ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα"

Transcript

1 ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ Μ. Κροκίδα ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓ. ΣΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

2 Βασικές αρχές Η διεργασία της απόσταξης στηρίζεται στην έννοια της βαθμίδας ισορροπίας, όπου τα ρεύματα (ατμού υγρού) που εγκαταλείπουν τη βαθμίδα βρίσκονται σε ισορροπία. Στην ισορροπία: Ο ρυθμός συμπύκνωσης του κάθε συστατικού είναι ίσος με τον ρυθμό εξάτμισης του Αν και σε μοριακό επίπεδο οι αλλαγές μεταξύ των φάσεων είναι συνεχείς, μακροσκοπικά δεν προκαλείται καμιά αλλαγή στη θερμοκρασία, πίεση και σύσταση P vapor = P liquid, T vapor = T liquid Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 2

3 Βασικές αρχές Σχετική Πτητικότητα (Relative Volatility) Είναι η βασική ιδιότητα που προσδιορίζει την ευκολία ενός διαχωρισμού και χρησιμοποιείται στις απλοποιημένες μεθόδους σχεδιασμού a ΑΒ = K Α K Β όπου: K i = y x i i, i = Α, Β,... Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 3

4 Βασικές αρχές Σχετική Πτητικότητα (Relative Volatility) Ανάλογα με τη φύση των συστατικών του μίγματος (ή της ολικής πίεσης του συστήματος) οι τάσεις διαφυγής υπολογίζονται - ανάλογα και με τη φάση ως εξής: Μη πολικά συστατικά Υψηλές πιέσεις: όπου οι συντελεστές τάσης διαφυγής υπολογίζονται με κυβικές καταστατικές εξισώσεις (π.χ. PR ή SRK). Διαφορετικά, τα Κ i υπολογίζονται από ειδικές σχέσεις ή διαγράμματα (πχ. McWilliams equations or depriester nomographs) K i = y / x = ˆ φ / ˆ φ i i l i v i Πολικά συστατικά - Χαμηλές πιέσεις: K i s = γ ˆ φ P i i s i ( Pe) i v / ˆ φ P i όπου : ˆv, ˆs φ φ i P s i i με με Virial Antoine l v s i ( Pe) i = exp ( P Pi ) RT γ με Van Laar, Wilson, UNIFAC, κκλ i Ιδανικά Διαλύματα - Νόμος Raoult: s Ki = Pi / P Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 4

5 Βασικές αρχές Γραφική αναπαράσταση της Ισορροπίας Ατμού Υγρού (Δυαδικό) P-x-y x-y Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 5

6 Βασικές αρχές Γραφική αναπαράσταση της Ισορροπίας Ατμού Υγρού (Δυαδικό) T-x-y Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 6

7 Βασικές αρχές Γραφική αναπαράσταση της Ισορροπίας Ατμού Υγρού (Δυαδικό) T-x-y x-y Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 7

8 Βασικές αρχές Γραφική αναπαράσταση της Ισορροπίας Ατμού Υγρού (Δυαδικό) H-x-y Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 8

9 Περιγραφή Διάγραμμα ροής (flow chart) Top Recovery: (D*x D ) / (F*x F ) 1 2 Ν-1 Bottom Recovery: (B*(1-x B )) / (F*(1-x F )) Ν N = Stages (βαθμίδες) R = Reflux ratio = L/D Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 9

10 Περιγραφή Ισοζύγια μάζας (Mass balances) (για δυαδικό) (for the most volatile component) Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 10

11 Περιγραφή Άλλα χρήσιμα ισοζύγια μάζας (για δυαδικό) Υπόθεση: Σταθερές γραμμομοριακές ροές κατά μήκος της στήλης, L, V, L/V=const. Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 11

12 Περιγραφή Άλλα χρήσιμα ισοζύγια μάζας Υπόθεση: Σταθερές γραμμομοριακές ροές κατά μήκος της στήλης, L/V=const. Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 12

13 Περιγραφή Ισοζύγια ενέργειας (energy balance) (για δυαδικό) Q C Q R Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 13

14 Περιγραφή Ισοζύγια ενέργειας (energy balance) (για δυαδικό) Q C < Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 14

15 Περιγραφή Βασικά μεγέθη Σύμβολο Μέγεθος F x F D x D B x B N R Τροφοδοσία (Feed) Σύσταση τροφοδοσίας [mol/mol] του πιο πτητικού συστατικού Απόσταγμα (Distillate) Σύσταση αποστάγματος [mol/mol] του πιο πτητικού συστατικού Υπόλειμμα (Bottom or Residue) Σύσταση υπολείμματος [mol/mol] του πιο πτητικού συστατικού Αριθμός βαθμίδων Λόγος αναρροής L, LL Ροές υγρού (πάνω και κάτω από το δίσκο τροφοδοσίας αντίστοιχα) V, VV Ροές ατμού (πάνω και κάτω από το δίσκο τροφοδοσίας αντίστοιχα) Q C Q R P Θερμικό φορτίο συμπυκνωτήρα Θερμικό φορτίο αναβραστήρα Πίεση λειτουργίας στήλης ( πίεση κορυφής) Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 15

16 Βασικές κατηγορίες μεθοδολογιών Γραφικές μεθοδολογίες McCabe-Thiele (για δυαδικά) Ponchon-Savarit Απλοποιημένος σχεδιασμός (shortcut) Fenske Underwood Gilliland (για πολυσυστατικά) Smith-Brinkley Αναλυτικοί υπολογισμοί δίσκου-δίσκου (tray-by-tray calculations) (Sorel-Lewis-Matheson) Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 16

17 Γνωστά: F, x F, D, x D, B, x B, R, P, T F Ζητούμενα: Ν (αριθμός θεωρητικών δίσκων) Απαραίτητα: VLE δεδομένα για το σύστημα στην πίεση λειτουργίας P, και Ανάλυση της ποιότητα της τροφοδοσία σε P και T F Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 17

18 Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 18

19 Ανάλυση του Rectifying section Γραμμή λειτουργίας (ROL): Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 19

20 Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 20

21 Ανάλυση του Feed section q = [υγρό στην τροφοδοσία mol] / [τροφοδοσία mol] Superheated: q<1 Mixture: 0 q 1 Flash calculations at P, T F Subcooled: q>1 Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 21

22 Ανάλυση του Feed section Κατάσταση F Υπέρθερμος ατμός <0 1 q (5) Κορεσμένος ατμός =0 2 Μίγμα ατμού-υγρού 0<q<1 3 Κορεσμένο υγρό =1 4 Υπόψυκτο υγρό >1 5 (4) (1) (2) (3) Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 22

23 Ανάλυση του Feed section Από τα ισοζύγια μάζας στη στήλη και στο δίσκο τροφοδοσίας προκύπτει: Γραμμή q (q-line): Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 23

24 Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 24

25 Ανάλυση του Stripping section Από τα ισοζύγια μάζας στη κάτω μέρος της στήλη προκύπτει: Γραμμή λειτουργίας (SOL): Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 25

26 Step-by-step: 1. Επίλυση ισοζυγίων για τον υπολογισμό όποιων από τα D, x D, B, x B, δεν είναι γνωστά. 2. Δημιουργία διαγράμματος ισορροπίας y-x για πίεση P (καμπύλη ισορροπίας): Δεδομένα ισορροπίας φάσεων από βιβλιογραφία Δημιουργία δεδομένων ΙΦ από θερμοδυναμικά μοντέλα για την πρόβλεψη της σχετικής πτητικότητας α. Στην απλή περίπτωση που αυτή θεωρηθεί σταθερή τότε: 3. Κατασκευή διαγώνιου y=x στο διάγραμμα. Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 26

