήλες και να μετρούν τις μονάδες. Ακολουθείται ο «φυσικός» τρόπος της επίστρωσης, καθότι για τις συνεχείς επιστρώσεις, χρησιμοποιείται η μεταφορά, μια διαδικασία που μπορεί να συνεισφέρει και στην κατανόηση της επαναληπτικότητας των μονάδων.

4 456 7 ο Πανελλήνιο Συνέδριο με Διεθνή Συμμετοχή Επιπλέον, η μέθοδος αυτή δεν επιτρέπει κενά και επικαλύψεις. Οι μαθητές έχουν στη διάθεση τους και μπορούν να αναμείξουν διάφορες μονάδες. Η ύπαρξη κοινής μονάδας μέτρησης, ενδεχομένως, να προκύψει, ως αιτούμενο και, βαθμιαία, οι μαθητές, μπορεί να αντιληφθούν την αναγκαιότητά της. Μέσω της ελκυστικής, χρωματικής οπτικοποίησης μπορεί να κατανοηθεί ότι το θεμελιώδες, δομικό χαρακτηριστικό στη μέτρηση επιφανειών είναι τα ισάριθμα τετράγωνα-μονάδες, που συμπληρώνουν κάθε σειρά ή κάθε στήλη. Οι μαθητές παρωθούνται να μάθουν ότι το μήκος των πλευρών ενός ορθογωνίου μπορεί να καθορίσει τον αριθμό των μονάδων σε κάθε σειρά αλλά και το συνολικό αριθμό των σειρών. Σχήμα 1. Πλακοστρώσεις αυλής Ακόμα, οι μαθητές μπορεί να καταλάβουν ότι η μονάδα λειτουργεί ως παρονομαστής με την τιμή του κλάσματος να παριστάνει την τελική μέτρηση, να εντοπίσουν δηλαδή, ότι τα ποσά του μεγέθους μιας μονάδας και ο συνολικός αριθμός των μονάδων σε μια μέτρηση (το εμβαδόν) είναι αντιστρόφως ανάλογα. Η δυναμική τροποποίηση των μονάδων προσφέρει, αυτόματα, οποιαδήποτε στιγμή, τη σχετική, οπτική αλλά και μαθηματική επιβεβαίωση. Επίσης, παρέχονται ευκαιρίες εκτίμησης, κάθε φορά, του εμβαδού. Η επαλήθευση επιτυγχάνεται με την αυτόματη μέτρηση του εμβαδού της ορθογώνιας αυλής και της μονάδας και την διαίρεσή τους εν συνεχεία, με χρήση της εντολής «υπολογισμός». Πιθανόν, μια τέτοια προσέγγιση να φέρει στο διδακτικό και μαθησιακό προσκήνιο την φαινομενική «παραδοξότητα», ως προς τη διαφοροποίηση των αριθμητικών δεδομένων μέτρησης του εμβαδού, του λογισμικού από τη μια, και των δεδομένων των μαθητών από την άλλη. Κάτι τέτοιο, που καταγράφεται ασφαλώς, ως σημαντική παιδαγωγική και μαθησιακή ωφελιμότητα, συμβαίνει, επειδή οι μονάδες μέτρησης του λογισμικού είναι οι καθιερωμένες (π.χ. cm 2 ). Επιπλέον, ένα άλλο παράπλευρο όφελος θα μπορούσε να ήταν η παραδοχή περί της αναγκαιότητας της εισαγωγής και κατανόησης των «συμφωνηθέντων» μεταξύ των ανθρώπινων κοινωνιών, επίσημων μονάδων μέτρησης. Βέβαια, οι μαθητές μπορούν να μετασχηματίσουν τη μονάδα-πλακίδιο, έτσι ώστε να ταυτιστεί αριθμητικά με την αντίστοιχη, που χρησιμοποιεί το λογισμικό, οπότε και τα αποτελέσματα θα συμπέσουν. Ως μια εναλλακτική προσέγγιση οι μαθητές μπορούν, μέσω σχετικής εντολής του Cabri Geometry, να χρησιμοποιήσουν και το πλέγμα σαν ένα αποτελεσματικό εργαλείο μέτρησης. Επίσης, είναι δυνατό οι μαθητές μεγάλων τάξεων, ίσως Λυκείου, να συμμετάσχουν και οι ίδιοι στην κατασκευή της δραστηριότητας. Αυτή η διαδικασία που, όντως, στην προκειμένη περίπτωση της επίστρωσης της αυλής, παρουσιάζει σχετική δυσκολία κατά το σχεδιασμό, απαιτεί, σαφώς, αυξημένες γεωμετρικές και τεχνολογικές γνώσεις. Στον αντίποδα, όμως, μπορεί να λειτουργήσει αντισταθμιστικά, δεδομένου ότι τα διδακτικά και μαθησιακά οφέλη θα είναι, μάλλον, κατά πολύ πλουσιότερα.

