GEOMETRINĖS OPTIKOS PAGRINDAI

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "GEOMETRINĖS OPTIKOS PAGRINDAI"

Transcript

1 OPTINĖS SISTEMOS GEOMETRINĖS OPTIKOS PAGRINDAI sites.google.com/site/optinessistemos/ I. ĮVADAS Ženklai geometrinėje optikoje LABAI SVARBU!

2 Fizikinė optika ir geometrinė optika Fizikinė optika - bangų optika, pilnai aprašoma remiantis elektrodinamikos dėsniais, Maksvelo lygtimis. Geometrinė optika supaprastintas fizikinės optikos modelis. Plokščias bangos frontas: Plokščiam paviršiuje bangos fazė yra pastovi. Bėgant laikui bangos fronto paviršius nekinta: jis yra sklidimo invariantas. Sferinis bangos frontas: Bangos fazė yra pastovi sferiniame paviršiuje. Bėgant laikui, paviršius plečiasi (bet išlaikomas energijos tvermės dėsnis Spinduliai yra: Bangos fronto paviršiaus normalės. Šviesos dalelių skidimo trajektorijos. Sferinė ir plokščia banga Diverguojanti sferinė banga Konverguojanti sferinė banga Taškinis šaltinis Taškinis atvaizdas Sferinė banga plokščia banga Taškinis šaltinis begalybėje

3 Geometrinė optika yra paremta šiomis prielaidomis ir supaprastinimais: Spinduliai sklinda tiesiomis trajektorijomis (neatsižvelgiama į difrakcijos reiškinį). Spinduliai neneša fazinės informacijos (persiklojus spinduliams, interferencija nevyksta). Spindulių sklidimo trajektorija yra apgręžiama (apgražos principas): jei žinomas spindulio kelias nuo objekto link atvaizdo, pakeitus spindulio sklidimo kryptį (nuo atvaizdo link objekto) spindulys sklis tuo pačiu keliu. Modelis galioja tik tada, kai nagrinėjami atstumai yra pakankamai dideli lyginant su bangos ilgiu ~ 100 λ. Negalioja židinio aplinkoje, ties šaltiniu, ties diafragmos ar šešėlio kraštu. Optinio kelio ilgis yra pastovus: Spinduliams galioja Snelijaus ir atspindžio dėsniai Spinduliuotės intensyvumas (apšvietimas) gali būti nagrinėjamas kaip spindulių tankis Ideali optinė sistema Krintanti šviesa Kiekvienas objekto Kurios idealiu atveju elementas virs kuria konverguojančiom diverguojančias atvaizdo erdvėje sferines bangas Kiekvienas objekto taškas (objekto erdvėje) idealiu atveju bus atvaizduotas į atskirą tašką atvaizdo erdvėje. Sakoma, kad objektas ir atvaizdas yra konjuguoti (sujungtiniai). Ar būna idealių optinių sistemų? Ne. Tačiau galima rasti kompromisų.

4 Tobulas atvaizdavimas taškinio šaltinio begalybėje Židinys ties F Parabolinis veidrodis

5 Tobulas atvaizdavimas taškinio šaltinio į begalybę Židinys Parabolinis veidrodis Apibendrinimas: tobulos sistemos

6 Fokusavimas - plokščio fronto virtimas į sferinį Bangos ekvifaziniai paviršiai yra nutolę per λ ore ir per λ/n dielektrinėje medžiagoje. Bangos fronte nėra trūkių ties sąveikos paviršiumi. Šviesos lūžimas ties kreivu paviršiumi iškreipia fronto kreivumą. Elipsės formos laužiantysis paviršius geba pilnai transformuoti plokščią bangos frontą, sklindantį išilgai optinės ašies, sferiniu. tobulas fokusavimasis (geometrinės optikos artiniu). Jei naudotumėme bet kokį kitą paviršių ar banga sklistų neišilgai optinės ašies, gautumėme ne idealiai sferinį bangos frontą. Fokusavimas bus neidealus aberuotas. Tobulas atvaizdavimas Paprasčiausias atvaizdavimo sistemos tikslas transformuoti diverguojančią sferinę bangą į konverguojančią, t.y. taškinį šaltinį atvaizduoti į taškinį atvaizdą. Idealus atvaizduojantis elementas gali būti asferinis (graik ne sfera ) lęšis. Jis idealiai atvaizduoja tam tikru atstumu esantį taškinį objektą esantį ant optinės ašies. Tokius elementus pagaminti yra sunku, todėl paprastai naudojami sferiniai paviršiai.

7 Atvaizdavimas sferiniu paviršiumi Gaunamas netobulas, aberuotas atvaizdas, nes konverguojantys spinduliai negali susirinkti viename taške. Šiuo atveju stebime sferinę aberaciją. Paraksialinė optika Sfera: Elipsoidas: Identiška sritis Hiperboloidas: Paraboloidas: Visus šiuos paviršius galima išskleisti Teiloro eilute: Taigi kai x yra pakankamai mažas lyginant su r, visus šiuos paviršius galima aprašyti vienu paviršiumi: pvz. sfera.

8 Paraksialinė optika Jei sau užsiduodame sąlygas, kad 3 5 x x sin x x...; 3! 6! 3 5 x 2x tan x x...; x x cos x 1...; 2! 4! x yra mažas, kas dar supaprastėja: sin tan Snelijaus dėsnis n 1 n 2 Paraksialinė geometrinė optika = `P`; ` = ` = 0 ( ) Paviršiaus kreivumą mes paisome tik paraksialinio Snelijaus dėsnio artiniu: = ` ` Matematinis nagrinėjimas gerokai suprastėja!