27 Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 27

28 Step-by-step: 1. Επίλυση ισοζυγίων για τον υπολογισμό όποιων από τα D, x D, B, x B, δεν είναι γνωστά. 2. Δημιουργία διαγράμματος ισορροπίας y-x για πίεση P (καμπύλη ισορροπίας): Δεδομένα ισορροπίας φάσεων από βιβλιογραφία Δημιουργία δεδομένων ΙΦ από θερμοδυναμικά μοντέλα για την πρόβλεψη της σχετικής πτητικότητας α. Στην απλή περίπτωση που αυτή θεωρηθεί σταθερή τότε: 3. Κατασκευή διαγώνιου y=x στο διάγραμμα. 4. Τοποθέτηση επί της διαγώνιου αυτής των σημείων x D, x B, x F Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 28

29 Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 29

30 Step-by-step: 5. Σχεδιάζεται η γραμμή λειτουργίας του Rectifying section (ROL) Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 30

31 Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 31

32 Step-by-step: 5. Σχεδιάζεται η γραμμή λειτουργίας του Rectifying section (ROL) 6. Σχεδιάζεται η γραμμή q (q-line) Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 32

33 Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 33

34 Step-by-step: 5. Σχεδιάζεται η γραμμή λειτουργίας του Rectifying section (ROL) 6. Σχεδιάζεται η γραμμή q (q-line) 7. Σχεδιάζεται η γραμμή λειτουργίας του Stripping section (SOL) Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 34

35 Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 35

36 Step-by-step: 5. Σχεδιάζεται η γραμμή λειτουργίας του Rectifying section (ROL) 6. Σχεδιάζεται η γραμμή q (q-line) 7. Σχεδιάζεται η γραμμή λειτουργίας του Stripping section (SOL) 8. Σχεδιάζονται οι βαθμίδες ξεκινώντας από το x D 9. Μετριέται ο αριθμός των τριγώνων που σχεδιάστηκαν Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 36

37 Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 37

38 Step-by-step: 5. Σχεδιάζεται η γραμμή λειτουργίας του Rectifying section (ROL) 6. Σχεδιάζεται η γραμμή q (q-line) 7. Σχεδιάζεται η γραμμή λειτουργίας του Stripping section (SOL) 8. Σχεδιάζονται οι βαθμίδες ξεκινώντας από το x D 9. Μετριέται ο αριθμός των τριγώνων που σχεδιάστηκαν Σημειώσεις: Αν δεν δίνεται απ ευθείας το R, αλλά δίνεται ως πολλαπλάσιο του R min, τότε υπολογίζεται πρώτα η q-line. (Ο υπολογισμός του R min ακολουθεί) Στην γενική περίπτωση που περιεγράφηκε, η SOL δε χρειάζεται να υπολογισθεί αναλυτικά γιατί η θέση της έχει δημιουργηθεί στο διάγραμμα από το σημείο x B στη διαγώνιο και το σημείο τομής της q-line και της ROL. Ο ένας θεωρητικός δίσκος ανήκει στον μερικό αναβραστήρα που χρησιμοποιήθηκε στην περίπτωση αυτή. Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 38

39 Ελάχιστος αριθμός βαθμίδων: Επιτυγχάνεται για λόγο αναρροής R = Οι γραμμές λειτουργίας συμπίπτουν με τη διαγώνιο y=x Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 39

40 Ελάχιστος λόγος αναρροής: Τότε ο αριθμός θεωρητικών βαθμίδων είναι Ν = ω Καθορίζεται από το pinch point Σε «απλά» συστήματα ορίζεται από το σημείο τομής της q-line με την καμπύλη ισορροπίας. Υπολογίζεται από την κλίση της ROL: tan(ω) = R min / (R min +1) Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 40

41 Ελάχιστος λόγος αναρροής: Σε «σύνθετα» συστήματα ορίζεται είτε από το σημείο τομής της q-line, είτε από το σημείο Ρ. Το σημείο Ρ εμφανίζεται όταν η ROL δεν τέμνει την καμπύλη ισορροπίας αλλά εφάπτεται σε αυτή. Το μικρότερο x D στο οποίο συμβαίνει αυτό λέγεται κρίσιμο x D. Αν το x D < κρίσιμου x D, τότε ο ελάχιστος λόγος αναρροής εξαρτάται από το σημείο τομής της q-line με την καμπύλη ισορροπίας Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 41

42 Ελάχιστος λόγος αναρροής: Αν το x D > κρίσιμου x D, τότε η ο ελάχιστος λόγος αναρροής θα καθοριστεί ανάλογα με τις περιοχές που ορίζονται στο διάγραμμα (πού τέμνει η q-line την καμπύλη ισορροπίας). Σε κάθε περίπτωση, υπολογίζεται από την κλίση της ROL. Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 42

43 N min, R min Καθορίζουν τα όρια μέσα στα οποία είναι εφικτός ένα διαχωρισμός Οποιοσδήποτε συνδυασμός (R,Ν) από το διπλανή καμπύλη δίνει τον ίδιο διαχωρισμό (με διαφορετική επίπτωση στο κόστος) Πολλές φορές ο λόγος αναρροής μιας διεργασίας ορίζεται ως πολλαπλάσιο του ελάχιστου λόγου αναρροής. Βέλτιστη τιμή συνήθως είναι μεταξύ 1.2 ως 1.5 του ελάχιστου. Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 43

44 Βέλτιστη θέση τροφοδοσίας Καθορίζεται από το τρίγωνο με τη μια πλευρά στην ROL και την άλλη στην SOL. Μπορεί να είναι σε άλλες βαθμίδες (a, b) αλλά θα έχει ως συνέπεια την αύξηση του απαραίτητου αριθμού βαθμίδων. (a) (b) Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 44

45 Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 45

46 B. Fenske Underwood Gilliland (FUG) Βασικά σημεία: Γρήγορη προσεγγιστική μεθοδολογία Δυνατότητα άμεσης εφαρμογής και σε πολυσυστατικά μίγματα Χρησιμοποιείται για: προκαταρτικές οικονομικές εκτιμήσεις μια πρώτη εκτίμηση σε πιο λεπτομερείς υπολογισμούς προσομοίωσης για τους υπολογισμούς στα συστήματα ελέγχου της διεργασίας, κλπ Είναι απαραίτητη η χρήση μίας μέσης σχετικής πτητικότητας κατά μήκος της στήλης. Σε περίπτωση που οι σχετικές πτητικότητας διαφέρουν σημαντικά, τότε η ακρίβεια της μεθόδου μειώνεται. Οι υπολογισμοί γίνονται για τη βέλτιστη θέση τροφοδοσίας Η εξίσωση Fenske επιτρέπει τον υπολογισμό του ελάχιστου αριθμού βαθμίδων σε ολική αναρροή Οι εξισώσεις Underwood υπολογίζουν τον ελάχιστο λόγο αναρροής Οι εμπειρικές εξισώσεις (ή διάγραμμα) Gilliland συσχετίζουν τα δύο μεγέθη αυτά με τον πραγματικό λόγο αναρροής και τον αριθμό βαθμίδων Τέλος, η εξίσωση Kirkbride υπολογίζει την βέλτιστη θέση τροφοδοσίας Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 46