5 Οι ΤΠΕ στην Εκπαίδευση 457 Συζήτηση-Συμπεράσματα Αρκετές επισκοπήσεις και έρευνες, στον ελλαδικό και διεθνή χώρο, έχουν επικεντρωθεί στις μετερχόμενες στρατηγικές, στις δυσκολίες και παρανοήσεις των μαθητών, ως προς την έννοια του εμβαδού και τη μέτρησή του, αλλά και στις επιπτώσεις τής χρήσης τεχνολογικών περιβαλλόντων στη διδασκαλία του. Έχουν αναφερθεί βέβαια, παρόμοιες δραστηριότητες οι οποίες συγκεράζουν και αξιοποιούν τα Δυναμικά Περιβάλλοντα και τη «Γεωμετρία της κίνησης», ως ένα δραστικό «μαθησιακό δικτυωτό», το οποίο μπορεί, ίσως, να προσφέρει το κατάλληλο «παιδαγωγικό ενδιαίτημα» για την άρση παρερμηνειών και παρανοήσεων, κατά τη μελέτη των εμβαδών και των μονάδων τους. Τρόπος, όμως, σχεδιασμού και αξιοποίησης του μετασχηματισμού της μεταφοράς, όπως στην παρούσα πρόταση, δεν έχει καταγραφεί. Ακόμα, μέσω της παρούσας εργασίας, ως ενός τρόπου «μεταφοράς» της σχολικής γνώσης, ο μαθητής μπορεί να αντιληφθεί ότι η γνώση (και ειδικά η «μαθηματική») είναι χρήσιμη και ικανή να επιλύει προβλήματα στην καθημερινή ζωή. Επιπλέον, η χρωματικά πολυποίκιλη αυτή σύνθεση μπορεί να προσφέρει και παιδαγωγικό τόνο ιλαρότητας και ατμόσφαιρα μαθησιακής ευαρέσκειας, χαρακτηριστικά λίαν επιζητούμενα στο χλωμό, άγευστο, απρόσωπο και εξοντωτικό, σύγχρονο Σχολείο. Οι παραπάνω διαλαμβανόμενες δραστηριότητες προορίζονται για μαθητές Γυμνασίου, ενώ πρέπει να προτρέπεται και να ενθαρρύνεται η μελέτη τους και από μαθητές Δημοτικού. Τέλος και φυσικά, η ανατροφοδότηση, μέσω της ζώσας σχολικής, μαθησιακής πρακτικής, προβάλλει και καθίσταται λίαν απαραίτητη μονοδρομική αναγκαιότητα. Αναφορές Brieske, Τ. & Lott, J. (1978). The motion geometry of a finite plane. The Two-Year College Mathematics Journal, 9(5), Cavanagh, M. (2008). Area measurement in Year 7. Reflections, 33(1), Clements, D., & Stephan, M. (2004). Measurement in pre-k to grade 2 mathematics, in engaging young children in mathematics: standards for pre-school and kindergarten mathematics education. In H. Clements & J. Sarama & A.-M. DiBiase (eds.), Engaging young children in mathematics: standards for early childhood mathematics education. Mahwah, NJ: Lawrence Erlbaum Associates. Kelly, P. (1971). Topology and transformations in high school geometry. Educational Studies in Mathematics, 3, Kordaki, Μ., & Potari, D. (2002), The effect of tools of area measurement on students strategies: The case of a computer microworld. Ιnternational Jοurnal of Computers for Mathematical Learning, 7(1), Reynolds, A., & Wheatley, G. (1996). Elementary students' construction and coordination of units in an area setting. Journal for Research in Mathematics Education, 27(5), Smith, C. (1999). Using Cabri-Geometre to support undergraduate students understanding of geometric concepts and types of reasoning. Mathematics Education Review, 11. Zacharos, K. (2005). Students measurement strategies of area. Mediterranean Journal for Research in Mathematics Education, 4(2), Κορδάκη, Μ. (1999). Δυναμικές αναπαραστάσεις της έννοιας της διατήρησης της επιφάνειας στο περιβάλλον ενός μικρόκοσμου και ο ρόλος τους στους μετασχηματισμούς που αναπτύχθηκαν από τους μαθητές. Πρακτικά 4ου Πανελληνίου Συνεδρίου με διεθνή συμμετοχή "Διδακτική των Μαθηματικών και Πληροφορική στην Εκπαίδευση" (σ ). Ρέθυμνο. Μαστρογιάννης, A. (2008). Ευκλείδειοι μετασχηματισμοί, για την εύρεση εμβαδών επιπέδων σχημάτων, σε περιβάλλοντα Δυναμικής Γεωμετρίας. Πρακτικά 5ου Πανελληνίου Συνεδρίου της ΕΕΕΠ-ΔΤΠΕ: «Τ.Π.Ε. & Εκπαίδευση» (σ ). Πειραιάς. Μαστρογιάννης, Α. & Αλπάς, Α. (2008). Απειροστικός λογισμός στο περιβάλλον του Cabri Geometry II. Μια διαχρονική προσέγγιση της εύρεσης του εμβαδού κύκλου. Πρακτικά 1ου Πανελληνίου Εκπαιδευτικού Συνεδρίου Ημαθίας (σ ). Νάουσα.