9 Paraksialinė geometrinė optika Iš trikampių AP`C ir P`A`C seka: = + ; = ; atsimename susitarimą dėl kampų ženklų: < 0; > 0; < 0;, > 0. = ; = ; ( ) = `( ) Paraksialinė geometrinė optika ( ) = ( ) = sin = tan = h = sin = tan = h = sin = tan = h h h h = h = n = K Konjuguota lygtis (sieja atvaizdą su objektu) - laužiamoji geba = 1 kreivumas

10 = n = K K > 0 paviršius yra teigiamas, konverguojantis; K < 0 paviršius yra neigiamas, diverguojantis; Priklauso nuo kreivumo (c) ir n ir n verčių K [1/m] dioptrija. kai, tada = = antrasis (second, back) židinio nuotolis, teigiamas dydis kai, tada = = pirmasis (first, front) židinio nuotolis, neigiamas dydis = n = K Kai bus su veidrodžiai? Su veidrodžiais Snelijaus dėsnis supaprastėja į K > 0 paviršius yra teigiamas, konverguojantis; K < 0 paviršius yra neigiamas, diverguojantis; Priklauso nuo kreivumo spindulio (c) ir n ir n verčių K [1/m] dioptrija. = (statom į konjuguotą lygtį) = 2 = K + = 2 = kai, tada = = 1 2 = 2 K > 0 glaudžiantis veidrodis K < 0 sklaidantis veidrodis K = 0 plokščias veidrodis nepriklauso nuo n

11 = n = K Plono lęšio samprata n 1; n l 1; l n 1; n 2, µ l 1; l 2 = = + (vienas ant kito) n 1; n 2, µ l 1; l 2 l 2; l n 2; n = = = = lęšio lūžio rodiklis = μ + = + = pirmo paviršiaus atvaizdas antro paviršiaus objektas Plono lęšio samprata Jei lęšis yra ore, tada n 1 = n 2 = = ( 1)( ) = Jei objekto ir atvaizdo lūžio rodikliai skiriasi: Plono lęšio formulė Židinio nuotoliai: = 1 = 1 = 1 = 1 Efektyvus židinio nuotolis (atstumas rodo optinį kelio ilgį!) = F ef > 0 glaudžiamas lęšis F ef < 0 sklaidomas lęšis = = čia jau realus kelio ilgis (ne optinis)

12 Laužiamosios gebos prasmė 1 = 1 + Algebrinis priedas prie fronto kreivumo fronto kreivumas 1/l fronto kreivumas 1/l l l Todėl iš principo galima sudėti kiek norime paviršių: 1 = bet, mes nagrinėjame paviršius kurie persikloja (plonus), kuo daugiau paviršių, tuo daugiau nukrypstama nuo plono lęšio sampratos Manginio veidrodis lęšis, kurio vienas galas atspindintis = + + = 1 ; = ; = 1. = 2 1 2

13 Throw Visas atstumas nuo objekto iki atvaizdo T (ang. throw). = + = = + = + 2 = ( + ) 0 koks minimalus T gali būti? = 4 ; = 2 ; = 2 šitą pravartu atsiminti! Plono lęšio formulės ir didinimas ~ ; = ; = ` ~ ; ~ ; ` ` = ; ` = ` ` ` ` ` ` = ; ` ` = = h h = h h = skersinis didinimas didinimas, h < 0, tad jei M < 0 atvaizdas apverstas; M > 0 atvaizdas tiesus, > 1 atvaizdas padidėjęs. Niutono sistemoje: Gauso sistemoje: = veidrodžiui = = 1 = Jei lęšis ne ore: tada visur reikia keisti: ; ; ;

14 Plono lęšio formulės ir didinimas = h h = = skersinis didinimas jei ne ore ; Kampinis didinimas kampo santykis tarp dviejų ašinių spindulių (kurie prasideda ir baigiasi ties ašimi) Išilginis didinimas: 1 = = 0 + = čia, M skersinis didinimas, Δl labai mažas. jei ne ore: ; ; Regimasis didinimas Koks didinimas šiuo atveju (objektas židinio plokštumoje)? Jau apibrėžtas didinimas neturi prasmės, kai objektas ar atvaizdas yra begalybėje, nes jis tiesiog nesiformuoja. Klausimas? Ar mes matysime ką nors jei žiūrėsime su akimi iš kitos lęšio pusės? Atsakymas: TAIP, nes akis yra atskira optinė sistema, kuri suformuos savo vaizdą.

15 Regimasis didinimas β regimasis objekto kampas AKIS FOKUSUOJA Į F AKIS FOKUSUOJA Į BEGALYBĘ Kuo arčiau akies pridėsime objektą tuo didesnį jį matysime. Doh! Bet labai arti akies pridėti negalima, nes akis jau nebesugebės sufokusuti. Sutarta, kad mažiausias atstumas, kuriame akis (neįsitempusi) geba fokusuoti yra 25 cm. Regimasis didinimas h AKIS FOKUSUOJA Į BEGALYBĘ = ; regimasis didinimas. h β regimasis objekto kampas AKIS FOKUSUOJA AŠTRIAUSIAI = h = h 25 = 25 ; regimasis didinimas, kai akis fokusuoja į begalybę

16 Regimasis didinimas = ; AKIS FOKUSUOJA Į 25cm Maksimaliausias didinimas, kurį galima pasiekti su vienu optiniu lęšiu AKIS FOKUSUOJA AŠTRIAUSIAI Apibendrinimas - plono lęšio vartotojui 1 = = = Penki nežinomieji: M, l, l, f, T. Užtenka žinoti du bet kuriuos dydžius ir galima susiskaičiuoti visus kitus: = 1 = ( 1) = 1 Veidrodžiui: = 1 = ( 1)( ) + = 2 = = = 2 = K Smith 30 psl. daugiau yra

17 Skyriai I-III Dalis skaidrių adaptuota iš: Uždaviniai Sužymėkite ženklus:

18 Užduotis (II): I. Jūs turite skaidrių projektorių. Atstumas nuo skaidrės iki ekrano 10 m. Skaidrės aukštis 2 cm, o reikalingas aukštis ekrane 1,6 m. Kokio lęšio mums reikės (tipas, židinio nuotolis)? Kokiu atstumu skaidrė bus nutolusi nuo lęšio? II. Tarkime, kad skaidrė pasislinko 0,1 mm arčiau lęšio. Kiek reikės patraukti ekraną, kad matytumėme vaizdą? Kiek reiktų patraukti lęšį, kad vėl gautumėme aiškų vaizdą ekrane? Skaičiuokit 4 ženklų tikslumu! Užduotis(III): Jums reikia veidrodžio, kuris sukurtų apverstą realų atvaizdą, tris kartus didesnį nei objektas, ir atstumas tarp objekto ir atvaizdo būtų 1 m. Koks turi būti šio veidrodžio kreivumas?

19 Užduotis (IV) Livenhookas susikonstravo mikroskopą iš vieno lęšio ir jis didino 300x kartų. Koks buvo šio lęšio židinio nuotolis? Įprasta lūpa didina 5x kartus, koks jos židinio nuotolis? Užduotis (V) Įrodykite, kad idealiam fokusavimui reikia hiperboloidinio paviršiaus.