47 B. Fenske Underwood Gilliland (FUG) Συστατικά κλειδιά (keys): Είναι τα συστατικά του μίγματος που κατανέμονται τόσο στο απόσταγμα όσο και στο υπόλειμμα. Τα συστατικά διατάσσονται από το «ελαφρύτερο» προς το «βαρύτερο» συστατικό. Το ελαφρύτερο συστατικό που κατανέμεται ΚΑΙ στο απόσταγμα ΚΑΙ στο υπόλειμμα ονομάζεται ελαφρύ κλειδί (light key) LK. Το βαρύτερο συστατικό που κατανέμεται ΚΑΙ στο απόσταγμα ΚΑΙ στο υπόλειμμα ονομάζεται βαρύ κλειδί (heavy key) HK. Τα ελαφρύτερα από το LK συστατικά, ονομάζονται ελαφριά συστατικά και κατανέμονται ΜΟΝΟ στο απόσταγμα. Τα βαρύτερα από το HK συστατικά, ονομάζονται βαριά συστατικά και κατανέμονται ΜΟΝΟ στο υπόλειμμα. Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 47

48 B. Fenske Underwood Gilliland (FUG) Επίλυση ισοζυγίων μάζας στα όρια της στήλης: Είναι απαραίτητη η γνώση των συστάσεων των εξωτερικών ρευμάτων της στήλης. Ονομασία Αριθμός Μεταβλητές F, z i, D, x D i, B, x B i 3N+3 Δεδομένα F, z i, x B or D i δεδομένα για τα όλα τα κλειδιά Ν+1 Κ Εξισώσεις Μερικά ισοζύγια x B or D i = 0 (μη κλειδιά) Σx D i=0, Σx B i=0 Ν N-K 2 Μεταβλητές Δεδομένα - Εξισώσεις 0 Άλλα απαραίτητα δεδομένα είναι: Η πίεση λειτουργίας της στήλης P Η κατάσταση της τροφοδοσίας q Ο λόγος αναρροής R (ή ο αριθμός των βαθμίδων Ν) Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 48

49 B. Fenske Underwood Gilliland (FUG) Υπολογισμός των σχετικών πτητικοτήτων στη στήλη: Οι σχετικές πτητικότητές στα πολυσυστατικά μίγματα ορίζονται πάντα ως προς το βαρύ κλειδί (HK). Είναι >1 για κάθε ελαφρύτερο συστατικό, 1 για το HK και <1 για τα βαρύτερα μη κλειδιά. Οι πτητικότητες α υπολογίζονται συνήθως σε τρία σημεία της στήλης: στην κορυφή (γίνεται υπολογισμός θερμοκρασίας έναρξης υγροποίησης (dew point T) σε πίεση P κορ ) στην τροφοδοσία (γίνεται υπολογισμός θερμοκρασίας έναρξης βρασμού (bubble point T) σε πίεση P τροφ ), και στον πυθμένα (γίνεται υπολογισμός θερμοκρασίας έναρξης βρασμού (bubble point T) σε πίεση P πυθμ ), Η μέση σχετική πτητικότητα που χρησιμοποιείται στην Fenske είναι: αα LH = 3 αα κκκκκκ LLLL HHHH ττττττττ αα αα LLLL HHHH ππππππππ LLLL HHHH Ομοίως για κάθε συστατικό στις Underwood Σε αρκετές περιπτώσεις, η πίεση P μπορεί να θεωρηθεί σταθερή κατά μήκος της στήλης Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 49

50 B. Fenske Underwood Gilliland (FUG) Ελάχιστος αριθμός θεωρητικών βαθμίδων (Fenske) N min = ln [( X D LK / X B LK ln ( α ) /( X LH ) D HK / X B HK )] Ελάχιστος λόγος αναρροής (Underwood) α x i ihk F = 1 q, 1 i αihk θ i α α ihk HK ι xd i = R θ min +1 θ α LKHK Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 50

51 B. Fenske Underwood Gilliland (FUG) Αριθμός θεωρητικών βαθμίδων για δεδομένο λόγο αναρροής (Gilliland) R R = min N N X Y = min R + 1 N + 1 Y = 1 exp( X 1.805X 0.1 ) Βέλτιστη βαθμίδα τροφοδοσίας της στήλης(kirkbride) m log ( ) n = log B D x x F F HK LK x x B D LK HK 2 Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 51

52 B. Fenske Underwood Gilliland (FUG) Define Keys Mass balances P op, q F, R (or N) Calculate Ts Calculate α and averages θ from Underwood 1 N min from Fenske R min from Underwood 2 N (or R) from Gilliland Μάρτιος 17 ΜΦΔ ΙΙ - Κλασματική απόσταξη 52

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ Μ. Κροκίδα ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓ. ΣΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Στόχος: Επεξεργασία συγκεκριμένης τροφοδοσίας (ροή

Διαβάστε περισσότερα

Ακρίβεια αποτελεσμάτων σχεδιασμού διεργασιών ΜΑΔ, 2013

Ακρίβεια αποτελεσμάτων σχεδιασμού διεργασιών ΜΑΔ, 2013 Ακρίβεια αποτελεσμάτων σχεδιασμού διεργασιών ΜΑΔ, 2013 1 ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ ΘΧΜ Σκοπός της θερμοδυναμικής χημικής μηχανικής είναι η παροχή των κατάλληλων θεωρητικών γνώσεων και των απαραίτητων υπολογιστικών-μεθοδολογικών

Διαβάστε περισσότερα

ΑΠΟΣΤΑΞΗ ΙΣΟΡΡΟΠΙΑΣ Equilibrium or Flash Distillation

ΑΠΟΣΤΑΞΗ ΙΣΟΡΡΟΠΙΑΣ Equilibrium or Flash Distillation Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΑΠΟΣΤΑΞΗ ΙΣΟΡΡΟΠΙΑΣ Equilibrium or Flash Distillation ΑΠΟΣΤΑΞΗ ΙΣΟΡΡΟΠΙΑΣ 1. ΟΡΙΣΜΟΣ ΣΚΟΠΟΣ ΔΙΕΡΓΑΣΙΑΣ

Διαβάστε περισσότερα

Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Ερωτήσεις Επανάληψης

Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Ερωτήσεις Επανάληψης Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ Ερωτήσεις Επανάληψης 1 0.8 0.6 x D = 0.95 y 0.4 x F = 0.45 0.2 0 0 0.2 0.4 0.6 0.8 1 x B = 0.05 Σχήμα 1. Δεδομένα ισορροπίας y-x για δυαδικό μίγμα συστατικών Α και Β και οι

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ, 2013

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ, 2013 ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ, 2013 1 Ισορροπία Φάσεων Ανάλογα με τη φύση των συστατικών του μίγματος (ή της ολικής πίεσης του συστήματος) οι τάσεις διαφυγής υπολογίζονται - ανάλογα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 4: ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 4: ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Σχεδιασμού, Ανάλυσης & Ανάπτυξης Διεργασιών και Συστημάτων ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Διευθυντής: Ι.