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Παναγάκος Ιωάννης Σχολικός Σύμβουλος Δημοτικής Εκπαίδευσης Βασικοί Στόχοι ενός Προγράμματος Σπουδών Ένα πρόγραμμα σπουδών επιδιώκει να επιτύχει δύο

Διαβάστε περισσότερα

Λέξεις κλειδιά : Διδακτική παρέμβαση, γεωμετρικοί μετασχηματισμοί, δυναμική γεωμετρία.

Λέξεις κλειδιά : Διδακτική παρέμβαση, γεωμετρικοί μετασχηματισμοί, δυναμική γεωμετρία. Το πιλοτικό πρόγραμμα σπουδών στο γυμνάσιο: Μετασχηματισμοί Δημήτρης Διαμαντίδης 2 ο Πρότυπο Πειραματικό Γυμνάσιο Φιλήμονος 38 & Τσόχα, Αθήνα dimdiam@sch.gr Περίληψη Στο κείμενο περιγράφεται μια διδακτική

Διαβάστε περισσότερα

Τo πρόγραμμα «Διάγραμμα Ροής» και η διδακτική του αξιοποίηση στην Διδασκαλία του προγραμματισμού

Τo πρόγραμμα «Διάγραμμα Ροής» και η διδακτική του αξιοποίηση στην Διδασκαλία του προγραμματισμού Τo πρόγραμμα «Διάγραμμα Ροής» και η διδακτική του αξιοποίηση στην Διδασκαλία του προγραμματισμού Α. Βρακόπουλος 1, Θ.Καρτσιώτης 2 1 Καθηγητής Πληροφορικής Δευτεροβάθμιας Εκπαίδευσης Vraa8@sch.gr 2 Σχολικός

Διαβάστε περισσότερα

Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε.

Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε. Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε. Ζαφειρόπουλος Χρήστος Μαθηματικός Γυμνασίου & Λυκείου Καράτουλα zafeiropouloschristos@yahoo.gr ΠΕΡΙΛΗΨΗ Το Πυθαγόρειο Θεώρημα ξεκινώντας την ιστορική

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής Η Πληροφορική ως αντικείμενο και ως εργαλείο μάθησης

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ

ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ Κάθε αναφορά απόψεις που προέρχεται από εξωτερικές πηγές -βιβλία, περιοδικά, ηλεκτρονικά αρχεία, πρέπει να επισημαίνεται, τόσο μέσα στο κείμενο όσο και στη βιβλιογραφία,

Διαβάστε περισσότερα

Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr. Σενάριο : Μοντελοποίηση ταυτοτήτων σε στατικά και δυναμικά μέσα παραγοντοποίηση πολυωνύμων

Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr. Σενάριο : Μοντελοποίηση ταυτοτήτων σε στατικά και δυναμικά μέσα παραγοντοποίηση πολυωνύμων Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr Τάξη: Γ Γυμνασίου A Λυκείου Μάθημα : Άλγεβρα Διδακτική ενότητα: Αξιοσημείωτες Ταυτότητες, Παραγοντοποίηση αλγεβρικών παραστάσεων Εισαγωγή Σενάριο : Μοντελοποίηση

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

Δραστηριότητες για τη διδασκαλία των μαθηματικών Δημοτικού με τη χρήση εκπαιδευτικού λογισμικού

Δραστηριότητες για τη διδασκαλία των μαθηματικών Δημοτικού με τη χρήση εκπαιδευτικού λογισμικού Δραστηριότητες για τη διδασκαλία των μαθηματικών Δημοτικού με τη χρήση εκπαιδευτικού λογισμικού Μαρία Κορδάκη Σχολική σύμβουλος Μαθηματικών Επ. καθ. (ΠΔ 407/80) Τμήμα Μηχ/κών Ηλ/κών Υπολογιστών και Πληροφορικής

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

Νέες προοπτικές στη διδασκαλία της γεωµετρίας: Η περίπτωση του εµβαδού πολυγώνων

Νέες προοπτικές στη διδασκαλία της γεωµετρίας: Η περίπτωση του εµβαδού πολυγώνων Νέες προοπτικές στη διδασκαλία της γεωµετρίας: Η περίπτωση του εµβαδού πολυγώνων Πιττάλης Μ., Μουσουλίδης Ν., & Χρίστου Κ. Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου m.pittalis@ucy.ac.cy, n.mousoulides@ucy.ac.cy,