Matematika 1 4 dalis

Matematika 1 4 dalis Matematika 1 4 dalis Analizinės geometrijos elementai. Tiesės plokštumoje lygtis (bendroji, kryptinė,...). Taško atstumas nuo tiesės. Kampas tarp dviejų tiesių. Plokščiosios kreivės lygtis Plokščiosios

Διαβάστε περισσότερα

06 Geometrin e optika 1

06 Geometrin e optika 1 06 Geometrinė optika 1 0.1. EIKONALO LYGTIS 3 Geometrinėje optikoje įvedama šviesos spindulio sąvoka. Tai leidžia Eikonalo lygtis, kuri išvedama iš banginės lygties monochromatinei bangai - Helmholtco

Διαβάστε περισσότερα

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI 008 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO VERTINIMO INSTRUKCIJA Pagrindinė sesija Kiekvieno I dalies klausimo teisingas atsakymas vertinamas tašku. I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI

Διαβάστε περισσότερα

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1 Spalvos Grafika ir vizualizavimas Spalvos Šviesa Spalvos Spalvų modeliai Gama koregavimas Šviesa Šviesos savybės Vandens bangos Vaizdas iš šono Vaizdas iš viršaus Vaizdas erdvėje Šviesos bangos Šviesa

Διαβάστε περισσότερα

Kodėl mikroskopija? Optinė mikroskopija: įvadas. Žmogaus akis. Žmogaus akis. Žmogaus akis. Vaizdo formavimasis žmogaus akyje

Kodėl mikroskopija? Optinė mikroskopija: įvadas. Žmogaus akis. Žmogaus akis. Žmogaus akis. Vaizdo formavimasis žmogaus akyje Kodėl mikroskopija? Todėl, kad pamatyti reiškia patikėti... Optinė mikroskopija: įvadas Žmogaus akis Žmogaus akis Mato šviesą, kurios bangų ilgis nuo 400 nm (violetinė) iki 750 nm (mėlyna) Stiebelių ir

Διαβάστε περισσότερα

XI. MIKROSKOPAI OPTINĖS SISTEMOS. XI. Mikroskopai. sites.google.com/site/optinessistemos/ 2016 pavasario semestras

XI. MIKROSKOPAI OPTINĖS SISTEMOS. XI. Mikroskopai. sites.google.com/site/optinessistemos/ 2016 pavasario semestras OPTINĖS SISTEMOS XI. Mikroskopai sites.google.com/site/optinessistemos/ Mikroskopas Pagrindiniai mikroskopijos principai Vaizdų susidarymas Kohler apšvietimas Tiesioginis ir invertuotas mikroskopas Objektyvai

Διαβάστε περισσότερα

I.4. Laisvasis kūnų kritimas

I.4. Laisvasis kūnų kritimas I4 Laisvasis kūnų kitimas Laisvuoju kitimu vadinamas judėjimas, kuiuo judėtų kūnas veikiamas tik sunkio jėos, nepaisant oo pasipiešinimo Kūnui laisvai kintant iš nedidelio aukščio h (dau mažesnio už Žemės

Διαβάστε περισσότερα

Dviejų kintamųjų funkcijos dalinės išvestinės

Dviejų kintamųjų funkcijos dalinės išvestinės Dviejų kintamųjų funkcijos dalinės išvestinės Dalinės išvestinės Tarkime, kad dviejų kintamųjų funkcija (, )yra apibrėžta srityje, o taškas 0 ( 0, 0 )yra vidinis srities taškas. Jei fiksuosime argumento

Διαβάστε περισσότερα

Elektronų ir skylučių statistika puslaidininkiuose

Elektronų ir skylučių statistika puslaidininkiuose lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt

Διαβάστε περισσότερα

15 darbas ŠVIESOS DIFRAKCIJOS TYRIMAS

15 darbas ŠVIESOS DIFRAKCIJOS TYRIMAS 15 daras ŠVIESOS DIFRKCIJOS TYRIMS Užduotys 1. Išmatuoti plyšio plotį.. Išmatuoti atstumą tarp dviejų plyšių. 3. Nustatyti šviesos angos ilgį iš difrakcinio vaizdo pro apskritą angą. 4. Nustatyti kompaktinio

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

1 TIES ES IR PLOK TUMOS

1 TIES ES IR PLOK TUMOS G E O M E T R I J A Gediminas STEPANAUSKAS 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir ties es plok²tumoje normalin es lygtys 111 Vektorin e forma Plok²tumos α padetis koordina iu sistemos Oxyz atºvilgiu

Διαβάστε περισσότερα

VI SKYRIUS VI SKYRIUS OPTINĖ HOLOGRAFIJA

VI SKYRIUS VI SKYRIUS OPTINĖ HOLOGRAFIJA 180 OPTINĖ HOLOGRAFIJA Holografija vadinamas šviesos bangų struktūros užrašymo ir atgaminimo metodas, grindžiamas koherentinių šviesos pluoštelių difrakcija ir interferencija. Kaip ir fotografijoje, ji

Διαβάστε περισσότερα

Matematika 1 3 dalis

Matematika 1 3 dalis Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A

Διαβάστε περισσότερα

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai

Διαβάστε περισσότερα

Elektroninio mikroskopo tyrimas

Elektroninio mikroskopo tyrimas Laboratorinis darbas Nr. 9 Elektroninio mikroskopo tyrimas Darbo tikslas:. Susipažinti su elektroninio mikroskopo veikimo principu ir jo panaudojimo galimybėmis.. Gauti mikroskopo ekrane mikroschemos elemento

Διαβάστε περισσότερα

OPTINIŲ TELESKOPŲ PERSPEKTYVOS

OPTINIŲ TELESKOPŲ PERSPEKTYVOS OPTINIŲ TELESKOPŲ PERSPEKTYVOS Žemės atmosferos įtaka Žemės atmosfera praleidžia regimąją šviesą, radijo bangas ir dalį infraraudonųjų spindulių. Atmosfera sugeria iš kosmoso sklindančius gama, rentgeno

Διαβάστε περισσότερα

XXXVII TARPTAUTINĖ FIZIKOS OLIMPIADA 2006 m. liepos 8 17 d., Singapūras

XXXVII TARPTAUTINĖ FIZIKOS OLIMPIADA 2006 m. liepos 8 17 d., Singapūras XXXVII TARPTAUTINĖ FIZIKOS OLIMPIADA 006 m. liepos 8 17 d., Singapūras Teorinė užduotis 1 Gravitacija neutronų interferometre Nagrinėsime Collela, Overhauser and Werner neutronų interferencijos eksperimentą

Διαβάστε περισσότερα

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilniaus universitetas Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilnius 1992 T U R I N Y S 1. Vektorinė erdvė............................................. 3 2. Matricos rangas.............................................