Διαβάστε περισσότερα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ Μ. Κροκίδα ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓ. ΣΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Διαφορική (batch) Rectifying column Stripping column

Διαβάστε περισσότερα

Απρίλιος Λύση: Σύνοψη των δεδομένων: P = 6at, V = 0.6F, L = 0.4F, F = 1 kmol/s. Ζητούμενα: x Fi, x Li

Απρίλιος Λύση: Σύνοψη των δεδομένων: P = 6at, V = 0.6F, L = 0.4F, F = 1 kmol/s. Ζητούμενα: x Fi, x Li Φυσικές Διεργασίες Προβλήματα στην απόσταξη που λύθηκαν στην τάξη Πηγή: Δ. Μαρίνος-Κουρής, Ε. Παρλιάρου-Τσάμη, Ασκήσεις Φυσικών Διεργασιών, Παπασωτηρίου, Αθήνα 1994 Απρίλιος 2008 Πρόβλημα 1 Διαχωριστήρας

Διαβάστε περισσότερα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ Μ. Κροκίδα ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓ. ΣΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Ορισμός Βασικές έννοιες Απόσταξη (Distillation) είναι

Διαβάστε περισσότερα

ΒΙΟΜΗΧΑΝΙΚΗ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ : Ερωτήσεις πολλαπλής επιλογής. Σκεφθείτε και δικαιολογήσετε τη σωστή απάντηση κάθε φορά)

ΒΙΟΜΗΧΑΝΙΚΗ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ : Ερωτήσεις πολλαπλής επιλογής. Σκεφθείτε και δικαιολογήσετε τη σωστή απάντηση κάθε φορά) ΒΙΟΜΗΧΑΝΙΚΗ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ : Ερωτήσεις πολλαπλής επιλογής (Σηµείωση: Σκεφθείτε και δικαιολογήσετε τη σωστή απάντηση κάθε φορά) Η απόσταξη στηρίζεται στη διαφορά που υπάρχει στη σύσταση ισορροπίας των

Διαβάστε περισσότερα

Διάλεξη 4β. Συστοιχίες διαχωρισμών

Διάλεξη 4β. Συστοιχίες διαχωρισμών Διάλεξη 4β Συστοιχίες διαχωρισμών Διαχωρισμός σε απλή στήλη Απλή τροφοδοσία Δύο ρεύματα εξόδου Προσκείμενα κλειδιά διαχωρισμού Στήλη με απλό αναβραστήρα και συμπυκνωτήρα Φθίνουσα πτητικότητα E () Ελαφρύ

Διαβάστε περισσότερα

Πρόρρηση Ισορροπίας Φάσεων. Υψηλές Πιέσεις

Πρόρρηση Ισορροπίας Φάσεων. Υψηλές Πιέσεις Πρόρρηση Ισορροπίας Φάσεων Υψηλές Πιέσεις 1 Ισορροπία Φάσεων Η βασική εξίσωση για όλους τους υπολογισμούς ισορροπίας φάσεων ατμού-υγρού είτε σε υψηλές είτε σε χαμηλές πιέσεις είναι η ισότητα των τάσεων

Διαβάστε περισσότερα

ΒΑΣΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΙΦ - ΣΧΕΔΙΑΣΜΟΣ ΑΠΟΣΤΑΚΤΙΚΩΝ ΣΤΗΛΩΝ ΜΑΔ, 2013

ΒΑΣΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΙΦ - ΣΧΕΔΙΑΣΜΟΣ ΑΠΟΣΤΑΚΤΙΚΩΝ ΣΤΗΛΩΝ ΜΑΔ, 2013 ΒΑΣΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΙΦ - ΣΧΕΔΙΑΣΜΟΣ ΑΠΟΣΤΑΚΤΙΚΩΝ ΣΤΗΛΩΝ ΜΑΔ, 2013 1 Βασικοί Υπολογισμοί Ισορροπίας Φάσεων Ατμών Υγρού Οι βασικοί υπολογισμοί που ενδιαέρουν τον χημικό μηχανικό είναι οι ακόλουθοι : σημείο

Διαβάστε περισσότερα

1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17

1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17 1.1 Φυσικές Διεργασίες Διαχωρισμού 20 1.1.1 Μια γενική εποπτεία της παραγωγικής Χημικής Βιομηχανίας 21 1.1.2 Σύντομος

Διαβάστε περισσότερα

Είδη ΙΦΥΥ δυαδικών μιγμάτων

Είδη ΙΦΥΥ δυαδικών μιγμάτων Είδη ΙΦΥΥ δυαδικών μιγμάτων T A X 1 X 1 ΙΦΥΥ τριαδικών μιγμάτων Τριγωνικά διαγράμματα C 0.1 0.2 0.3 0.4 0.5 P 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.6 0.7 0.8 0.9 κλάσμα βάρους του B κλάσμα βάρους του C

Διαβάστε περισσότερα

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption Παράγοντες που Επηρεάζουν Διεργασία Απορρόφησης Συνήθως δίνονται: Ρυθμός

Διαβάστε περισσότερα

3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ

3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ 3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 23.12.2015 ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ Ένα τυπικό φυσικό αέριο έχει την ακόλουθη σύσταση σε % mol: 0.5% Ν 2,

Διαβάστε περισσότερα

(β) Εύρεση του αριθμού των θεωρητικών βαθμίδων με τη μέθοδο McCabe-Thiele

(β) Εύρεση του αριθμού των θεωρητικών βαθμίδων με τη μέθοδο McCabe-Thiele Κεφάλαιο 2 Απόσταξη 3 (β) Εύρεση του αριθμού των θεωρητικών βαθμίδων με τη μέθοδο McCabe-Thiele Παρακάτω περιγράφουμε τα βήματα που ακολουθούμε με τη μέθοδο McCabe- Thiele για να καθορίσουμε τον αριθμό

Διαβάστε περισσότερα

Παράδειγμα 2-1. Διαχωρισμός νερού- αιθανόλης

Παράδειγμα 2-1. Διαχωρισμός νερού- αιθανόλης Παράδειγμα 2-1. Διαχωρισμός νερού- αιθανόλης Μια αποστακτική στήλη που λειτουργεί σε πίεση 101,3 kpa, διαχωρίζει ένα μίγμα νερούαιθανόλης. Η σύσταση του μίγματος αποτελείται 40 mol% αιθανόλη και η τροφοδοσία

Διαβάστε περισσότερα

Ανάπτυξη στατικού προτύπου επίλυσης προβλημάτων αξιολόγησης αποστακτικών στηλών.

Ανάπτυξη στατικού προτύπου επίλυσης προβλημάτων αξιολόγησης αποστακτικών στηλών. Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Χημικών Μηχανικών Τομέας ΙΙ : Ανάλυσης, Σχεδιασμού και Ανάπτυξης Διεργασιών και Συστημάτων Ανάπτυξη στατικού προτύπου επίλυσης προβλημάτων αξιολόγησης αποστακτικών στηλών.

Διαβάστε περισσότερα

Κεφάλαιο 4 Κλασματική Απόσταξη

Κεφάλαιο 4 Κλασματική Απόσταξη Κεφάλαιο 4 Κλασματική Απόσταξη Σύνοψη Η κλασματική απόσταξη ή απλά απόσταξη αποτελεί τη διεργασία διαχωρισμού ενός πτητικού συστατικού από ένα λιγότερο πτητικό ή, γενικότερα, ενός μίγματος συστατικών που

Διαβάστε περισσότερα

Τεχνολογίες Εκμετάλλευσης και Αξιοποίησης Υδρογονανθράκων

Τεχνολογίες Εκμετάλλευσης και Αξιοποίησης Υδρογονανθράκων Τεχνολογίες Εκμετάλλευσης και Αξιοποίησης Υδρογονανθράκων Μάθημα 3 ο Εισαγωγή στο διυλιστήριο Τύποι διεργασιών Απόσταξη (ατμοσφαιρική και υπό κενό) Δρ. Στέλλα Μπεζεργιάννη Διύλιση Το αργό πετρέλαιο δεν

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι ΦΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 6 η - Β ΜΕΡΟΣ ΔΙΑΛΜΑΤΑ Όνομα καθηγητή: ΕΑΓΓΕΛΙΟ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟ ΜΑΘΗΜΑΤΟΣ Στόχος (): Κατανόηση των εννοιών: υγρά διαλύματα,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΟΔΗΓΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΥΓΡΗΣ ΕΚΧΥΛΙΣΗΣ Ελένη Παντελή, Υποψήφια Διδάκτορας Γεωργία Παππά, Δρ. Χημικός Μηχανικός