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

Ανάπτυξη Χωρικής Αντίληψης και Σκέψης

Ανάπτυξη Χωρικής Αντίληψης και Σκέψης Ανάπτυξη Χωρικής Αντίληψης και Σκέψης Clements & Sarama, 2009; Sarama & Clements, 2009 Χωρική αντίληψη και σκέψη Προσανατολισμός στο χώρο Οπτικοποίηση (visualization) Νοερή εικονική αναπαράσταση Νοερή

Διαβάστε περισσότερα

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής ΙΙ

Διδακτική της Πληροφορικής ΙΙ Διδακτική της Πληροφορικής ΙΙ Ομάδα Γ Βότσης Ευστάθιος Γιαζιτσής Παντελής Σπαής Αλέξανδρος Τάτσης Γεώργιος Προβλήματα που αντιμετωπίζουν οι αρχάριοι προγραμματιστές Εισαγωγή Προβλήματα Δυσκολίες Διδακτικό

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS 246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Οκτώβριος 2014 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης:

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 467 ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ Βαρυπάτη Αθηνά Φυσικός- Επιμορφώτρια Τ.Π.Ε. avarypat@de.sch.gr Μαστραλέξης Δημήτρης Φυσικός-Επιμορφωτής Τ.Π.Ε. dmastral@de.sch.gr

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα:

Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα: Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα: Α τάξη Β τάξη Γ τάξη Παρατηρούν μετατοπίσεις και στροφές (90 ο, 180 ο, 360 ο ) και μπορούν αν προβλέψουν το αποτέλεσμα. Αναγνωρίζουν συμμετρικά

Διαβάστε περισσότερα

Τρεις μικρόκοσμοι για την εκπαίδευση σε έννοιες της κωδικοποίησης και της ψηφιακής αναπαράστασης

Τρεις μικρόκοσμοι για την εκπαίδευση σε έννοιες της κωδικοποίησης και της ψηφιακής αναπαράστασης 6 ο Πανελλήνιο Συνέδριο «Διδακτική της Πληροφορικής» Φλώρινα, 20-22 Απριλίου 2012 Τρεις μικρόκοσμοι για την εκπαίδευση σε έννοιες της κωδικοποίησης και της ψηφιακής αναπαράστασης Μ. Μπαγιαμπού 1 1 Τμήμα

Διαβάστε περισσότερα

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Όνοµα: Τάσος Αναστάσιος Επώνυµο: Μικρόπουλος Τίτλος: Αναπληρωτής Καθηγητής, Εργαστήριο Εφαρµογών Εικονικής Πραγµατικότητας στην Εκπαίδευση, Πανεπιστήµιο Ιωαννίνων

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

υναµική Γεωµετρία: Η περίπτωση της διδασκαλίας εµβαδού και απόδειξης µέσω µετασχηµατισµού

υναµική Γεωµετρία: Η περίπτωση της διδασκαλίας εµβαδού και απόδειξης µέσω µετασχηµατισµού υναµική Γεωµετρία: Η περίπτωση της διδασκαλίας εµβαδού και απόδειξης µέσω µετασχηµατισµού Λούκας Τσούκκας, Ξένια Ξυστούρη, Κωνσταντίνος Χρίστου, ήµητρα Πίττα- Πανταζή Πανεπιστήµιο Κύπρου Λευκωσία, Κύπρος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

ΑΝΟΙΧΤΗ ΕΠΙΣΤΟΛΗ. Θέμα: «Σχεδιάζεται κατάργηση της Επιμόρφωσης Β Επιπέδου στις Τ.Π.Ε.;»

ΑΝΟΙΧΤΗ ΕΠΙΣΤΟΛΗ. Θέμα: «Σχεδιάζεται κατάργηση της Επιμόρφωσης Β Επιπέδου στις Τ.Π.Ε.;» Αθήνα, 19 Σεπτεμβρίου 2014 ΠΡΟΣ: Τον Υπουργό Παιδείας & Θρησκευμάτων ΚΟΙΝ.: Ινστιτούτο Εκπαιδευτικής Πολιτικής Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Ειδική Υπηρεσία Εφαρμογής Δ.Ο.Ε., Ο.Λ.Μ.Ε. Εκπαιδευτικά Δίκτυα Ενημέρωσης:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

H ΒΑΣΙΣΜΕΝΗ ΣΤΟΝ Η.Υ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ

H ΒΑΣΙΣΜΕΝΗ ΣΤΟΝ Η.Υ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 495 H ΒΑΣΙΣΜΕΝΗ ΣΤΟΝ Η.Υ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ Τσιπουριάρη Βάσω Ανώτατη Σχολή Παιδαγωγικής

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Καρτσιώτου Θωμαϊς M.Sc. Δασκάλα Δ.Σ. Παληού Καβάλας tzoymasn@hol.gr. Περίληψη