Διαβάστε περισσότερα

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis PATVIRTINTA Ncionlinio egzminų centro direktorius 0 m. birželio d. įskymu Nr. (..)-V-7 0 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pgrindinė sesij I dlis Užd. Nr. 4 7

Διαβάστε περισσότερα

Analizės uždavinynas. Vytautas Kazakevičius m. lapkričio 1 d.

Analizės uždavinynas. Vytautas Kazakevičius m. lapkričio 1 d. Analizės uždavinynas Vytautas Kazakevičius m. lapkričio d. ii Vienmatė analizė Faktorialai, binominiai koeficientai. Jei a R, n, k N {}, tai k! = 3 k, (k + )!! = 3 5 (k + ), (k)!! = 4 6 (k); a a(a ) (a

Διαβάστε περισσότερα

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof.

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof. Papildoo ugdyo okykla izikos olipas Mechanika Dinaika (Paskaitų konspektas) 9. sausio -8 d. Prof. Edundas Kuokštis Vilnius Paskaita # Dinaika Jei kineatika nagrinėja tik kūnų judėjią, nesiaiškindaa tą

Διαβάστε περισσότερα

Įžanginių paskaitų medžiaga iš knygos

Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 1 Teiginio

Διαβάστε περισσότερα

ŠVIESOS SKLIDIMAS IZOTROPINĖSE TERPĖSE

ŠVIESOS SKLIDIMAS IZOTROPINĖSE TERPĖSE ŠVIESOS SKLIDIMAS IZOTROPIĖSE TERPĖSE 43 2.7. SPIDULIUOTĖS IR KŪO SPALVOS Spinduliuotės ir kūno optiniam apibūdinimui naudojama spalvos sąvoka. Spalvos reiškinys yra nepaprastas. Kad suprasti spalvos esmę,

Διαβάστε περισσότερα

04 Elektromagnetinės bangos

04 Elektromagnetinės bangos 04 Elektromagnetinės bangos 1 0.1. BANGINĖ ŠVIESOS PRIGIMTIS 3 Šiame skyriuje išvesime banginę lygtį iš elektromagnetinio lauko Maksvelo lygčių. Šviesa yra elektromagnetinė banga, kurios dažnis yra optiniame

Διαβάστε περισσότερα

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 Teiginio

Διαβάστε περισσότερα

ŠVIESOS SKLIDIMAS. FOTOMETRIJA. LĘŠIAI IR OPTINIAI PRIETAISAI. ŠVIESOS BANGINĖS SAVYBĖS

ŠVIESOS SKLIDIMAS. FOTOMETRIJA. LĘŠIAI IR OPTINIAI PRIETAISAI. ŠVIESOS BANGINĖS SAVYBĖS LIETUVOS IZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ IZIKŲ MOKYKLA OTONAS ŠVIESOS SKLIDIMAS OTOMETRIJA LĘŠIAI IR OPTINIAI PRIETAISAI ŠVIESOS BANGINĖS SAVYBĖS LIETUVOS IZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO

Διαβάστε περισσότερα

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Pirmasis uždavinys Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Uždavinio formulavimas a) Žinoma n = 50 tiriamo

Διαβάστε περισσότερα

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 04 m. birželio 6 d. Nr. (.)-V-69birželio 4 04 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA I dalis Kiekvieno I dalies klausimo

Διαβάστε περισσότερα

Gabija Maršalkaitė Motiejus Valiūnas. Astronomijos pratybų užduočių komplektas

Gabija Maršalkaitė Motiejus Valiūnas. Astronomijos pratybų užduočių komplektas Gabija Maršalkaitė Motiejus Valiūnas Astronomijos pratybų užduočių komplektas Vilnius 2014 1 Įvadas 1.1 Astronomijos olimpiados Lietuvoje kylant moksleivių susidomėjimu astronomijos olimpiada buvo pastebėta,

Διαβάστε περισσότερα

PNEUMATIKA - vožtuvai

PNEUMATIKA - vožtuvai Mini vožtuvai - serija VME 1 - Tipas: 3/2, NC, NO, monostabilūs - Valdymas: Mechaninis ir rankinis - Nominalus debitas (kai 6 barai, Δp = 1 baras): 60 l/min. - Prijungimai: Kištukinės jungtys ø 4 žarnoms

Διαβάστε περισσότερα

Rinktiniai informacijos saugos skyriai. 3. Kriptografija ir kriptografijos protokolai: Klasikinė kriptografija

Rinktiniai informacijos saugos skyriai. 3. Kriptografija ir kriptografijos protokolai: Klasikinė kriptografija Rinktiniai informacijos saugos skyriai 3. Kriptografija ir kriptografijos protokolai: Klasikinė kriptografija Paskaitos tikslai Šioje temoje nagrinėjami klausimai: Perstatų šifrai Keitinių šifrai Vienos

Διαβάστε περισσότερα

III.Termodinamikos pagrindai

III.Termodinamikos pagrindai III.ermodinamikos pagrindai III.. Dujų plėtimosi darbas egu dujos yra cilindre su nesvariu judančiu stūmokliu, kurio plotas lygus S, ir jas veikia tik išorinis slėgis p. Pradinius dujų parametrus pažymėkime

Διαβάστε περισσότερα

KOMPIUTERINIS PROJEKTAVIMAS

KOMPIUTERINIS PROJEKTAVIMAS LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Statybinių konstrukcijų katedra Tatjana Sankauskienė KOMPIUTERINIS PROJEKTAVIMAS AutoCAD sistemoje Mokomoji knyga inžinerinių specialybių

Διαβάστε περισσότερα

Algoritmai. Vytautas Kazakevičius

Algoritmai. Vytautas Kazakevičius Algoritmai Vytautas Kazakevičius September 2, 27 2 Turinys Baigtiniai automatai 5. DBA.................................. 5.. Abėcėlė............................ 5..2 Automatai..........................

Διαβάστε περισσότερα

5 klasė. - užduotys apie varniuką.