Διαβάστε περισσότερα

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Μέρος ο : Εισαγωγικά (διαστ., πυκν., θερμ., πίεση, κτλ.) Μέρος 2 ο : Ισοζύγια μάζας Μέρος 3 ο : 9 ο μάθημα Εκτός ύλης ΔΠΘ-ΜΠΔ Συστήματα Βιομηχανικών Διεργασιών

Διαβάστε περισσότερα

1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17

1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17 1.1 Φυσικές Διεργασίες Διαχωρισμού 20 1.1.1 Μια γενική εποπτεία της παραγωγικής Χημικής Βιομηχανίας 21 1.1.2 Σύντομος

Διαβάστε περισσότερα

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction ΕΚΧΥΛΙΣΗ ΙΣΟΡΡΟΠΙΑΣ ΓΙΑ ΜΕΡΙΚΩΣ ΑΝΑΜΙΞΙΜΑ ΣΥΣΤΗΜΑΤΑ Τριγωνικές

Διαβάστε περισσότερα

Energy resources: Technologies & Management

Energy resources: Technologies & Management Πανεπιστήμιο Δυτικής Μακεδονίας Energ resources: echnologies & Management Τεχνολογίες άνθρακα Σχεδιασμός Στηλών Απορρόφησης Αερίων Δρ. Γεώργιος Σκόδρας Αν. Καθηγητής Περιεχόμενα Η διάλεξη που ακολουθεί

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 Θέμα 1 Επιλέγοντας το κατάλληλο διάγραμμα φάσεων για ένα πραγματικό

Διαβάστε περισσότερα

Κεφάλαιο 5: Διεργασίες απόσταξης

Κεφάλαιο 5: Διεργασίες απόσταξης 92 Κεφάλαιο 5: Διεργασίες απόσταξης Σύνοψη Το κεφάλαιο αυτό συνιστά την πρώτη ολοκληρωμένη ανάλυση μίας διεργασίας. Παρουσιάζονται στην αρχή οι απλές αποστάξεις και στη συνέχεια αναλύεται διεξοδικά η κλασματική

Διαβάστε περισσότερα

Πρόρρηση. Φυσικών Ιδιοτήτων Μιγμάτων

Πρόρρηση. Φυσικών Ιδιοτήτων Μιγμάτων Πρόρρηση Φυσικών Ιδιοτήτων Μιγμάτων Συντελεστής συμπιεστότητας, Ζ Αρχή Αντιστοίχων Καταστάσεων Τριών παραμέτρων Ptzer : z z (0) + ω z (1) Lee-Kesler: z (0), z (1) f(t r,p r ) Εξίσωση Ptzer Κανόνες Ανάμειξης

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΑΠΟΣΤΑΚΤΙΚΩΝ ΣΤΗΛΩΝ ΜΑΔ, 2013

ΣΧΕΔΙΑΣΜΟΣ ΑΠΟΣΤΑΚΤΙΚΩΝ ΣΤΗΛΩΝ ΜΑΔ, 2013 ΣΧΕΔΙΑΣΜΟΣ ΑΠΟΣΤΑΚΤΙΚΩΝ ΣΤΗΛΩΝ ΜΑΔ, 2013 1 2 Αποστακτικές στήλες 3 Ροή ρευστών σε αποστακτική στήλη με δίσκους Βασικοί Υπολογισμοί Ισορροπίας Φάσεων Ατμών Υγρού Οι βασικοί υπολογισμοί που ενδιαφέρουν τον

Διαβάστε περισσότερα

Μηχανική και Ανάπτυξη Διεργασιών 7ο Εξάμηνο, Σχολή Χημικών Μηχανικών ΕΜΠ ΥΓΡΗ ΕΚΧΥΛΙΣΗ

Μηχανική και Ανάπτυξη Διεργασιών 7ο Εξάμηνο, Σχολή Χημικών Μηχανικών ΕΜΠ ΥΓΡΗ ΕΚΧΥΛΙΣΗ Μηχανική και Ανάπτυξη Διεργασιών 7ο Εξάμηνο, Σχολή Χημικών Μηχανικών ΕΜΠ ΥΓΡΗ ΕΚΧΥΛΙΣΗ Η υγρή εκχύλιση βρίσκει εφαρμογή όταν. Η σχετική πτητικότητα των συστατικών του αρχικού διαλύματος είναι κοντά στη

Διαβάστε περισσότερα

Αυτόματη ρύθμιση αποστακτικών στηλών

Αυτόματη ρύθμιση αποστακτικών στηλών Αυτόματη ρύθμιση αποστακτικών στηλών Στόχοι-Αναγκαιότητα Παραγωγή προϊόντων επιθυμητών προδιαγραφών και ποσοτήτων Ασφάλεια εγκατάστασης (όρια πίεσης και θερμοκρασίας) Διατήρηση λειτουργικών συνθηκών (αποφυγή

Διαβάστε περισσότερα

Απορρόφηση Αερίων. 1. Εισαγωγή

Απορρόφηση Αερίων. 1. Εισαγωγή 1. Εισαγωγή Απορρόφηση Αερίων Πρόκειται για διαχωρισμό συστατικών από μείγμα αερίου με τη βοήθεια υγρού διαλύτη. Κινητήρια δύναμη είναι η διαφορά διαλυτότητας στο διαλύτη. Στη συνέχεια θα ασχοληθούμε με

Διαβάστε περισσότερα

Κεφάλαιο 3 Απόσταξη Ισορροπίας

Κεφάλαιο 3 Απόσταξη Ισορροπίας Κεφάλαιο 3 Απόσταξη Ισορροπίας Σύνοψη Η απόσταξη ισορροπίας ή στιγμιαία απόσταξη αποτελεί μία απλή διεργασία διαχωρισμού, η εφαρμογή της οποίας βασίζεται στην ατμοποίηση μέρους της τροφοδοσίας εντός δοχείου

Διαβάστε περισσότερα

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ 1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή

Διαβάστε περισσότερα

Φυσικές Διεργασίες Πέμπτη Διάλεξη

Φυσικές Διεργασίες Πέμπτη Διάλεξη Φυσικές Διεργασίες Πέμπτη Διάλεξη Δευτέρα, 12 Μαΐου 2008 Απορρόφηση αερίων 1. Ορισμός Τι είναι απορρόφηση; Είναι μεταφορά μέσω της διεπιφάνειας αερίου-υγρού ενός συστατικού από αέριο μίγμα σε έναν υγρό

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 5: Διαγράμματα σημείων ζέσεως συνθέσεως Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 Σελίδα 2 1. Θεωρία

Διαβάστε περισσότερα

Κεφάλαιο 6 Απορρόφηση

Κεφάλαιο 6 Απορρόφηση Κεφάλαιο 6 Απορρόφηση Σύνοψη Απορρόφηση αεριών ονομάζεται η φυσική διεργασία απομάκρυνσης ενός ή περισσοτέρων συστατικών ενός αερίου ρεύματος προς ένα μη πτητικό υγρό, το οποίο διαλύει αυτό(α) το(α) συστατικό(α).