Καρτσιώτου Θωμαϊς M.Sc. Δασκάλα Δ.Σ. Παληού Καβάλας tzoymasn@hol.gr. Περίληψη 33 Πρόταση διδασκαλίας με τη χρήση των ΤΠΕ στο μάθημα της Μελέτης Περιβάλλοντος της Δ τάξης Δημοτικού: Μαθαίνω για τα σημαντικά έργα που υπάρχουν στην Ελλάδα μέσα από το google earth Καρτσιώτου Θωμαϊς

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

Α/Α Τύπος Εκφώνηση Απαντήσεις Το λογισµικό Άτλαντας CENTENNIA µπορεί να χρησιµοποιηθεί 1. Α) Στην ιστορία. Σωστό το ) Σωστό το Γ)

Α/Α Τύπος Εκφώνηση Απαντήσεις Το λογισµικό Άτλαντας CENTENNIA µπορεί να χρησιµοποιηθεί 1. Α) Στην ιστορία. Σωστό το ) Σωστό το Γ) Α/Α Τύπος Εκφώνηση Απαντήσεις Το λογισµικό Άτλαντας CENTENNIA µπορεί να χρησιµοποιηθεί Α) Στην ιστορία. Α) Β) Γ) ) Απλή Β) Στη µελέτη περιβάλλοντος. Γ) Στις φυσικές επιστήµες. ) Σε όλα τα παραπάνω. Είστε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Γώγουλος Γ., Κοτσιφάκης Γ., Κυριακάκη Γ., Παπαγιάννης Α., Φραγκονικολάκης Μ., Χίνου Π. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ

Διαβάστε περισσότερα

Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων

Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων 169 Επιμορφωτικό υλικό για την επιμόρφωση των εκπαιδευτικών - Τεύχος 1 (Γενικό Μέρος) Ενότητα 3.6.2 Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων 1. Εισαγωγή Στο παρόν κεφάλαιο περιγράφονται

Διαβάστε περισσότερα

Άρης Ασλανίδης 1, Αδάμ Δαμιανάκης 2, Κατερίνα Τσαδήμα 2 info@educationplace.gr, ad@conceptum.gr, katerina@conceptum.gr 1

Άρης Ασλανίδης 1, Αδάμ Δαμιανάκης 2, Κατερίνα Τσαδήμα 2 info@educationplace.gr, ad@conceptum.gr, katerina@conceptum.gr 1 Το εκπαιδευτικό λογισμικό «Μαθαίνουμε Γεωλογία- Γεωγραφία Α Γυμνασίου στον Διαδραστικό Πίνακα» και η αξιοποίησή του στη διδασκαλία του μαθήματος «Ο πλανήτης Γη» Άρης Ασλανίδης 1, Αδάμ Δαμιανάκης 2, Κατερίνα

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

Η ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΚΛΙΜΑΚΑΣ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ «ΚΛΙΜΑΚΟΥΠΟΛΗ» - ΜΑΘΗΜΑΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ SKETCHPAD

Η ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΚΛΙΜΑΚΑΣ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ «ΚΛΙΜΑΚΟΥΠΟΛΗ» - ΜΑΘΗΜΑΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ SKETCHPAD 422 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Η ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΚΛΙΜΑΚΑΣ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ «ΚΛΙΜΑΚΟΥΠΟΛΗ» - ΜΑΘΗΜΑΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ SKETCHPAD Λυκοσκούφη Ειρήνη Καθηγήτρια

Διαβάστε περισσότερα

Οι μαθητές της Β δημοτικού και τα κέρματα του ευρώ, εναλλακτικές προσεγγίσεις διδασκαλίας

Οι μαθητές της Β δημοτικού και τα κέρματα του ευρώ, εναλλακτικές προσεγγίσεις διδασκαλίας Οι μαθητές της Β δημοτικού και τα κέρματα του ευρώ, εναλλακτικές προσεγγίσεις διδασκαλίας Μπακόπουλος Νίκος - Εκπαιδευτικός B/βάθμιας Πληροφορικός ΠΕ19 nmpako@upatras.gr Η έρευνα αυτή περιγράφει τον τρόπο

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ

ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ Οι Δ/τές ως προωθητές αλλαγών με κέντρο τη μάθηση Χαράσσουν τις κατευθύνσεις Σχεδιάσουν την εφαρμογή στη σχολική πραγματικότητα Αναπτύσσουν

Διαβάστε περισσότερα

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας

Διαβάστε περισσότερα

ΚΑΠΕΛΟΥ ΚΑΤΕΡΙΝΑ. ΤΕΙ Αθήνας & 2ης Περιφ. Νομαρχίας Αθήνας, e-mail : kapelou@rhodes.aegean.gr