5 klasė. - užduotys apie varniuką. 5 klasė - užduotys apie varniuką. 1. Varniukas iš plastilino lipdė raides ir iš jų sudėliojo užrašą: VARNIUKO OLIMPIADA. Vienodas raides jis lipdė iš tos pačios spalvos plastelino, o skirtingas raides

Διαβάστε περισσότερα

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra. Juozas Navickas FIZIKA. I dalis MOKOMOJI KNYGA

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra. Juozas Navickas FIZIKA. I dalis MOKOMOJI KNYGA LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra Juozas Navickas FIZIKA I dalis MOKOMOJI KNYGA KAUNAS, ARDIVA 8 UDK 53(75.8) Na95 Juozas Navickas FIZIKA, I dalis

Διαβάστε περισσότερα

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

Ląstelės biologija. Laboratorinis darbas. Mikroskopavimas

Ląstelės biologija. Laboratorinis darbas. Mikroskopavimas Ląstelės biologija Laboratorinis darbas Mikroskopavimas Visi gyvieji organizmai sudaryti iš ląstelių. Ląstelės yra organų, o kartu ir viso organizmo pagrindinis struktūrinis bei funkcinis vienetas. Dauguma

Διαβάστε περισσότερα

Matematinės analizės konspektai

Matematinės analizės konspektai Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,

Διαβάστε περισσότερα

KAIP VYKSTA FOTOSENSIBILIZACIJA BIOLOGINĖSE SISTEMOSE?

KAIP VYKSTA FOTOSENSIBILIZACIJA BIOLOGINĖSE SISTEMOSE? 2 skyrius KAIP VYKSTA FOTOSENSIBILIZACIJA BIOLOGINĖSE SISTEMOSE? Trumpai pateikiami svarbiausi šviesos parametrai, reikalavimai efektyviems fotosensibilizatoriams ir esminiai fotosenibilizacijos reakcijų

Διαβάστε περισσότερα

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS .5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS 5.. Pirmoji Bolcao Koši teorema. Jei fucija f tolydi itervale [a;b], itervalo galuose įgyja priešigų želų reišmes, tai egzistuoja tos tašas cc, ( ab ; ), uriame

Διαβάστε περισσότερα

KURKIME ATEITĮ DRAUGE! FIZ 414 APLINKOS FIZIKA. Laboratorinis darbas SAULĖS ELEMENTO TYRIMAS

KURKIME ATEITĮ DRAUGE! FIZ 414 APLINKOS FIZIKA. Laboratorinis darbas SAULĖS ELEMENTO TYRIMAS EUROPOS SĄJUNGA Europos socialinis fondas KURKIME ATEITĮ DRAUGE! 2004-2006 m. Bendrojo programavimo dokumento 2 prioriteto Žmogiškųjų išteklių plėtra 4 priemonė Mokymosi visą gyvenimą sąlygų plėtra Projekto

Διαβάστε περισσότερα

AVIACINĖS RADIOLOKACINĖS SISTEMOS

AVIACINĖS RADIOLOKACINĖS SISTEMOS VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS Romualdas Malinauskas AVIACINĖS RADIOLOKACINĖS SISTEMOS Mokomoji knyga Vilnius 2007 UDK 621.396.9:629.7(075.8) Ma 308 Romualdas Malinauskas. AVIACINĖS RADIOLOKACINĖS

Διαβάστε περισσότερα

EUROPOS CENTRINIS BANKAS

EUROPOS CENTRINIS BANKAS 2005 12 13 C 316/25 EUROPOS CENTRINIS BANKAS EUROPOS CENTRINIO BANKO NUOMONĖ 2005 m. gruodžio 1 d. dėl pasiūlymo dėl Tarybos reglamento, iš dalies keičiančio Reglamentą (EB) Nr. 974/98 dėl euro įvedimo

Διαβάστε περισσότερα

Taikomoji branduolio fizika

Taikomoji branduolio fizika VILNIAUS UNIVERSITETAS Taikomoji branduolio fizika Parengė A. Poškus Vilnius 2015-05-20 Turinys 1. Neutronų sąveika su medžiaga...1 1.1. Neutronų sąveikos su medžiaga rūšys...1 1.2. Neutrono sukeltų branduolinių

Διαβάστε περισσότερα

FDMGEO4: Antros eilės kreivės I

FDMGEO4: Antros eilės kreivės I FDMGEO4: Antros eilės kreivės I Kęstutis Karčiauskas Matematikos ir Informatikos fakultetas 1 Koordinačių sistemos transformacija Antrosios eilės kreivių lgtis prastinsime keisdami (transformuodami) koordinačių

Διαβάστε περισσότερα

EKONOMETRIJA 1 (Regresinė analizė)

EKONOMETRIJA 1 (Regresinė analizė) EKONOMETRIJA 1 Regresinė analizė Kontrolinis Sudarė M.Radavičius 004 05 15 Kai kurių užduočių sprendimai KOMENTARAS. Kai kuriems uždaviniams tik nusakytos sprendimų gairės, kai kurie iš jų suskaidyti į

Διαβάστε περισσότερα

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu IV DEKARTO KOORDINAČIU SISTEMA VEKTORIAI 41 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n Priminsime, kad šios erdvės elementai yra vektoriai α = (a 1,, a n ) Be mums jau žinomu

Διαβάστε περισσότερα

Įvadas į laboratorinius darbus

Įvadas į laboratorinius darbus M A T E M A T I N Ė S T A T I S T I K A Įvadas į laboratorinius darbus Marijus Radavičius, Tomas Rekašius 2005 m. rugsėjo 26 d. Reziumė Laboratorinis darbas skirtas susipažinti su MS Excel priemonėmis

Διαβάστε περισσότερα

JACKODUR XPS POLISTIRENINĖS PLOKŠTĖS GAMYBAI

JACKODUR XPS POLISTIRENINĖS PLOKŠTĖS GAMYBAI JACKODUR XPS POLISTIRENINĖS PLOKŠTĖS GAMYBAI LT Distributorius: UAB Mproducts Adresas: Verkių g. 36, Vilnius LT-09109 Lietuva Mob.: (+370) 650 19699, (+370) 656 19760 el.p.: info@mproducts.lt www.mproducts.lt

Διαβάστε περισσότερα

MECHANINIS DARBAS, GALIA, ENERGIJA. TVERMĖS DĖSNIAI MECHANIKOJE. HIDRODINAMIKA

MECHANINIS DARBAS, GALIA, ENERGIJA. TVERMĖS DĖSNIAI MECHANIKOJE. HIDRODINAMIKA LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS MECHANINIS DARBAS, GALIA, ENERGIJA TVERMĖS DĖSNIAI MECHANIKOJE HIDRODINAMIKA III KURSO III TURO METODINIAI NURODYMAI IR UŢDUOTYS

Διαβάστε περισσότερα

Ištirti dujų spinduliuotės spektrų ypatumus ir spalvoto tirpalo šviesos sugertį.