Διαβάστε περισσότερα

Enrico Fermi, Thermodynamics, 1937

Enrico Fermi, Thermodynamics, 1937 I. Θερµοδυναµικά συστήµατα Enrico Feri, herodynaics, 97. Ένα σώµα διαστέλλεται από αρχικό όγκο. L σε τελικό όγκο 4. L υπό πίεση.4 at. Να υπολογισθεί το έργο που παράγεται. W - -.4 at 5 a at - (4..) - -

Διαβάστε περισσότερα

R T ενώ σε ολοκληρωµένη, αν θεωρήσουµε ότι οι ενθαλπίες αλλαγής φάσεως είναι σταθερές στο διάστηµα θερµοκρασιών που εξετάζουµε, είναι

R T ενώ σε ολοκληρωµένη, αν θεωρήσουµε ότι οι ενθαλπίες αλλαγής φάσεως είναι σταθερές στο διάστηµα θερµοκρασιών που εξετάζουµε, είναι Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξετάσεις: Περίοδος Σεπτεµβρίου 007-0 (.9.00) Θέµα. Η τάση ατµών του στερεού µονοξειδίου του άνθρακα σε 60 K είναι.6 kpa και σε 65 K είναι. kpa. Η τάση ατµών του υγρού

Διαβάστε περισσότερα

Απορρόφηση Αερίων (2)

Απορρόφηση Αερίων (2) Απορρόφηση Αερίων (2) Λεπτομερής Ανάλυση Θεωρούμε έναν πύργο απορρόφησης που μπορεί να περιέχει δίσκους ή να είναι τύπου πληρωτικού υλικού ή άλλου τύπου. Τελικός σκοπός είναι να βρούμε το μέγεθος του πύργου.

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 4: Μερικός γραμμομοριακός όγκος Αθανάσιος Τσεκούρας Τμήμα Χημείας . Θεωρία... 3. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 4. Τελικά αποτελέσματα... 7 Σελίδα

Διαβάστε περισσότερα

Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Μιγμάτων

Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Μιγμάτων Πρόρρηση Θερμοδυναμικών Ιδιοτήτων Μιγμάτων 1 Χημικό Δυναμικό μ d = dg U = N V,S,N Για 1 mole καθαρής ουσίας: SdT +Vd j H = N S,,N j A = N V,T,N j G = N ( T, ) ( T,) = T T T,,N j SdT + όπου μ(t',') είναι

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 11: Μίγματα Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες

Διαβάστε περισσότερα

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Μέρος 1 ο : Εισαγωγικά (διαστ., πυκν., θερμ., πίεση, κτλ.) Μέρος 2 ο : Ισοζύγια μάζας Μέρος 3 ο : 7 ο μάθημα Εκτός ύλης ΔΠΘ-ΜΠΔ Συστήματα Βιομηχανικών Διεργασιών

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης

ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης Πρόβληµα 1. Ένα µίγµα αερίων που περιέχει 65% του Α, 5% Β, 8% C και % D βρίσκεται σε ισορροπία µ' ένα υγρό στους 350 Κ και 300 kn/m. Αν η τάση ατµών των καθαρών συστατικών

Διαβάστε περισσότερα

1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης

1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Ετερογενή Μείγματα & Συστήματα Καύσης 1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης Δ. Κολαΐτης Μ. Φούντη Δ.Π.Μ.Σ. «Υπολογιστική Μηχανική»

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ

ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ ΠΑΡΑΡΤΗΜΑ 3-ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ 1 Εισαγωγή Τα διαγράμματα φάσεων δεν είναι εμπειρικά σχήματα αλλά είναι ουσιαστικής σημασίας

Διαβάστε περισσότερα

Φάσεις μιας καθαρής ουσίας

Φάσεις μιας καθαρής ουσίας Αντικείμενο μαθήματος: ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΚΑΘΑΡΕΣ ΟΥΣΙΕΣ. Διαδικασίες αλλαγής φάσης. P-v, T-v, και P-T διαγράμματα ιδιοτήτων και επιφάνειες P-v-T Καθαρών ουσιών. Υπολογισμός θερμοδυναμικών ιδιοτήτων από πίνακες

Διαβάστε περισσότερα

Λύση Παραδείγματος 1. Διάγραμμα ροής διεργασίας. Εκρόφηση χλωριούχου βινυλίου από νερό στους 25 C και 850 mmhg. Είσοδος υγρού.

Λύση Παραδείγματος 1. Διάγραμμα ροής διεργασίας. Εκρόφηση χλωριούχου βινυλίου από νερό στους 25 C και 850 mmhg. Είσοδος υγρού. Παράδειγμα 1 Μια εγκατάσταση καθαρισμού νερού απομακρύνει χλωριούχο βινύλιο (vinyl cloride) από μολυσμένα υπόγεια ύδατα σε θερμοκρασία 25 C και πίεση 850 mmhg χρησιμοποιώντας στήλη εκρόφησης κατ αντιρροή.

Διαβάστε περισσότερα

Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16

Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16 Ύγρανση και Αφύγρανση Ψυχρομετρία η μελέτη των ιδιοτήτων του υγρού αέρα δηλαδή του μίγματος αέρα-ατμού-νερού. Ένα βασικό πρόβλημα: Δεδομένων των P (bar) Πίεση T ( o C) Θερμοκρασία Υ (kg/kg ξβ) Υγρασία

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Κεφάλαιο Πρόλογος i Κατάλογος Σχημάτων και Εικόνων v Ενότητα 1: Εισαγωγή 1-1 1.1 Το μαθηματικό πρότυπο: ισοζύγια και άλλες σχέσεις. 1-1 1.2 Αριστοποίηση 1-2 1.3 Αλλαγή κλίμακας (scale

Διαβάστε περισσότερα

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Μέρος 1 ο : Εισαγωγικά (διαστ., πυκν., θερμ., πίεση, κτλ.) Μέρος 2 ο : Ισοζύγια μάζας Μέρος 3 ο : 8 ο μάθημα Εκτός ύλης ΔΠΘ-ΜΠΔ Συστήματα Βιομηχανικών Διεργασιών

Διαβάστε περισσότερα

Ογκομετρική (PVT) συμπεριφορά καθαρών ρευστών

Ογκομετρική (PVT) συμπεριφορά καθαρών ρευστών Ογκομετρική (PT) συμπεριφορά καθαρών ρευστών Ογκομετρική (PvT) συμπεριφορά Α.Θ Παπαϊωάννου, Θερμοδυναμική: ΤΟΜΟΣ I, Αθήνα, 007 PvT ιάγραμμα για το νερό 3 ιαγράμματα φάσεων καθαρών ουσιών Α.Θ. Παπαϊωάννου,

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ Υ/Υ ΕΚΧΥΛΙΣΗΣ Κ. Μάτης

ΠΡΟΒΛΗΜΑΤΑ Υ/Υ ΕΚΧΥΛΙΣΗΣ Κ. Μάτης ΠΡΟΒΛΗΜΑΤΑ Υ/Υ ΕΚΧΥΛΙΣΗΣ Κ. Μάτης Πρόβληµα 36. Μια υγρή τροφοδοσία 3,5 kg/s, που περιέχει µια διαλυτή ουσία Β διαλυµένη σε συστατικό Α, πρόκειται να διεργαστεί µε ένα διαλύτη S σε µια µονάδα επαφής καθ

Διαβάστε περισσότερα

Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης

Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης Γενικά, όταν έχουμε δεδομένα συγκέντρωσης-χρόνου και θέλουμε να βρούμε την τάξη μιας αντίδρασης, προσπαθούμε να προσαρμόσουμε τα δεδομένα σε εξισώσεις

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 8: Εκχύλιση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Τύποι εκχύλισης

Διαβάστε περισσότερα

Διάλεξη 4. Είδη και επιλογές διαχωρισμού

Διάλεξη 4. Είδη και επιλογές διαχωρισμού Διάλεξη 4 Είδη και επιλογές διαχωρισμού Αφού καθορίσουμε το είδος του αντιδραστήρα και τις λειτουργικές τους συνθήκες... Καθαρισμός τροφοδοσίας Αντιδραστήρας Διαχωρισμός προϊόντος Καθορίζουμε πρώτα τις