ΚΑΠΕΛΟΥ ΚΑΤΕΡΙΝΑ. ΤΕΙ Αθήνας & 2ης Περιφ. Νομαρχίας Αθήνας, e-mail : kapelou@rhodes.aegean.gr 95 ΣΥΓΚΡΙΣΗ ΤΩΝ ΠΡΟΤΑΣΕΩΝ ΠΡΟΣΕΓΓΙΣΗΣ ΤΟΥ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΣΕ ΣΥΓΧΡΟΝΑ ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ (NCTM & ΑΠΣ/ΔΕΠΠΣ) ΓΙΑ ΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΚΑΙ ΠΡΩΤΟΣΧΟΛΙΚΗ ΒΑΘΜΙΔΑ ΚΑΠΕΛΟΥ ΚΑΤΕΡΙΝΑ ΤΕΙ Αθήνας &

Διαβάστε περισσότερα

Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr

Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr Θεμελίωση μιας λύσης ενός προβλήματος από μια πολύπλευρη (multi-faceted) και διαθεματική (multi-disciplinary)

Διαβάστε περισσότερα

είναι ένα δύσκολο στην κατανόηση θέμα, διότι έχει κατασκευαστεί σε αφηρημένες δομές. Δεδομένου ότι αυτές οι αφηρημένες δομές δεν καλύπτουν τις ζωές

είναι ένα δύσκολο στην κατανόηση θέμα, διότι έχει κατασκευαστεί σε αφηρημένες δομές. Δεδομένου ότι αυτές οι αφηρημένες δομές δεν καλύπτουν τις ζωές 1.1 Η Γεωμετρία Η Γεωμετρία αποτελεί ένα σημαντικό κεφάλαιο των Μαθηματικών και κατέχει ένα βασικό ρόλο στα προγράμματα σπουδών. Η σημασία της διδασκαλίας της συνδέεται τόσο με τη χρησιμότητά της στην

Διαβάστε περισσότερα

Διαχείριση Καταστάσεων προβλημάτων στο Νηπιαγωγείο. Από τη μοιρασιά της τούρτας στην ανάπτυξη γεωμετρικών εννοιών

Διαχείριση Καταστάσεων προβλημάτων στο Νηπιαγωγείο. Από τη μοιρασιά της τούρτας στην ανάπτυξη γεωμετρικών εννοιών Διαχείριση Καταστάσεων προβλημάτων στο Νηπιαγωγείο Από τη μοιρασιά της τούρτας στην ανάπτυξη γεωμετρικών εννοιών Το πρόβλημα Ζητήθηκε από τα παιδιά να χωριστούν σε ομάδες και να προσπαθήσουν να μοιράσουν

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Εκπαιδευτικό

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Εργαστηριακή Εισήγηση. «Οι μεταβλητές στη γλώσσα προγραμματισμού Scratch»

Εργαστηριακή Εισήγηση. «Οι μεταβλητές στη γλώσσα προγραμματισμού Scratch» Εργαστηριακή Εισήγηση «Οι μεταβλητές στη γλώσσα προγραμματισμού Scratch» Σαρημπαλίδης Ιωάννης Καθηγητής Πληροφορικής, Γενικό Λύκειο Πεντάπολης johnsaribalidis@yahoo.gr ΠΕΡΙΛΗΨΗ To προτεινόμενο διδακτικό

Διαβάστε περισσότερα

Εργαστηριακή εισήγηση

Εργαστηριακή εισήγηση Εργαστηριακή εισήγηση «Διδακτικό Σενάριο: Προσεγγίζοντας Κωνικές Τομές με τη βοήθεια της Μεσοκαθέτου στο Δυναμικό Περιβάλλον του Geometer s Sketchpad» Σάββας Πιπίνος 1, Σταύρος Κοκκαλίδης 2, Χρήστος Ηρακλείδης

Διαβάστε περισσότερα

Μαθησιακά Αντικείμενα για το μάθημα ΤΠΕ-Πληροφορική: Παιδαγωγική αξιοποίηση στην πρωτοβάθμια εκπαίδευση

Μαθησιακά Αντικείμενα για το μάθημα ΤΠΕ-Πληροφορική: Παιδαγωγική αξιοποίηση στην πρωτοβάθμια εκπαίδευση Μαθησιακά Αντικείμενα για το μάθημα ΤΠΕ-Πληροφορική: Παιδαγωγική αξιοποίηση στην πρωτοβάθμια εκπαίδευση Καθηγητής Αθανάσιος Τζιμογιάννης Πανεπιστήμιο Πελοποννήσου ΙΤΥΕ «Διόφαντος» ΗΜΕΡΙΔΑ ΕΠΙΜΟΡΦΩΣΗΣ ΣΧΟΛΙΚΩΝ

Διαβάστε περισσότερα

Παρουσίαση, ανάλυση και σύγκριση του ισχύοντος και δύο σύγχρονων Προγραμμάτων Σπουδών της Γεωμετρίας

Παρουσίαση, ανάλυση και σύγκριση του ισχύοντος και δύο σύγχρονων Προγραμμάτων Σπουδών της Γεωμετρίας Λεμονίδης, Χ. (2015). Παρουσίαση, ανάλυση και σύγκριση του ισχύοντος και δύο σύγχρονων Προγραμμάτων Σπουδών της Γεωμετρίας. Προσκεκλημένη ομιλία στο 13 ο Διήμερο Διαλόγου για τη Διδασκαλία των Μαθηματικών.