Ištirti dujų spinduliuotės spektrų ypatumus ir spalvoto tirpalo šviesos sugertį. 1 Darbo tikslai Ištirti dujų spinduliuotės spektrų ypatumus ir spalvoto tirpalo šviesos sugertį. Užduotys 1. Sugraduoti monochromatorių. 2. Išmatuoti vandenilio dujų spinduliuotės spektro Balmerio serijos

Διαβάστε περισσότερα

Molekulių energijos lygmenys Atomų Spektrai

Molekulių energijos lygmenys Atomų Spektrai Kas ta spektroskopija? Biomolekulių spektroskopija: Įvadas Spektroskopija tai mokslas, kuris tiria medžiagą, panaudodamas EM spinduliuotės sąveiką su ja. Pavyzdys matomos (VIS) srities spektroskopija tai

Διαβάστε περισσότερα

Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras,

Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras, MIF kurss, Bioinformtik, semestrs, 29 6 Tolydžios tške ir intervle funkciju pibrėžimi Teorem Jei f C[, ], f() = A , ti egzistuoj toks c [, ], kd f(c) = 2 Konverguojnčios ir diverguojnčios eikutės

Διαβάστε περισσότερα

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Fizika doc. dr. Vytautas Stankus Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Studentų 50 58 kab. Darbo tel.: 861033946 Vytautas.Stankus@ktu.lt Bendrosios fizikos

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Trigonometrinės Furje eilutės Moksle ir technikoje dažnai susiduriame su periodiniais reiškiniais, apibūdinamais periodinėmis laiko funkcijomis: f(t). 2 Paprasčiausia periodinė

Διαβάστε περισσότερα

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Techninis aprašymas Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Aprašymas Šie vožtuvai skirti naudoti su AMV(E) 335, AMV(E) 435 arba

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 014 m. birželio 5 d. matematikos valstybinį

Διαβάστε περισσότερα

1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad

1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad 45 DISKREČIOJI MATEMATIKA. LOGIKA. PAVYZDŽIAI Raidėmis U, B ir C pažymėti teiginiai: U = Vitas yra studentas ; B = Skirmantas yra studentas ; C = Jonas yra studentas. 1 Tada teigini Ne visi šie vaikinai

Διαβάστε περισσότερα

Skysčiai ir kietos medžiagos

Skysčiai ir kietos medžiagos Skysčiai ir kietos medžiagos Dujos Dujos, skysčiai ir kietos medžiagos Užima visą indo tūrį Yra lengvai suspaudžiamos Lengvai teka iš vieno indo į kitą Greitai difunduoja Kondensuotos fazės (būsenos):

Διαβάστε περισσότερα

KOMPTONO EFEKTO TYRIMAS

KOMPTONO EFEKTO TYRIMAS VILNIAUS UNIVERSITETAS Kietojo kūno elektronikos katedra Atomo ir branduolio fizikos laboratorija Laboratorinis darbas Nr. 7 KOMPTONO EFEKTO TYRIMAS Eksperimentinė dalis 2014-10-25 Čia yra tik smulkus

Διαβάστε περισσότερα

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA JONAS DUMČIUS (1905 1986) TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA 1975 metais rotaprintu spausdintą vadovėlį surinko klasikinės filologijos III kurso studentai Lina Girdvainytė Aistė Šuliokaitė Kristina

Διαβάστε περισσότερα

. (2 taškai) (1 taškas) . (2 taškai) . (2) (2 taškai)

. (2 taškai) (1 taškas) . (2 taškai) . (2) (2 taškai) 0 m. ietuvos 6-ojo fizikos čempionato UŽDUOČŲ SPRENDMA 0 m. gruodžio 6 d. (Kiekvienas uždavinys vertinamas 0 taškų, visa galimų taškų suma 00). Pervyniojant transformatoriaus ritę buvo pastebėta, kad ritėje

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo

Διαβάστε περισσότερα

Atomų sąveikos molekulėje rūšys (joninis ir kovalentinis ryšys). Molekulė mažiausia medžiagos dalelė, turinti esmines medžiagos chemines savybes.

Atomų sąveikos molekulėje rūšys (joninis ir kovalentinis ryšys). Molekulė mažiausia medžiagos dalelė, turinti esmines medžiagos chemines savybes. Atomų sąveikos molekulėje rūšys (joninis ir kovalentinis ryšys). Molekulė mažiausia medžiagos dalelė, turinti esmines medžiagos chemines savybes. Ji susideda iš vienodų arba skirtingų atomų. Molekulėje

Διαβάστε περισσότερα

1. Įvadas. Laisvųjų dalelių kvantinės mechanikos elementai

1. Įvadas. Laisvųjų dalelių kvantinės mechanikos elementai 1. Įvadas. Laisvųjų dalelių kvantinės mechanikos elementai 1.1. Branduolio nukleonų energijos diskretumo aiškinimas. Dalelė stačiakampėje potencialo duobėje Dalelės banginė funkcija tai koordinačių ir

Διαβάστε περισσότερα

SIGNALAI TELEKOMUNIKACIJŲ SISTEMOSE

SIGNALAI TELEKOMUNIKACIJŲ SISTEMOSE VILNIAUS UNIVERSITETAS Kietojo kūno elektronikos katedra SIGNALAI TELEKOMUNIKACIJŲ SISTEMOSE Mokymo priemonė Parengė A. Poškus 4 Turinys. ĮVADAS..... Telekomunikaijų sistemos struktūrinė shema. Pagrindinės

Διαβάστε περισσότερα

Kompiuterinė lazerių fizika. Viktorija Pyragaitė

Kompiuterinė lazerių fizika. Viktorija Pyragaitė Kompiuterinė lazerių fizika Viktorija Pyragaitė VILNIAUS UNIVERSITETAS FIZIKOS FAKULTETAS Viktorija Pyragaitė KOMPIUTERINĖ LAZERIŲ FIZIKA Elektroninis leidinys Mokomoji knyga Vilnius 2013 Apsvarstė ir

Διαβάστε περισσότερα

Vilniaus universitetas Matematikos ir informatikos fakultetas Informatikos katedra. Gintaras Skersys. Mokymo priemonė

Vilniaus universitetas Matematikos ir informatikos fakultetas Informatikos katedra. Gintaras Skersys. Mokymo priemonė Vilniaus universitetas Matematikos ir informatikos fakultetas Informatikos katedra Gintaras Skersys Klaidas taisančių kodų teorija Mokymo priemonė Vilnius 2005 I dalis Pagrindinės savokos 1 Įvadas Panagrinėkime

Διαβάστε περισσότερα

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav.