Διαβάστε περισσότερα

Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες

Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες Ιδιότητες Μιγμάτων Μερικές Μολαρικές Ιδιότητες ΙΔΑΝΙΚΟ ΔΙΑΛΥΜΑ = ή διαιρεμένη διά του = x όπου όλα τα προσδιορίζονται στην ίδια T και P. = Όπου ή διαιρεμένη διά του : = x ορίζεται η μερική μολαρική ιδιότητα

Διαβάστε περισσότερα

ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ ΒΙΟΝΤΙΖΕΛ

ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ ΒΙΟΝΤΙΖΕΛ Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Σχολή Χημικών Μηχανικών Τομέας ΙΙ Μονάδα Μηχανικής Διεργασιών Υδρογονανθράκων και Βιοκαυσίμων ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση α: Συντελεστής Joule Thomson (Τζουλ Τόμσον ) Αθανάσιος Τσεκούρας Τμήμα Χημείας Θεωρία 3 Μετρήσεις 6 3 Επεξεργασία Μετρήσεων 6 Σελίδα Θεωρία Η καταστατική εξίσωση

Διαβάστε περισσότερα

Ειδική Ενθαλπία, Ειδική Θερµότητα και Ειδικός Όγκος Υγρού Αέρα

Ειδική Ενθαλπία, Ειδική Θερµότητα και Ειδικός Όγκος Υγρού Αέρα θερµοκρασία που αντιπροσωπεύει την θερµοκρασία υγρού βολβού. Το ποσοστό κορεσµού υπολογίζεται από την καµπύλη του σταθερού ποσοστού κορεσµού που διέρχεται από το συγκεκριµένο σηµείο. Η απόλυτη υγρασία

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Εργαστηριακές Ασκήσεις Διδάσκων: Α.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ Εισαγωγή Διαδικασία σχεδιασμού αντιδραστήρα: Καθορισμός του τύπου του αντιδραστήρα και των συνθηκών λειτουργίας. Εκτίμηση των χαρακτηριστικών για την ομαλή λειτουργία του αντιδραστήρα. μέγεθος σύσταση

Διαβάστε περισσότερα

Μηχανική Βιομηχανικών Αντιδραστήρων Υπολογιστικό θέμα

Μηχανική Βιομηχανικών Αντιδραστήρων Υπολογιστικό θέμα EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Μηχανική Βιομηχανικών Αντιδραστήρων Υπολογιστικό θέμα Μάθημα κατεύθυνσης 8 ου εξαμήνου

Διαβάστε περισσότερα

Σφαιρικές συντεταγμένες (r, θ, φ).

Σφαιρικές συντεταγμένες (r, θ, φ). T T r e r 1 T e r Σφαιρικές συντεταγμένες (r, θ, φ). 1 T e. (2.57) r sin u u e u e u e, (2.58) r r οπότε το εσωτερικό γινόμενο u.t γίνεται: T u T u T u. T ur. (2.59) r r r sin 2.5 Η ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Ιωάννης Πούλιος ΔΥΑΔΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΕΛΕΤΗ ΤΩΝ ΔΙΑΓΡΑΜΜΑΤΩΝ ΤΟΥ ΣΗΜΕΙΟΥ ΖΕΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Όρια καταστατικής εξίσωσης ιδανικού αερίου 2. Αποκλίσεις των Ιδιοτήτων των πραγματικών αερίων από τους Νόμους

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΑΘΗΜΑ 4-1 Ο ΨΥΚΤΙΚΟΣ ΚΥΚΛΟΣ, ΤΟ

Διαβάστε περισσότερα

ΕΤΚΛ ΕΜΠ. Τεχνολογία Πετρελαίου και Και Λιπαντικών ΕΜΠ

ΕΤΚΛ ΕΜΠ. Τεχνολογία Πετρελαίου και Και Λιπαντικών ΕΜΠ Φυσικού Αερίου Στήλες Απόσταξης Πετρελαίου Ιστορικά, η παλιότερη διεργασία επεξεργασίας πετρελαίου Αποτελεί το πρώτο μόνο στάδιο της επεξεργασίας Σκοπός Ανάκτηση ελαφρών συστατικών Κλασμάτωση σε κλάσματα

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 5-ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ. α. Να βρείτε τη σύσταση του δοχείου σε mol τις χρονικές στιγμές t 1 και t 2.

ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 5-ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ. α. Να βρείτε τη σύσταση του δοχείου σε mol τις χρονικές στιγμές t 1 και t 2. ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 5-ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ 1. Σε δοχείο όγκου V=2L εισάγονται τη χρονική στιγμή t o =0, 10mol N 2(g) και 24mol H 2(g) τα οποία αντιδρούν σύμφωνα με τη (μονόδρομη) αντίδραση

Διαβάστε περισσότερα

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 10: Ισορροπίες φάσεων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 10: Ισορροπίες φάσεων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 0: Ισορροπίες φάσεων Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η παρουσίαση και η εξέταση της ισορροπίας ανάμεσα

Διαβάστε περισσότερα

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ ΟΙ ΕΛΕΥΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΕΝ ΓΕΝΕΙ, ΟΛΕΣ ΟΙ ΠΑΡΑΜΕΤΡΟΙ ΕΝΟΣ ΑΠΛΟΥ, ΔΟΜΙΚΑ ΟΜΟΙΟΜΟΡΦΟΥ ΥΛΙΚΟΥ (ΔΗΛΑΔΗ ΟΤΑΝ ΟΛΗ

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΑΠΟΣΤΑΞΗΣ ΤΡΙΩΝ ΦΑΣΕΩΝ ΜΕ ΤΑΥΤΟΧΡΟΝΗ ΧΗΜΙΚΗ ΑΝΤΙΔΡΑΣΗ. Τεχνολογικής Ανάπτυξης (ΕΚΕΤΑ), Θέρμη, Θεσσαλονίκη

ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΑΠΟΣΤΑΞΗΣ ΤΡΙΩΝ ΦΑΣΕΩΝ ΜΕ ΤΑΥΤΟΧΡΟΝΗ ΧΗΜΙΚΗ ΑΝΤΙΔΡΑΣΗ. Τεχνολογικής Ανάπτυξης (ΕΚΕΤΑ), Θέρμη, Θεσσαλονίκη ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΑΠΟΣΤΑΞΗΣ ΤΡΙΩΝ ΦΑΣΕΩΝ ΜΕ ΤΑΥΤΟΧΡΟΝΗ ΧΗΜΙΚΗ ΑΝΤΙΔΡΑΣΗ Θ. Δαμαρτζής, Π. Σεφερλής,2 Ινστιτούτο Τεχνικής Χημικών Διεργασιών (ΙΤΧΗΔ, Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης

Διαβάστε περισσότερα

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3 Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου 2014 1/3 Πρόβλημα 2. Καταστατική Εξίσωση Van der Waals (11 ) Σε ένα πολύ γνωστό μοντέλο του ιδανικού αερίου, του οποίου η καταστατική εξίσωση περιγράφεται από το νόμο

Διαβάστε περισσότερα

ΣΤ' Εξάμηνο ΣΧΕΔΙΑΣΜΟΣ ΧΗΜΙΚΩΝ ΒΙΟΜΗΧΑΝΙΩΝ ΚΑΙ ΔΙΕΡΓΑΣΙΩΝ. Ερωτήσεις Επανάληψης Δεύτερο Μέρος

ΣΤ' Εξάμηνο ΣΧΕΔΙΑΣΜΟΣ ΧΗΜΙΚΩΝ ΒΙΟΜΗΧΑΝΙΩΝ ΚΑΙ ΔΙΕΡΓΑΣΙΩΝ. Ερωτήσεις Επανάληψης Δεύτερο Μέρος ΣΤ' Εξάμηνο ΣΧΕΔΙΑΣΜΟΣ ΧΗΜΙΚΩΝ ΒΙΟΜΗΧΑΝΙΩΝ ΚΑΙ ΔΙΕΡΓΑΣΙΩΝ 2008 2009 Ερωτήσεις Επανάληψης Δεύτερο Μέρος 0 Ερώτηση: Σε αντιδραστήρα για τη μετατροπή κυκλοεξανόλης σε κυκλοεξανόνη, παρέχεται και μίγμα αντιδρώντος

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Coons. Για εκπαιδευτικό

Διαβάστε περισσότερα

P 1 V 1 = σταθ. P 2 V 2 = σταθ.