Διαβάστε περισσότερα

Παρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας. Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013

Παρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας. Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013 Παρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013 Σκοπός τη σημερινής παρουσίασης: αναγνώριση της παρατήρησης ως πολύτιμη

Διαβάστε περισσότερα

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΟ ΛΥΚΕΙΟ Εισαγωγή Η μεγάλη ανάπτυξη και ο ρόλος που

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Αναλύοντας κείμενα και εικόνες για την έννοια της περιοδικότητας στα σχολικά βιβλία

Αναλύοντας κείμενα και εικόνες για την έννοια της περιοδικότητας στα σχολικά βιβλία Αναλύοντας κείμενα και εικόνες για την έννοια της περιοδικότητας στα σχολικά βιβλία Βασιλική Σπηλιωτοπούλου Παιδαγωγικό Τμήμα ΑΣΠΑΙΤΕ Μεταδιδάκτωρ ερευνήτρια: Χρυσαυγή Τριανταφύλλου Οι άνθρωποι από πολύ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind

Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind Λαδιάς Αναστάσιος, Σχολικός Σύµβουλος Πληροφορικής Β Αθήνας Μπέλλου Ιωάννα, Σχολικός Σύµβουλος Πληροφορικής

Διαβάστε περισσότερα

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία Β. Δρακόπουλος Σχολικός Σύμβουλος Δευτεροβάθμιας Εκπαίδευσης Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Ε.Κ.Π.Α. Σχολή Θετικών

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

Βασικές Αρχές Ψηφιακής Τεχνολογίας: Πρακτικές ιδέες για τη διδασκαλία ενός θεωρητικού μαθήματος

Βασικές Αρχές Ψηφιακής Τεχνολογίας: Πρακτικές ιδέες για τη διδασκαλία ενός θεωρητικού μαθήματος Βασικές Αρχές Ψηφιακής Τεχνολογίας: Πρακτικές ιδέες για τη διδασκαλία ενός θεωρητικού μαθήματος Πάσχου Αικατερίνη 1 katpas@sch.gr 1 Εκπαιδευτικός Πληροφορικής, 2 ο ΕΠΑ.Λ. Καρδίτσας Περίληψη Το μάθημα Βασικές

Διαβάστε περισσότερα

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Λεμονίδης Χ. (2007). Ο εκσυγχρονισμός των μαθηματικών περιεχομένων στα νέα βιβλία της Α και Γ τάξης του Δημοτικού Σχολείου. Γέφυρες, 31:24-31. Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ

Διαβάστε περισσότερα

1 Διαθεματικό Ενιαίο Πλαίσιο Προγράμματος Σπουδών Μαθηματικών

1 Διαθεματικό Ενιαίο Πλαίσιο Προγράμματος Σπουδών Μαθηματικών 1.Τίτλος: «Ολυμπιακοί αγώνες» 2.Εμπλεκόμενες γνωστικές περιοχές: Το σενάριο απευθύνεται σε μαθητές της Ε τάξης. Στο συγκεκριμένο σενάριο εμπλέκονται οι γνωστικές περιοχές των Μαθηματικών (Γεωμετρία), της

Διαβάστε περισσότερα

«Η διδασκαλία των μονοδιάστατων πινάκων στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον»

«Η διδασκαλία των μονοδιάστατων πινάκων στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον» «Η διδασκαλία των μονοδιάστατων πινάκων στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον» Σαρημπαλίδης Ιωάννης 1, Μιχαηλίδης Νίκος 2, Μισαηλίδης Άνθιμος 3 1 Καθηγητής Πληροφορικής, Γενικό Λύκειο

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής

Διδακτική της Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Η Πληροφορική στην Ελληνική Δευτεροβάθμια Εκπαίδευση - Γυμνάσιο Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

Εναλλακτικά µπoρεί να χρησιµοποιηθεί και το MaLT, η τρισδιάστατη έκδοση του Χελωνόκοσµου.