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav. LIETUVOS JUNŲ J Ų MTEMTIKŲ MOKYKL tema. TRIGONOMETRIJOS TIKYMI GEOMETRIJOJE (008-00) Terinę medžiagą parengė bei šeštąją uždutį sudarė Vilniaus pedaggini universitet dentas Edmundas Mazėtis Šiame darbe

Διαβάστε περισσότερα

Integriniai diodai. Tokio integrinio diodo tiesiogin įtampa mažai priklauso nuo per jį tekančios srov s. ELEKTRONIKOS ĮTAISAI 2009

Integriniai diodai. Tokio integrinio diodo tiesiogin įtampa mažai priklauso nuo per jį tekančios srov s. ELEKTRONIKOS ĮTAISAI 2009 1 Integriniai diodai Integrinių diodų pn sandūros sudaromos formuojant dvipolių integrinių grandynų tranzistorius. Dažniausiai integriniuose grandynuose kaip diodai naudojami tranzistoriniai dariniai.

Διαβάστε περισσότερα

Balniniai vožtuvai (PN 16) VRB 2 dviejų angų, vidiniai ir išoriniai sriegiai VRB 3 trijų angų, vidiniai ir išoriniai sriegiai

Balniniai vožtuvai (PN 16) VRB 2 dviejų angų, vidiniai ir išoriniai sriegiai VRB 3 trijų angų, vidiniai ir išoriniai sriegiai Techninis aprašymas alniniai vožtuvai (PN 16) VR 2 dviejų angų, vidiniai ir išoriniai sriegiai VR 3 trijų angų, vidiniai ir išoriniai sriegiai prašymas Savybės: Padidinto sandarumo ( bubble tight ) konstrukcija

Διαβάστε περισσότερα

Kai kurios uþdaviniø sprendimo formulës. Tolygiai kintamo judesio (veikia pastovios iðorinës jëgos): Greitis (apibrëþiamas taip pat)

Kai kurios uþdaviniø sprendimo formulës. Tolygiai kintamo judesio (veikia pastovios iðorinës jëgos): Greitis (apibrëþiamas taip pat) 178 F I Z I K A biomedicinos ir fiziniø mokslø studentams UÞDAVINIAI Kai kurios uþdaviniø sprendimo formulës M e c h a n i k a. D i n a m i k a Kûno poslinkis s (kûno neveikia iðorinës jëgos) s =v t (ds

Διαβάστε περισσότερα

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3 Skaičių teorija paskaitų konspektas Paulius Šarka, Jonas Šiurys 1 Įvadas 1 1.1 Neišspręstos problemos.............................. 1 2 Dalumas 2 2.1 Dalyba su liekana.................................

Διαβάστε περισσότερα

Statistinė termodinamika. Boltzmann o pasiskirstymas

Statistinė termodinamika. Boltzmann o pasiskirstymas Statistinė termodinamika. Boltzmann o pasiskirstymas DNR molekulių vaizdas DNR struktūros pakitimai. Keičiantis DNR molekulės formai keistųsi ir visos sistemos entropija. Mielėse esančio DNR struktūros

Διαβάστε περισσότερα

KADETAS (VII ir VIII klasės)

KADETAS (VII ir VIII klasės) ADETAS (VII ir VIII klasės) 1. E 10 000 Galima tikrinti atsakymus. adangi vidutinė kainasumažėjo, tai brangiausia papūga kainavo daugiau kaip 6000 litų. Vadinasi, parduotoji papūga kainavo daugiau kaip

Διαβάστε περισσότερα

Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos

Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos Rimantas DEKSNYS, Robertas STANIULIS Elektros sistemų katedra Kauno technologijos universitetas

Διαβάστε περισσότερα

SiStemoS informacija

SiStemoS informacija Ecophon Focus Lp Ecophon Focus Lp montuojama su pusiau paslėpta konstrukcija patalpose, kur siekiama pabrėžti patalpų erdvines linijas. Tarp plokščių išilginių briaunų yra platus tarpas, pabrėžiantis norimą

Διαβάστε περισσότερα

1. Individualios užduotys:

1. Individualios užduotys: IV. PAPRASTOSIOS DIFERENCIALINĖS LYGTYS. Individualios užduots: - trumpa teorijos apžvalga, - pavzdžiai, - užduots savarankiškam darbui. Pirmosios eilės diferencialinių lgčių sprendimas.. psl. Antrosios

Διαβάστε περισσότερα

1.4. Rungės ir Kuto metodas

1.4. Rungės ir Kuto metodas .4. RUNGĖS IR KUTO METODAS.4. Rungės ir Kuto metodas.4.. Prediktoriaus-korektoriaus metodas Palyginkime išreikštinį ir simetrinį Eulerio metodus. Pirmojo iš jų pagrindinis privalumas tas, kad išreikštinio

Διαβάστε περισσότερα

RADIONAVIGACINĖS SISTEMOS IR ĮRANGA

RADIONAVIGACINĖS SISTEMOS IR ĮRANGA VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS Algimantas Jakučionis RADIONAVIGACINĖS SISTEMOS IR ĮRANGA Mokomoji knyga Vilnius 2007 UDK 656.7:621.396(075.8) Ja 248 Algimantas Jakučionis. Radionavigacinės sistemos

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Taikomosios matematikos institutas, Diferencialinių lygčių katedra Naugarduko g. 24, LT-3225

Διαβάστε περισσότερα

Vilniaus universitetas Gamtos mokslų fakultetas Kartografijos centras. Giedrė Beconytė. Mokomoji knyga geomokslų specialybių studentams

Vilniaus universitetas Gamtos mokslų fakultetas Kartografijos centras. Giedrė Beconytė. Mokomoji knyga geomokslų specialybių studentams Vilniaus universitetas Gamtos mokslų fakultetas Kartografijos centras Giedrė Beconytė DUOMENŲ BAZIŲ PROJEKTAVIMAS Mokomoji knyga geomokslų specialybių studentams Vilnius 2012 Aprobuota VU Gamtos mokslų