P 1 V 1 = σταθ. P 2 V 2 = σταθ. ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ 83 Την κατάσταση ενός αερίου μέσα σε ένα δοχείο μπορούμε να την κατανοήσουμε, άρα και να την περιγράψουμε πλήρως, αν γνωρίζουμε τις τιμές των παραμέτρων εκείνων που επηρεάζουν την συμπεριφορά

Διαβάστε περισσότερα

ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ

ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ 1 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ Σκοπός της θερμοδυναμικής χημικής μηχανικής είναι η παροχή των κατάλληλων θεωρητικών γνώσεων και των

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΡΕΥΣΤΩΝ Για τον υπολογισμό της θερμότητας και του έργου των βιομηχανικών διεργασιών είναι απαραίτητες αριθμητικές τιμές

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΡΕΥΣΤΩΝ Για τον υπολογισμό της θερμότητας και του έργου των βιομηχανικών διεργασιών είναι απαραίτητες αριθμητικές τιμές Για τον υπολογισμό της θερμότητας και του έργου των βιομηχανικών διεργασιών είναι απαραίτητες αριθμητικές τιμές των θερμοδυναμικών ιδιοτήτων. Είναι εμφανές λοιπόν ότι αυτές πρέπει ότι πρέπει να αναπτυχθούν

Διαβάστε περισσότερα

1 ΦΥΣΙΚΟ ΦΥΣΙΚ ΧΗΜΕΙΑ Ο ΣΥΣΤΗΜΑΤΩΝ

1 ΦΥΣΙΚΟ ΦΥΣΙΚ ΧΗΜΕΙΑ Ο ΣΥΣΤΗΜΑΤΩΝ 1 ΦΥΣΙΚΟΧΗΜΕΙΑ ΣΥΣΤΗΜΑΤΩΝ Φυσικοχημεία συστημάτων 2 «Όμοιος Ό αρέσει όμοιο» Όσο συγγενέστερες από χημική άποψη είναι δύο ουσίες τόσο μεγαλύτερη είναι η αμοιβαία διαλυτότητά τους. Οι ανόργανες ενώσεις διαλύονται

Διαβάστε περισσότερα

Ισορροπία φάσεων σε υδατικά διαλύματα που περιέχουν ελαφρείς υδρογονάνθρακες και παρεμποδιστές υδριτών. Πετροπούλου Ειρήνη

Ισορροπία φάσεων σε υδατικά διαλύματα που περιέχουν ελαφρείς υδρογονάνθρακες και παρεμποδιστές υδριτών. Πετροπούλου Ειρήνη ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ II Ισορροπία φάσεων σε υδατικά διαλύματα που περιέχουν ελαφρείς υδρογονάνθρακες και παρεμποδιστές υδριτών. Πετροπούλου Ειρήνη Τυπικά στοιχεία

Διαβάστε περισσότερα

Τεχνοοικονομική Μελέτη

Τεχνοοικονομική Μελέτη Τμήμα Μηχανολόγων Μηχανικών Τεχνοοικονομική Μελέτη Ενότητα 10: Σχεδιασμός εγκαταστάσεων Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ 2016-2017 2 Ο ΕΞΑΜΗΝΟ Ε. ΠΑΥΛΑΤΟΥ ΑΝΑΠΛ. ΚΑΘΗΓΗΤΡΙΑ ΕΜΠ 2 ΣΚΟΠΟΣ ΜΑΘΗΜΑΤΟΣ Ε. Παυλάτου, 2017 ΓΝΩΣΤΙΚΟ ΕΠΙΠΕΔΟ Η διδασκαλία και εμπέδωση θεμελιακών εννοιών που σχετίζονται

Διαβάστε περισσότερα

ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΩΝ Separation Processes. Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens

ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΩΝ Separation Processes. Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΩΝ Separation Processes Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens Διεργασίες Διαχωρισμών Ορισμός Φυσικές διεργασίες οι οποίες

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Προσαρμοστικός και Συμπερασματικός Έλεγχος Αλαφοδήμος Κωνσταντίνος Τμήμα Μηχανικών Αυτοματισμού

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ 2015-2016 2 Ο ΕΞΑΜΗΝΟ Ε. ΠΑΥΛΑΤΟΥ ΑΝ. ΚΑΘΗΓΗΤΡΙΑ ΕΜΠ ΜΟΝΑΔΕΣ ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 3 ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 4 ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 5 Επιφάνεια

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η εξαέρωση ενός υγρού µόνο από

Διαβάστε περισσότερα

ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ

ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ Έργο - Θερμότητα ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΞΩΤΕΡΙΚΗ (Κινητική, Δυναμική) ΕΣΩΤΕΡΙΚΗ (Εσωτερική [U], Ενθαλπία [Η]) Χαρακτηριστικά και Σύμβαση

Διαβάστε περισσότερα

Ε. Παυλάτου, 2017 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ

Ε. Παυλάτου, 2017 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ 1 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ 2 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ Βασικές έννοιες Στοιχειομετρία-Στοιχειομετρικοί συντελεστές-στοιχειομετρική αναλογία Περιοριστικό αντιδρών Αντιδρών σε περίσσεια Μετατροπή (κλάσμα,

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η ανάπτυξη μαθηματικών

Διαβάστε περισσότερα

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΗ 1 Μία θερμική μηχανή λειτουργεί μεταξύ των θερμοκρασιών T h 400 Κ και T c με T c < T h Η μηχανή έχει απόδοση e 0,2 και αποβάλλει στη δεξαμενή χαμηλής θερμοκρασίας θερμότητα

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 1 η ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ Όνομα καθηγητή: ΕΥΑΓΓΕΛΙΟΥ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1): Διάκριση μεταξύ ιδανικών και

Διαβάστε περισσότερα

Προβλήματα εκχύλισης

Προβλήματα εκχύλισης Προβλήματα εκχύλισης Πηγή: Μαρίνου-Κουρή, Παρλιάρου-Τσάμη, Ασκήσεις Φυσικών Διεργασιών, εκδ. Παπασωτηρίου, Αθήνα, 1994 1. Εκχύλιση ακετόνης από νερό με χλωροβενζόλιο σε μονοβάθμιο εκχυλιστήρα. 100 kg διαλύματος

Διαβάστε περισσότερα

σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης

σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης Αρχές μεταφοράς μάζας Αρχές σχεδιασμού συσκευών μεταφοράς μάζας Διεργασίες μεταφοράς μάζας - Απορρόφηση - Απόσταξη - Εκχύλιση

Διαβάστε περισσότερα