Εναλλακτικά µπoρεί να χρησιµοποιηθεί και το MaLT, η τρισδιάστατη έκδοση του Χελωνόκοσµου. 2. Εκπαιδευτικό λογισµικό για τα µαθηµατικά Το σκεπτικό της επιλογής του εκπαιδευτικού λογισµικού για την ευρεία επιµόρφωση για τους συναδέλφους µαθηµατικούς είναι άµεσα συνδεδεµένο µε την προβληµατική

Διαβάστε περισσότερα

ΣΥΝΕΔΡΙΟ «ΠΡΟΩΘΩΝΤΑΣ ΤΗΝ ΠΟΙΟΤΗΤΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ: ΜΙΑ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ»

ΣΥΝΕΔΡΙΟ «ΠΡΟΩΘΩΝΤΑΣ ΤΗΝ ΠΟΙΟΤΗΤΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ: ΜΙΑ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ» ΣΥΝΕΔΡΙΟ «ΠΡΟΩΘΩΝΤΑΣ ΤΗΝ ΠΟΙΟΤΗΤΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ: ΜΙΑ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ» του Διεθνούς Ερευνητικού Προγράμματος: Ανάπτυξη θεωρητικού σχήματος κατανόησης της ποιότητας στην εκπαίδευση: Εγκυροποίηση του

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ

ΕΠΙΜΟΡΦΩΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ Πράξη «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21ου αιώνα) ΠΙΛΟΤΙΚΗ ΕΦΑΡΜΟΓΗ, στους Άξονες Προτεραιότητας 1,2,3, -Οριζόντια Πράξη», ΕΠΙΜΟΡΦΩΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ Θεοδόσιος Ζαχαριάδης, Καθηγητής

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ: ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ

ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ: ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ Πανεπιστήμιο Θεσσαλίας ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ: ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Σκοπός του Μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ Χριστόφορος Δερμάτης ΠΕ 0 3 Γυμνάσιο - Λυκειακές τάξεις Κασσιόπης Κέρκυρα 01/07/2015 1. Συνοπ τική π εριγραφή της ανοιχτής εκπαιδευτικής π ρακτικής Γίνεται

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ 184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία

Διαβάστε περισσότερα

Περιγραφή μαθήματος. Εαρινό εξάμηνο 2009-2010. Διδάσκων: Παλαιγεωργίου Γ. Διαλέξεις: Δευτέρα 14:00-18:00 email: gpalegeo.teaching@gmail.

Περιγραφή μαθήματος. Εαρινό εξάμηνο 2009-2010. Διδάσκων: Παλαιγεωργίου Γ. Διαλέξεις: Δευτέρα 14:00-18:00 email: gpalegeo.teaching@gmail. Μάθημα: Διδακτική της Πληροφορικής I Εαρινό εξάμηνο 2009-2010 Διδάσκων: Παλαιγεωργίου Γ. Διαλέξεις: Δευτέρα 14:00-18:00 email: gpalegeo.teaching@gmail.com Περιγραφή μαθήματος Με τον όρο "Διδακτική της

Διαβάστε περισσότερα

Μια διαφορετική προσέγγιση για την κατασκευή των γεωμετρικών τόπων των κωνικών τομών με το λογισμικό GeoGebra

Μια διαφορετική προσέγγιση για την κατασκευή των γεωμετρικών τόπων των κωνικών τομών με το λογισμικό GeoGebra Μια διαφορετική προσέγγιση για την κατασκευή των γεωμετρικών τόπων των κωνικών τομών με το λογισμικό GeoGebra Αργύρη Παναγιώτα Μαθηματικός στο Πρότυπο Πειραματικό Λύκειο Ευαγγελικής Σχολής Σμύρνης argiry@gmail.com

Διαβάστε περισσότερα

ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ. «Τα μυστικά ενός αγγείου»

ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ. «Τα μυστικά ενός αγγείου» ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ «Τα μυστικά ενός αγγείου» ΜΠΙΛΙΟΥΡΗ ΑΡΓΥΡΗ 2011 ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΟΥΣΕΙΑΚΗΣ ΑΓΩΓΗΣ «ΤΑ ΜΥΣΤΙΚΑ ΕΝΟΣ ΑΓΓΕΙΟΥ» ΘΕΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ Η παρούσα εργασία αποτελεί το θεωρητικό

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Αξιοποίηση Διαδραστικού Πίνακα στη. Συναρτήσεων - Γραφικών παραστάσεων

Αξιοποίηση Διαδραστικού Πίνακα στη. Συναρτήσεων - Γραφικών παραστάσεων 2ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ - ΠΑΤΡΑ 28-30/4/2011 1283 Αξιοποίηση Διαδραστικού πίνακα στη διδασκαλία Συναρτήσεων - Γραφικών παραστάσεων Σ. Παπαδημητρίου Διεύθυνση Εκπαιδευτικής Ραδιοτηλεόρασης, ΥΠΔΒΜΘ, sofipapadi@gmail.com

Διαβάστε περισσότερα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά Ε. Κολέζα Α. Θεωρητικές αρχές σχεδιασµού µιας µαθηµατικής ενότητας: Βήµατα για τη συγγραφή του σχεδίου Β. Θεωρητικό υπόβαθρο της διδακτικής πρότασης

Διαβάστε περισσότερα