Διαβάστε περισσότερα

1 teorinė eksperimento užduotis

1 teorinė eksperimento užduotis 1 teorinė eksperimento užduotis 2015 IPhO stovykla DIFERENCINIS TERMOMETRINIS METODAS Šiame darbe naudojame diferencinį termometrinį metodą šiems dviems tikslams pasiekti: 1. Surasti kristalinės kietosios

Διαβάστε περισσότερα

Vilius Stakėnas. Kodavimo teorija. Paskaitu. kursas

Vilius Stakėnas. Kodavimo teorija. Paskaitu. kursas Vilius Stakėnas Kodavimo teorija Paskaitu kursas 2002 2 I vadas Informacija perduodama kanalais, kurie kartais iškraipo informacija Tarsime, kad tie iškraipymai yra atsitiktiniai, t y nėra nei sistemingi,

Διαβάστε περισσότερα

Stiklo pluošto laikikliai - gali būti sprendimas langams/durims tvirtinti šiltinimo sluoksnyje

Stiklo pluošto laikikliai - gali būti sprendimas langams/durims tvirtinti šiltinimo sluoksnyje Stiklo pluošto laikikliai - gali būti sprendimas langams/durims tvirtinti šiltinimo sluoksnyje Lango vieta angoje Reguliuojami stiklo pluošto laikikliai Sukurta mūsų, pagaminta mūsų Geram rezultatui

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA 006 m. valstybinio brandos egzamino uþduotis Pagrindinë sesija 006 m. geguþës 17 d. Trukmë 3 val. Nacionalinis

Διαβάστε περισσότερα

Taikomieji optimizavimo metodai

Taikomieji optimizavimo metodai Taikomieji optimizavimo metodai 1 LITERATŪRA A. Apynis. Optimizavimo metodai. V., 2005 G. Dzemyda, V. Šaltenis, V. Tiešis. Optimizavimo metodai, V., 2007 V. Būda, M. Sapagovas. Skaitiniai metodai : algoritmai,

Διαβάστε περισσότερα

VERTINIMO INSTRUKCIJA 2008 m. valstybinis brandos egzaminas Pakartotinë sesija

VERTINIMO INSTRUKCIJA 2008 m. valstybinis brandos egzaminas Pakartotinë sesija PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 008 m. birželio 7 d. įsakymu (.3.)-V-37 VERTINIM INSTRUKIJA 008 m. valstybinis brandos egzaminas I dalis Kiekvienas I dalies klausimas vertinamas tašku.

Διαβάστε περισσότερα

Praeita paskaita. Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje. Praeita paskaita. 2D Transformacijos. Grafika ir vizualizavimas, VDU, 2010

Praeita paskaita. Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje. Praeita paskaita. 2D Transformacijos. Grafika ir vizualizavimas, VDU, 2010 Praeita paskaita Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje Atkarpos Tiesės lgtis = mx+ b kur m krpties koeficientas, o b aukštis, kuriame tiesė kerta ašį Susikirtimo taško apskaičiavimui sulginamos

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

LIBS. Parengė: Kazimieras Jankauskas IV k, TF

LIBS. Parengė: Kazimieras Jankauskas IV k, TF LIBS Parengė: Kazimieras Jankauskas IV k, TF Turinys Kas yra LIBS? Istorija Pagrindai Schema LIBS ar LIPS? Dujų pramušimas Smūgio banga Spinduliuotės sugertis ir kieto bandinio kaitinimas Lydymas Garinimas

Διαβάστε περισσότερα

Diskrečioji matematika

Diskrečioji matematika VILNIAUS UNIVERSITETAS Gintaras Skersys Julius Andrikonis Diskrečioji matematika Pratybų medžiaga Versija: 28 m. sausio 22 d. Vilnius, 27 Turinys Turinys 2 Teiginiai. Loginės operacijos. Loginės formulės

Διαβάστε περισσότερα

MAŽYLIS (III ir IV klasės)

MAŽYLIS (III ir IV klasės) 2001m. konkurso užduočių sąlygos MŽYLIS (III ir IV klasės) KLUSIMI PO 3 TŠKUS M1. Keturiuose paveikslėliuose pavaizduoti skaičiai nuo 1 iki 4 kartu su savo veidrodiniais atvaizdais. Koks bus penktas paveikslėlis?

Διαβάστε περισσότερα

2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai

2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA PATVIRTINTA Nacionalinio egzaminų centro direktoriaus -6- įsakymu Nr. (..)-V-8 m. matematikos valstybinio brandos egzamino VERTINIMO

Διαβάστε περισσότερα

KLASIKIN E MECHANIKA

KLASIKIN E MECHANIKA KLASIKIN E MECHANIKA Algirdas MATULIS Puslaidininkiu zikos institutas Vadoveliu serijos papildymas auk²tuju mokyklu tiksliuju mokslu specialybiu studentams Email: amatulis@takas.lt Mob.: +370 654 543 06

Διαβάστε περισσότερα

ELEKTRINIS KIETŲJŲ KŪNŲ LAIDUMAS

ELEKTRINIS KIETŲJŲ KŪNŲ LAIDUMAS II skyrius ELEKTRINIS KIETŲJŲ KŪNŲ LAIDUMAS 2.1. Kietųjų kūnų klasifikacija pagal laiduą Pagal gebėjią praleisti elektros srovę visos edžiagos gatoje yra skirstoos į tris pagridines klases: laidininkus,

Διαβάστε περισσότερα

Riebalų rūgščių biosintezė

Riebalų rūgščių biosintezė Riebalų rūgščių biosintezė Riebalų rūgščių (RR) biosintezė Kepenys, pieno liaukos, riebalinis audinys pagrindiniai organai, kuriuose vyksta RR sintezė RR grandinė ilginama jungiant 2C atomus turinčius

Διαβάστε περισσότερα

APLINKOS RADIACINIO FONO MATAVIMAS DOZIMETRAIS

APLINKOS RADIACINIO FONO MATAVIMAS DOZIMETRAIS VILNIAUS UNIVERSITETAS Kietojo kūno elektronikos katedra Taikomosios branduolio fizikos laboratorija Laboratorinis darbas Nr. 6 APLINKOS RADIACINIO FONO MATAVIMAS DOZIMETRAIS Parengė A. Poškus 2014-02-03

Διαβάστε περισσότερα